Experimental results on differential Higgs boson cross sections from ATLAS and CMS

QCD@LHC 2016

<u>Lorenzo Viliani</u>
On behalf of the ATLAS and CMS Collaborations

University & INFN of Firenze (Italy)

22nd - 26th August 2016 Zurich (Switzerland)

Introduction

- The time of precision measurements in the Higgs sector has started!
- Differential distributions of a variety of observables allow to test the SM theoretical predictions and to (in)directly search for BSM physics.
- Many differential measurements performed using Run 1 (and Run 2!!) LHC data in different channels:
 - Still limited by the size of statistical uncertainties
 - But useful to pave the way for future analyses
- Experimental results reported in the form of fiducial (differential) cross sections
 - Measurements are more model-independent
 - Reduced uncertainties on the extrapolation to phase space not covered by the detector

How these measurements are performed

- **1. Fiducial region**: defined at particle level to match the reconstruction selection as closely as possible.
- **2. Observables**: choose the interesting differential distributions for studying several aspects and define a binning.
 - Binning optimized according to resolution, statistical uncertainties or signal significance.
 - (Just a small selection of observables will be shown in this talk)
- **3. Signal extraction**: extract the reconstructed signal yields in each bin of the distribution
- **4. Unfolding**: correct the reconstructed spectra for detector effects
 - Different choices for ATLAS and CMS.
- **5. Theory comparison**: compare the unfolded results with SM (and BSM) theoretical predictions.

$H \rightarrow \chi \chi$

ATLAS: JHEP 09 (2014) 112, ATLAS-CONF-2016-067

CMS: EPJC 76 (2016) 13, CMS-PAS-HIG-16-020

- Clean final-state topology and precise reconstruction of the diphoton invariant mass.
- Small branching ratio but high selection efficiency
- Powerful channel for precision measurements
- Backgrounds: χχ, χ+jets, dijet
- Similar signal extraction strategies in ATLAS and CMS.
 - For a given distribution, the signal is extracted from a simultaneous fit of the diphoton mass spectrum in each bin.
 - CMS: events categorization based on diphoton mass resolution estimator

H→yy fiducial phase space and unfolding

Very similar fiducial phase space for ATLAS and CMS

Photon isolation

i runs over all the generator-level particles in a cone $\Delta R < 0.4$ around the photon direction

Variable	ATLAS	CMS
$\overline{ \eta_{\gamma} }$	< 2.37	< 2.5
$p_{\mathrm{T}}^{\gamma 1}/m_{\gamma \gamma}$	> 0.35	> 0.33
$p_{\mathrm{T}}^{\gamma_2}/m_{\gamma\gamma}$	> 0.25	> 0.25
$\sum_{i}^{j} E_{\mathrm{Ti}}$	$< 14\mathrm{GeV}$	$< 10 \mathrm{GeV}$

- Different unfolding techniques:
 - ATLAS: bin-by-bin corrections

$$\sigma_i = \frac{\nu_i^{\rm sig}}{c_i \int L \mathrm{d}t}$$

$$c_i = \frac{N_i^{\text{reco}}}{N_i^{\text{gen}}}$$

Correction factor derived from simulation

- CMS: response matrix inversion embedded in the likelihood function
 - · Cross section extracted directly from the fit in each fiducial bin.
- Model dependence estimated assuming different Higgs production models
 - e.g. varying the relative fractions of ggH, VBF, VH, ttH

H→yy fiducial cross sections at 8 TeV

ATLAS: fiducial cross section measured in several categories

$$\sigma_{\rm fid}(pp \to H \to \gamma \gamma) = 43.2 \pm 9.4 ({\rm stat.})^{+3.2}_{-2.9} ({\rm syst.}) \pm 1.2 ({\rm lumi}) {\rm fb}$$

- Slight excess in all categories
- 2.1 σ excess wrt SM predictions for $N_{jets} \ge 3$
- Upper limits set where no events are observed

CMS: fiducial cross section inclusive in the number of jets:

$$\sigma_{\text{obs}} = 32^{+10}_{-10}(\text{stat})^{+3}_{-3}(\text{syst}) \,\text{fb}$$

