Exploiting jet binning to identify the initial state of high-mass resonances.

Markus Ebert

Deutsches Elektronen-Synchrotron

In collaboration with Stefan Liebler, Ian Moult, Iain Stewart, Frank Tackmann, Kerstin Tackmann, Lisa Zeune

arXiv:1605.06114

QCD@LHC 2016 23. August 2016

Outline

Introduction

2 Theoretical setup

Results

4 Conclusion

New physics searches at the LHC:

- ullet Increased sensitivity to new physics at $\sqrt{s}=13~{
 m TeV}$
- Ideal scenario: Discovery of new resonances
- Crucial: Identification of particle properties of resonance
 - Mass
 - ▶ Width
 - ► Spin
 - Couplings
 - Quantum numbers

. . .

• Challenge: Limited data shortly after discovery

Goal:

Need methods viable with small statistics to infer particle properties.

Example: The diphoton excess

- CMS and ATLAS observed deviations from the SM background in 2015 data.
- Test case for a new resonance at the LHC
- Mass can be measured from mass spectrum √
- ullet Production mechanism: gg, $qar{q}$ or $\gamma\gamma$?

Proposals to measure initial state

- Transverse momentum / rapidity distribution of resonance [Gao,Zhang,Zhu '15]
- Kinematic distributions of hadronic jets [Bernon et al '15]
- ullet Additional jets at high p_T [Bernon et al '15; Franceschini et al '16; Grojean et al '13]
- **.** . . .
- Drawback: Needs lots of data for precise measurement of distributions

Jet binning for initial state discrimination

- Proposal:Use tight cut to divide data into bins with and without hadronic jets, $p_T^{\rm jet} < p_T^{\rm cut}$ (According to some jet algorithm)
 - ▶ Idea: Ratio $\frac{\sigma_0(p_T^{\text{cut}})}{\sigma_{>1}(p_T^{\text{cut}})}$ is very sensitive to ISR
 - Provides strong discrimination of initial state
- ullet Events split with only a single cut on $p_T^{
 m jet} < p_T^{
 m cut}$ on hadronic jets
 - ► Suitable for small event samples
- ullet Feasible cut: $p_T^{ ext{cut}}\gtrsim 25~ ext{GeV}$
 - ► Insensitive to underlying event
 - lacktriangle Sufficiently tight for high-mass resonances $m_X\gtrsim 300~{
 m GeV}$

- Insensitive to details of final state (e.g. two-body vs three-body decay)
- $ightharpoonup p_T^{\mathsf{cut}}$ -dependence known precisely
- ► Theoretical uncertainties well under control

Theoretical setup.

Scale overview: Inclusive cross section.

- Unknown BSM physics
- ullet Relevant physics at $\mu=m_X$

- ▶ Evolve PDFs up to $\mu=m_X$
- ▶ PDF evolution *changes* parton type
- "PDF scale"

Scale overview: $\sigma_0(p_T^{ ext{cut}})$.

- Unknown BSM physics
- ullet Relevant physics at $\mu=m_X$
- ightharpoonup Evolve up to $\mu=m_X$ \Rightarrow resum $\ln rac{p_T^{ ext{cut}}}{m_X}$
- ▶ Parton type *fixed* in evolution
- ullet Relevant physics at $\mu=p_T^{ ext{cut}}$
- lacksquare Evolve PDFs up to $\mu=p_T^{ ext{cut}}$
- ▶ PDF evolution *changes* parton type
- "PDF scale"

Jet veto freezes parton type at scale $p_T^{
m cut}$ and evolves it to scale m_X

Low energy dynamics.

$$egin{aligned} \sigma_0(p_T^{ ext{cut}}) &= \int_0^{p_T^{ ext{cut}}} \mathrm{d}p_T^{ ext{jet}} rac{\mathrm{d}\sigma}{\mathrm{d}p_T^{ ext{jet}}} \ &= \sigma_{ ext{LO}} \left(1 - rac{lpha_s C_F}{\pi} 2 \ln^2 rac{p_T^{ ext{cut}}}{m_X} + \cdots
ight) \ &+ \sigma^{ ext{non-sing}}(p_T^{ ext{cut}}) \end{aligned}$$

