

Simplified Template Cross Sections

Michael Duehrssen-Debling, <u>Paolo Francavilla</u>, Frank Tackmann, Kerstin Tackmann +feedback from many people

Summary of the discussion in Les Houches 2015: Physics at TeV Colliders (FERMILAB-CONF-16-175-PPD-T - 1605.04692)

and in the LHC Higgs Cross Section Working Group 2 (YR IV in preparation - LHCHXSWG-DRAFT-INT-2016-006)

From the discovery to the Higgs properties

- The Run 1 Higgs analyses for the 125 GeV Higgs started as searches
 - To enhance the sensitivity, the experimental analysis uses event categories and multivariate techniques
- After discovery, experiments adapted these analysis into first measurements of properties
- SM Higgs boson has very peculiar production mechanisms:
 - event categorisation eventually allows the splitting of the production modes in the global fit.
- Event categories to:
 - increase the sensitivity of the analysis;
 - enrich events of a given Higgs production mode;
 - analysis requirements (i.e. trigger selection and bkg estimation);

an example from ATLAS

$H \rightarrow ZZ^* \rightarrow 4\ell$		$H \rightarrow \gamma \gamma$	
Category	Target	Category	Target
VH-leptonic	VHlep	$t\bar{t}H$ leptonic	top
0-jet	ggF	$t\bar{t}H$ hadronic	top
1-jet	ggF	VH dilepton	VHlep
2-jet VBF-like	VBF	VH one-lepton	VHlep
2-jet VH-like	VHhad	VH Emiss	VHlep
		VH hadronic loose	VHhad
		VH hadronic tight	VHhad
		VBF loose	VBF
		VBF tight	VBF
		ggH central low- p_{Tt}	ggF
		ggH central high- p_{Tt}	ggF
		ggH fwd low- p_{Tt}	ggF
		ggH fwd high- p_{Tt}	ggF

From the discovery to the Higgs properties

 Most analyses measure the signal strength µ_{if} for the process i -> H -> f : for a category/bin C of the analysis, the number of measured signal events is

$$n^{C}_{measured} = (\Sigma_{f}) \Sigma_{i} \mu_{if} (\sigma \times B)_{if} A^{C}_{if} L$$

- σ x B are the SM predictions for production cross section and decay branching ratio
- A is the acceptance and efficiency for the SM H estimated using MC tools
- L is the luminosity
- In Red the parts which depend on the SM assumptions calculated/estimated with calculations/tools available at a certain point in time.

Some considerations

- Run 1 results on the Higgs characterisation are a big success, which combine all the decay channels
 - analyses with event categorisation optimised sensitivity and allowed for separating the production modes
- In these results the Higgs boson signal theory uncertainties are folded in the measurements of μ_{if} :
 - Systematic uncertainties on SM calculation of (σ x B). NOTE: this comes with questions about PDF and scale correlations
 - Uncertainties on the SM H estimations of A. NOTE: this adds uncertainties and correlations between categories.
- \rightarrow Better calculations cannot easily be compared to these measurements (e.g. N3LO gg \rightarrow H, ...)
- Analyses usually assume properties of a SM Higgs boson, especially in the Higgs boson production and decay kinematics.
- → What if we have deviations in the kinematic distributions as foreseen in BSM scenarios?

Changing paradigm?

- Some Run 1 analyses already changed the approach:
 - Fiducial and differential cross section measurements in H→γγ, H→ZZ and H→WW
 - almost model independent measurements

Changing paradigm?

- Some Run 1 analyses already changed the approach:
 - Fiducial and differential cross section measurements in H→γγ, H→ZZ and H→WW
 - almost model independent measurements
 - Cross section (σ x B) results (in ATLAS/CMS coupling combination papers)
 - Removes theory dependence on inclusive xsec

 $n^{C}_{measured} = (\Sigma_{f}) \Sigma_{i}(\sigma \times B)_{if} A^{C}_{if} L$

Changing paradigm?

nterpretatior

Simplified template cross sections

- Starting point: instead of measuring μ_{if}, measure directly (σ x B)_{if} (done for the ATLAS/CMS combination paper in Run1)
- **stage 0 intermediate step:** for most of the analysis, the experimental setup has a negligible acceptance for Higgs boson rapidity $|y_H| > 2.5$.

Measure ($\sigma \times B$)_{if} for $|y_H| < 2.5$

If some analysis can cover $|y_H| > 2.5$, perform a second measurement there

- Uncertainties on $(\sigma \times B)_{if}$ SM predictions and their correlations are not anymore affecting the measurement.
- Assumptions on SM predictions and uncertainties remains in A $_{\rm if}$

С

Designing the next stages

- С
- In stage 0, the uncertainties remains in A $_{
 m if}$
 - Are these negligible? No. i.e.: systematics due to the categorisation in #jets still important contribution. Can we do better?
- Measure ($\sigma \times B$) in well defined kinematic bin $b : (\sigma \times B)_{if}$ and split in sufficiently fine granular binning.
- *Example:* measure the ggF in 0, 1, 2 jets:

$$\begin{array}{ccc} & 0 \text{-jets} & 1 \text{-jets} & 2 \text{-jets} \\ \left(\sigma \ x \ B\right)_{ggFf} & \left(\sigma \ x \ B\right)_{ggFf} & \left(\sigma \ x \ B\right)_{ggFf} \end{array}$$

b

- Provide correlations between these measurements
- Split in kinematic bins is production mode specific
- Connecting all the (σ x B)_{if} with SM assumption can still provide measurements a la Run1.
 c b
- SM theory uncertainties on **A** if are still present, but much smaller due to the split in bins:
 - They depend only on the SM kinematics inside the bin.
 - If uncertainties remain, and not negligible, use them to guide how to split more granularly.
 - SM prediction acts as **template** for each bin.