In agreement with the HRES prediction of

$$\sigma_{\rm HRES+XH} = 31^{+4}_{-3} \, \rm fb$$

H→yy differential cross sections at 8 TeV - p_T^H

- ATLAS spectrum harder wrt SM expectations
- CMS spectrum in agreement with SM

H→γγ differential cross sections at 8 TeV - N_{jets}

More plots in the backup

Spectra in agreement with SM expectations

H→yy at 13 TeV

ATLAS-CONF-2016-067 CMS-PAS-HIG-16-020

- New preliminary results from ATLAS and CMS using 13 TeV data!
- Same strategy as 8 TeV is used
- Same fiducial phase space definition and unfolding

ATLAS

Fiducial region	Measured cross section (fb)	SM prediction (fb)	
Baseline	$43.2 \pm 14.9 (stat.) \pm 4.9 (syst.)$	$62.8^{+3.4}_{-4.4}$	$[N^3LO + XH]$
VBF-enhanced	$4.0 \pm 1.4 \text{ (stat.)} \pm 0.7 \text{ (syst.)}$	2.04 ± 0.13	[NNLOPS + XH]
single lepton	$1.5 \pm 0.8 (\text{stat.}) \pm 0.2 (\text{syst.})$	0.56 ± 0.03	[NNLOPS + XH]

- Deficit observed in the "baseline" fiducial region.
- Agreement in the other categories.

CMS

$$\sigma_{\text{tot}}^{\text{fid}} = 69^{+16}_{-22}(\text{stat.})^{+8}_{-6}(\text{syst}) \,\text{fb}$$

H→yy at 13 TeV (ATLAS only)

More plots in the backup

- Slightly harder p_T^H spectrum in agreement with 8 TeV ATLAS result.
- \bullet Deficit observed in the N_{iets}=0 category, agreement for the other N_{iets} bins.

$H \rightarrow ZZ \rightarrow 4\ell$

ATLAS: PLB 738 (2014) 234, ATLAS-CONF-2016-079

CMS: JHEP 04 (2016) 005, CMS-PAS-HIG-16-033

H→ZZ→4&

- Very clean final state
 - Low signal yield but very low background yield
- Backgrounds:
 - Irreducible: quark- and gluon-induced ZZ production (estimated from simulation)
 - Reducible: Z+X with jets misidentified as leptons (estimated from data)

- Signal extraction:
 - ATLAS: counting events after background subtraction in m_{Al} window
 - CMS: maximum likelihood fit of signal and background to m₄₁
 - For the inclusive fiducial measurement ATLAS uses a likelihood fit as well

H→ZZ→4ℓ fiducial cross sections at 8 TeV

- ATLAS and CMS: fiducial phase space defined at particle level using Born-level leptons (before the emission of FSR)
- CMS: lepton isolation requirement at particle level to minimize model dependence
- ATLAS fiducial cross section

$$\sigma_{\text{tot}}^{\text{fid}} = 2.11^{+0.53}_{-0.47}(\text{stat.}) \pm 0.08(\text{syst.}) \,\text{fb}$$

- No significant deviation wrt the theoretical prediction of 1.30 ± 0.13 fb
- CMS fiducial cross sections at 7 and 8 TeV

$$\sigma_{\text{tot}}^{\text{fid}} = 1.11_{-0.35}^{+0.41} (\text{stat})_{-0.10}^{+0.14} (\text{syst}) \,\text{fb}$$

To be compared with the SM prediction of HRES

$$\sigma_{\rm HRES+XH} = 1.15^{+0.12}_{-0.13} \,\rm fb$$

H→ZZ→4ℓ differential cross sections at 8 TeV - p_T^H

• ATLAS and CMS unfolding: same as H → χχ

- ATLAS shape looks harder wrt SM prediction but in agreement within uncertainties
- Model dependence estimated assuming different Higgs production models

H→ZZ→4ℓ differential cross sections at 8 TeV - N

Data show a slightly higher jet multiplicity but no significant deviation from SM predictions

- Essentially the same signal extraction strategy is used.
- Very similar fiducial phase space definition
 - CMS: "dressed" leptons are used \rightarrow 4-momenta of photons in a cone of radius $\Delta R < 0.4$ are summed to the bare lepton momentum
 - ATLAS: optimized mass window for fiducial cross section measurement

H→ZZ→4ℓ at 13 TeV (CMS only)

- Spectra are in good agreement with the SM POWHEG (w/o MINLO) prediction
- Uncertainties still dominated by statistical component
- Precision comparable to Run1 results

H→yy and H→ZZ→4ℓ ATLAS combination

H→yy and H→ZZ→4ℓ ATLAS combination at 8 TeV

20

- Cross sections combined after the extrapolation to the full phase space assuming the SM branching ratios.
- Reduction of the total uncertainty up to 40% (25-30% on average).