- Singular piece:
 - Large logarithms $L = \ln \frac{p_{T}^{cut}}{m_{X}}$ spoil perturbation theory
 - ▶ Logs *L* are *universal*: Resummation to all orders possible
 - lacksquare Dominates for $p_T^{ ext{cut}} \ll m_X$
- Non-singular piece:
 - lacktriangle Power corrections $\sigma^{ ext{non-sing}}(p_T^{ ext{cut}}) = \mathcal{O}((p_T^{ ext{cut}}/m_X)^2)$
 - lacktriangle Relevant only for $p_T^{ ext{cut}} \sim m_X$
 - Are model-dependent

0-jet spectrum $\emph{model-independent}$ for $p_T^{ ext{cut}} \ll m_X$

Low energy dynamics.

ullet QCD dynamics for $\mu \sim p_T^{
m cut} \ll m_X$ universally described

- ► Annihilation of energetic gluons or quarks along the beam
- $ightharpoonup \mathcal{F}$: All fields required to produce final state F
- $c_{ijF}^{\lambda_1\lambda_2}$: Wilson coefficients
- ullet All hard degrees of freedom, $\mu \sim m_X$, are integrated out
- ullet Power corrections suppressed by $\mathcal{O}((p_T^{ ext{cut}}/m_X)^2)$
- 0-jet cross section at leading power completely determined by

$$|c_{ijF}|^2 = \int \mathrm{d}\phi_F \sum_{\lambda_1,\lambda_2} |c_{ijF}^{\lambda_1\lambda_2}(\phi_F)|^2$$

- ightharpoonup Valid for any color-singlet final state X
- Independent of spin of X

High energy dynamics.

The high energy Lagrangian:

- ullet QCD dynamics for $\mu \sim m_X$ carries the full model-dependence
- Concrete case (spin 0):

$$\mathcal{L}_{ ext{eff}}(m_X) = \mathcal{L}_{ ext{SM}} - rac{|m{C}_g|}{1 ext{ TeV}} lpha_s G^{\mu
u} G_{\mu
u} X - \sum_q |m{C}_q| ar{q} q X + \cdots$$

- $lacksymbol{C_i}$: Wilson coefficients defined at $\mu=m_X$
- ▶ C_i are the quantities to be measured
- ullet Different choice $\mathcal{L}_{ ext{eff}}$ (e.g. spin 2) will only yield differences $\mathcal{O}(lpha_s(m_X))$

Matching the Lagrangians:

$$|c_{qar{q}F}(\mu)|^2 \sim \mathcal{B}(X \to F)|C_q(\mu)(1+\cdots)|^2 \ |c_{ggF}(\mu)|^2 \sim \mathcal{B}(X \to F)|lpha_s C_g(\mu)(1+\cdots)|^2$$

- ullet Dependency on branching ratios $\mathcal{B}(X o F)$ will drop out
- All dynamics completely specified by C_i

Theory uncertainties.

Covariance matrix: (Following [Stewart, Tackmann, Walsh, Zuberi '13])

$$\mathcal{C}_{\mathsf{th}} = \mathcal{C}_{\mathsf{FO}} + \mathcal{C}_{\mathsf{resum}} + \mathcal{C}_{\mathsf{PDF}}$$

- \bullet $\mathcal{C}_{\mathsf{FO}}$: Collective overall scale variation
 - ▶ Fully correlated between different bins (yield uncertainty)

$$\mathcal{C}_{ extsf{FO}}(\sigma_0,\sigma_{\geq 1}) = egin{pmatrix} (\Delta_0^{ extsf{FO}})^2 & \Delta_0^{ extsf{FO}}\Delta_{\geq 1}^{ extsf{FO}} \ \Delta_0^{ extsf{FO}}\Delta_{\geq 1}^{ extsf{FO}} & (\Delta_{\geq 1}^{ extsf{FO}})^2 \end{pmatrix}$$