Simplified template cross sections

• No changes to experimental analysis code needed:

 but one can anytime decide to improve the analysis to measure a specific kinematic bin

• No change to MC production needed:

- just need to split MC samples by applying the generator cuts that define the kinematic bins
- Well defined kinematic bins (proposed in YR4):
 - it should be unambiguous how to get SM and BSM predictions for each of these bins

How to define the bins?

Identify kinematic bins that are more important to separate out from theory side

- Largest theory systematics
- BSM sensitivity

•

•

•

- Minimise residual theory dependence
 - Try to align bins with analysis cuts to minimise the extrapolations
- Bin definition can evolve with statistics
 - Individual analysis can quote sum of bins while sensitivity is still limited
 - Limits on overflow bins are interesting for BSM even with limited statistics

Truth final state particles

- Truth final state particles need to be defined unambiguously for the binning
 - Definition kept **simpler and more idealised** than in the fiducial cross section measurements.
- Higgs boson:
 - on-shell Higgs boson, $|y_H| < 2.5$, treated as final state particle, to allow the combination of different decay channels.
- Leptons:
 - Electrons and muons from decays of signal vector bosons, e.g. from VH production, are defined as dressed i.e. FSR photons should be added back to the electron or muon.
 - τ leptons are defined from the sum of their decay products (for any τ decay mode).
 - No restriction on the transverse momentum or the rapidity of the leptons.
- · Jets:
 - anti-kt jets with a jet radius R = 0.4, p_T > 30 GeV, no restriction on rapidity
 - All stable particles included (lifetime greater than 10 ps),
 but decay products from the Higgs boson decay, and leptons from decays of signal vector bosons

ggF - Stage 1

(+): can be merged together

- The #jets bins are motivated by the use of jet bins in the experimental analyses.
 - Introducing them also for the simplified template cross sections avoids folding the associated theoretical uncertainties into the measurement.
- The bins with VBF topology cuts are motivated by the wish to separately measure the gluon fusion contamination in the VBF selection
 - The #jets \geq 2 with VBF topology cuts is excluded from the #jets \geq 2 bins.

ggF - Stage 1

- The #jets bins are motivated by the use of jet bins in the experimental analyses.
 - Introducing them also for the simplified template cross sections avoids folding the associated theoretical uncertainties into the measurement.
- The bins with VBF topology cuts are motivated by the wish to separately measure the gluon fusion contamination in the VBF selection
 - The #jets \geq 2 with VBF topology cuts is excluded from the #jets \geq 2 bins.

VBF - Stage 1

(+): can be merged together

- VBF defined as as electroweak qqH production, which includes both VBF and VH with hadronic V decays
- VBF cuts: $m_{jj} > 400$ GeV, $d\phi_{jj} > 2.8$ (compromise among the various VBF selection in analyses) Hij
 - p_T^{m} is chosen as a compromise between the different kinematic variables used by different channels to enrich VBF production (p_T , $d\phi_{H-ij}$)
- VH cuts: $60 < m_{jj} < 120$

VH leptonic - Stage 1

- Split in qq->VH and gg->ZH
 - · ambiguous at higher order defined according to the MC samples used in the analyses
- Separation for p_T = 150 GeV to avoid large extrapolation for ZH->vvbb channel (which uses an EtMiss trigger with efficiency above ~150 GeV).
- The split #jets reflecting the different experimental sensitivity and reduces the theoretical dependence
- Bins for p_T >250 GeV particularly sensitive to BSM scenarios.

QCD@LHC2016 - Zurich 22-26/8/2016 - P. Francavilla

Where are we? Stage 0

 First preliminary implementation in ATLAS: <u>ATLAS-CONF-2016-081</u>

• ggF (= ggH+bH), VBF, VHhad, VHlep, top (= ttH+tH)

SM predictions with $|y_H| < 2.5$ are needed for comparisons.

Collecting status-of-art SM predictions and uncertainties for each bin would be useful.

Beyond Stage 1

- Details on how to evolve the binning with higher luminosity is very difficult before having gained experience with the practical implementation of the framework with the stage 1 binning.
- Only indications of interesting further separation of bins that should be considered for the stage 2 binning.

Conclusions

- Simplified Template Cross Sections are a proposed framework in the path from discovery to precisions measurements.
- Designed to:
 - provide more finely-grained measurements, while at the same time allowing and benefitting from the global combination of the measurements in all decay channels
 - make a measurement in kinematic bins covered by the experimental setup, **limiting extrapolations**.
 - reduce the impact of the theory assumptions/bias folded in the measurement.
 - on the long term, the measurements can still be compared with new theory calculations when available.
 - get measurements/limits in **bins particularly sensitive to BSM scenarios**
 - easy to implement at the analysis level (evolution of signal strength measurements)
 - unambiguous definition of the kinematic bins
- First LHC measurements for Stage 0 already done, we hope more to come.
 - Collecting SM (and BSM) predictions for the different bins, and providing tools (Rivet?) to share the definition of the binning can be a good way to harmonise the efforts for the next LHC Higgs boson measurements.

Backup

First Run2 results using Simplified Template XS