• No strong evidence that the excess is localized in a given p_T^H region and/or jet multiplicity bin

$H \rightarrow VVV \rightarrow 2\ell 2v$

ATLAS: arXiv:1604.02997 - submitted to JHEP

CMS: arXiv:1606.01522 - submitted to JHEP

$H\rightarrow WW\rightarrow 2\ell 2v$

- Very large branching ratio compared to the other channels
- Good signal sensitivity despite large background
- Low resolution due to neutrinos in the final state
- Only different flavor leptons (eµ)
- Main backgrounds: WW and tt
 - Estimated from control regions in data
- ATLAS: measurement of p_T^H , N_{jets}^I , $|\Delta y_{\parallel}|$, p_T^{j1}
 - 3 signal regions: $N_{iets} = 0$, = 1, \geq 2
 - Signal (ggH only) extracted counting events inside an $m_{\scriptscriptstyle T}$ window

- Inclusive in jet multiplicity
- Signal (ggH+XH) extracted in each p_T^H bin from a 2D template fit of m_{\parallel} vs m_T^H

p_T^H reconstructed using transverse observables

$$\vec{p}_{\mathrm{T}}^{\mathrm{H}} = \vec{p}_{\mathrm{T}}^{\ell\ell} + \vec{p}_{\mathrm{T}}^{\mathrm{miss}}$$

H→WW→212v fiducial phase space and unf.

- \bullet ATLAS: "dressed" leptons adding photons within a cone of radius $\Delta R < 0.1$
- CMS: Born-level leptons (effect of using "dressed" leptons is negligible)

Fiducial phase space main selections

	-	
Variable	ATLAS	CMS
Leptons $p_{\rm T}$	$> 22, 15 \mathrm{GeV}$	$> 20, 10 \mathrm{GeV}$
$m_{\ell\ell}$	$10 < m_{\ell\ell} < 55 \mathrm{GeV}$	$> 12\mathrm{GeV}$
$p_{ m T}^{ m miss}$	$> 20\mathrm{GeV}$	$> 0\mathrm{GeV}$
$\Delta\phi_{\ell\ell}$	< 1.8	None
$p_{ m T}^{\ell\ell}$	None	$> 30 \mathrm{GeV}$
$ m m_{T}$	None	$> 50\mathrm{GeV}$

- Low resolution variables cause large bin migrations.
- Both use regularized unfolding techniques
 - ATLAS: D'Agostini iterative method with 2 iterations
 - CMS: singular value decomposition with Tikhonov regularization

H→WW→2ℓ2v differential cross sec. at 8 TeV - p_TH

$$\sigma_{\rm ggF}^{\rm fid} = 36.0 \pm 7.2 {\rm (stat)} \pm 6.4 {\rm (syst)} \pm 1.0 {\rm (lumi)} \, {\rm fb}$$

$$\sigma_{\rm ggF,SM}^{\rm fid} = 25.1 \pm 2.6\,{\rm fb}$$

More plots in the backup

- Adjacent bins are highly correlated.
- Statistical and systematic components are comparable.

Conclusions

- Higgs fiducial (differential) cross sections are important measurements
 - Test SM predictions
 - Indirect searches of BSM physics
 - Allow comparison of LHC data with future predictions
- Many results provided by ATLAS and CMS using Run 1 LHC data
 - Only bosonic channels so far
 - Measurement generally limited by statistics
 - No significant discrepancy wrt SM predictions
- Analyses using Run 2 data can provide a great improvement of the current results!
- New $H \rightarrow \chi\chi$ and $H \rightarrow ZZ \rightarrow 4\ell$ preliminary results using Run 2 data have been shown.

BACKUP

Observables

Higgs production

$$p_{\mathrm{T}}^{\mathrm{H}} \quad |y^{\mathrm{H}}|$$

- Probe the pQCD modelling of the Higgs production mechanism and PDF.
 - Sensitive to BSM effects.

Higgs decay

$$\Delta\Phi^{\gamma\gamma}$$
 $cos\theta^*$

- Sensitive to the properties of the decay products
 - Probe the spin-CP properties

Jet activity

$$p_{
m T}^{
m j1}$$
 $N_{
m jets}$

- Relative contribution of different Higgs production mechanisms
 - Probe pQCD radiation effects

VBF-sensitive

$$m_{
m jj}$$
 $\Delta\Phi_{
m jj}$ $\Delta\eta_{
m jj}$

 Sensitive to the VBF production mechanism and to additional jet radiation

- Also other observables have been measured
- Just a small selection of these will be discussed (more plots in the backup).

Unfolding

- Needed to correct for detector efficiency and resolution effects.
- Different choices made by different analyses
 - Bin-by-bin corrections
 - Response matrix inversion embedded in the likelihood function
 - D'Agostini iterative method
 - Singular value decomposition approach
- Response matrices are ~diagonal for high resolution observable (photon or leptons)
- When low resolution observables are involved (jets, MET), bin migrations become important.

H→ZZ→4½ fiducial phase space and unfolding

- ATLAS and CMS: fiducial phase space defined at particle level using Born-level leptons (before the emission of FSR)
- CMS: lepton isolation requirement at particle level to minimize model dependence

ATLAS

T4-	14:
-	on selection
Muons:	$p_{\rm T} > 6 {\rm GeV}, \eta < 2.7$
Electrons:	$p_{\rm T} > 7 {\rm GeV}, \eta < 2.47$
Lept	on pairing
Leading pair:	SFOS lepton pair with
	smallest $ m_Z - m_{\ell\ell} $
Subleading pair:	Remaining SFOS
	lepton pair with
	smallest $ m_Z - m_{\ell\ell} $
Even	t selection
Lepton kinematics:	$p_{\rm T} > 20, 15, 10 { m ~GeV}$
Mass requirements:	$50 < m_{12} < 106 \text{ GeV}$
	$12 < m_{34} < 115 \text{ GeV}$
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1 \ (0.2)$
	for same- (different-)
	flavour leptons
J/ψ veto:	$m(\ell_i, \ell_j) > 5 \text{ GeV}$
•	for all SFOS lepton pairs
Mass window:	$118 < m_{4\ell} < 129 \text{ GeV}$

CMS

Requirements for the H $ ightarrow 4\ell$ fiducial phase space		
Lepton kinematics and isolation		
Leading lepton $p_{\rm T}$	$p_{\rm T} > 20{\rm GeV}$	
Sub-leading lepton $p_{\rm T}$	$p_{\rm T} > 10{\rm GeV}$	
Additional electrons (muons) p_T	$p_{\rm T} > 7 \ (5) {\rm GeV}$	
Pseudorapidity of electrons (muons)	$ \eta < 2.5 (2.4)$	
Sum of scalar p_T of all stable particles within $\Delta R < 0.4$ from lepton	$< 0.4 p_{\mathrm{T}}$	
Event topology		
Existence of at least two SFOS lepton pairs, where leptons satisfy criteria above		
Inv. mass of the Z_1 candidate	$40 < m(Z_1) < 120 \text{GeV}$	
Inv. mass of the Z_2 candidate	$12 < m(Z_2) < 120 \text{GeV}$	
Distance between selected four leptons	$\Delta R(\ell_i \ell_i) > 0.02$	
Inv. mass of any opposite-sign lepton pair	$m(\ell_i^+\ell_j^-) > 4 \text{GeV}$	
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140 \text{GeV}$	

H→yy and H→ZZ→4ℓ ATLAS combination

30

- ATLAS performed a combination of the previous channels using 8 TeV data.
- Reduction of the total uncertainty up to 40% (25-30% on average).
- Cross sections combined after the extrapolation to the full phase space
- Statistical uncertainties still dominant

Combined cross section for the inclusive pp→H production

$$\sigma_{\mathrm{pp}\to\mathrm{H}} = 33.0 \pm 5.3 \mathrm{(stat.)} \pm 1.6 \mathrm{(syst)}\,\mathrm{fb}$$

- Larger signal yield observed in data
- Data/theory p-value:
 - 5.5% for LHC-XS
 - 9% for ADDFGHLM

H→WW→2&2v fiducial phase space and unf.

- ATLAS: "dressed" leptons adding photons within a cone of radius $\Delta R < 0.1$
- CMS: Born-level leptons (effect of using "dressed" leptons is negligible)

ATLAS

CMS

Electrons	Object selection $p_{\mathrm{T}} > 15 GeV, \ \eta < 1.37 \ \mathrm{or} \ 1.52 < \eta < 2.47$	Physics quantity	Requirement
Muons	$p_{\mathrm{T}} > 15 GeV$, $ \eta < 1.57$ of $1.52 < \eta < 2.47$ $p_{\mathrm{T}} > 15 GeV$, $ \eta < 2.5$	Leading lepton p_T	$p_{\rm T} > 20{\rm GeV}$
Jets	$p_{\rm T} > 25 GeV \text{ if } \eta < 2.4, \ p_{\rm T} > 30 GeV \text{ if } 2.4 \le \eta < 4.5$	Subleading lepton p_T	$p_{\mathrm{T}} > 10\mathrm{GeV}$
	Event selection	Pseudorapidity of electrons and muons	$ \eta < 2.5$
	$p_{\mathrm{T}}^{\mathrm{lead}}(\ell) > 22 GeV$	Invariant mass of the two charged leptons	$m_{\ell\ell} > 12\mathrm{GeV}$
Preselection	$m_{\ell\ell} > 10 GeV$	Charged lepton pair p_T	$p_{\mathrm{T}}^{\ell\ell} > 30\mathrm{GeV}$
	$p_{\mathrm{T}}^{\mathrm{miss}} > 20 GeV$	Invariant mass of the leptonic system in the transverse plane	$m_{\rm T}^{\ell\ell\nu\nu} > 50{\rm GeV}$
Topology	$\Delta \phi_{\ell\ell} < 1.8$	$E_{ m T}^{ m miss}$	$E_{\rm T}^{ m miss} > 0$
1 00	$m_{\ell\ell} < 55 GeV$	•	

H→WW→2 2 2 v p_T + correlation matrix

H→yy differential cross sections - |yH|

H→yy differential cross sections - p_T^{j1}

H→γγ differential cross sections - cosθ*

H→γγ 13 TeV differential cross sections (ATLAS)

H→γγ 13 TeV differential cross sections (ATLAS)

H→ZZ→4ℓ differential cross sections - |yH|

H→ZZ→4 differential cross sections - p_T^{j1}

H→WW→2&2v differential cross sections

Model dependence estimation

- Uncertainties due to the theoretical modelling are included in all the measurements using similar prescriptions.
- Let's take the ATLAS $H \rightarrow \chi\chi$ analysis as an example.
- The uncertainty in the correction factors are estimated in 3 ways, each time recalculating the correction factors:
 - Replacing the default POWHEG+PYTHIA samples with alternative MC simulations: POWHEG+PYTHIA w/o MPI, POWHEG+HERWIG, MINLO HJ, MINLO HJJ, SHERPA;
 - Increasing/decreasing the VBF and VH relative contributions changing the cross sections by 0.5 and 2.0. The ttH cross section is also changed by a factor of 5 or removing it completely;
 - Reweighting the p_T^H and y^H simulations to the distributions observed in the data.
- All the uncertainties are summed in quadrature.
- The total uncertainty is ~1-3% for the baseline selection and up to ~6% for events containing jets.

H→yy and H→ZZ→4ℓ ATLAS combination at 13 TeV

√s [TeV]

ATLAS: PLB 753 (2016) 69

- Constraints on BSM Higgs interactions using differential $H \rightarrow \chi \chi$ distributions
- The measured distributions are fitted simultaneously taking into account correlations
- Limits set on Wilson coefficients using EFT approach (CP-even/CP-odd interactions)