- \bullet C_{resum} : Resummation scale variation
 - Implemented through variation of profiles
 - ▶ Directly probes $\ln \frac{p_T^{\text{cut}}}{m_X}$ and hence the jet binning
 - ▶ Fully anticorrelated between different bins (migration uncertainty)

$$\mathcal{C}_{\mathsf{resum}}(\sigma_0, \sigma_{\geq 1}) = egin{pmatrix} \Delta^2_\mathsf{cut} & -\Delta^2_\mathsf{cut} \ -\Delta^2_\mathsf{cut} & \Delta^2_\mathsf{cut} \end{pmatrix}$$

- $m{\circ}$ $\mathcal{C}_{\mathsf{PDF}}$: Variation of all 25 MMHT2014nnlo68cl eigenvectors
 - Found to be subdominant

Theoretical setup.

Summary

Effective couplings defined through effective Lagrangian

$$\mathcal{L}_{ ext{eff}}(m_X) = \mathcal{L}_{ ext{SM}} - rac{C_g}{1 ext{ TeV}} lpha_s G^{\mu
u} G_{\mu
u} X - \sum_q C_q ar q q X + \cdots$$

Cross sections are given by

$$\sigma_i = |C_g|^2 \sigma_i^g + \sum_q |C_q|^2 \sigma_i^q \,, \quad i \in \{0, \geq 0, \geq 1\}$$

- 0-jet cross section dominated by universal large logarithms
 - lacktriangle Resummation of logarithms $\ln rac{p_{ ext{ iny T}}^{ ext{ iny cut}}}{m_{ ext{ iny X}}}$ is crucial
 - lacksquare Model-independent for $p_T^{ ext{cut}} \ll m_X$
- Cross sections implemented at
 - ► Quark initial state: NLO + NLL' (non-singulars from SusHi)
 - ► Gluon initial state: NNLO + NNLL' (non-singulars from MCFM)
- Theory uncertainties have to be treated carefully
 - ► Correlations between bins and flavors are taken into account

Results.

Sensitivity of 0-jet cross section on ISR.

- ullet Gluons radiate stronger than quarks $(C_A=3>C_F=4/3)$
 - Small fraction of events in 0-jet bins for gluons
 - ► Large fraction of events in 0-jet bins for quark
- Sea quarks partially result from gluon splittings

• Effect grows with quark mass m_a

▶ Smaller faction of events in 0-jet bin than for valence quarks

Optimizing p_T^{cut} .

- ullet Best statistics uncertainties: events split $\sim 1:1$
 - lacktriangle Can optimize p_T^{cut} according to measurement
- ullet Split events at most 1:2 for reasonable statistics with small data samples
- ullet In practice: Observe little sensitivity to precise value $p_T^{ ext{cut}} \in [25,65] \; ext{GeV}$
- ullet For illustration: Choose $p_T^{
 m cut}=40~{
 m GeV}$

Example 1: gluon-like signal.

Normalization

- Can only constrain $C_i\sqrt{\mathcal{B}}$
- Only one decay channel: Normalize results to

$$C_i^{\rm incl} \sqrt{B} = \sqrt{\sigma_{\geq 0}^{\rm meas}/\sigma_{\geq 0}^i}$$

ullet C_i/C_i^{incl} independent of ${\mathcal B}$

- ullet Assume only $C_g
 eq 0$ $\Rightarrow rac{\sigma_0^{ ext{meas}}}{\sigma_0^{ ext{meas}}} = 0.52$
- Only consider theoretical uncertainties first

Example 1: gluon-like signal.

Normalization

- Can only constrain $C_i\sqrt{\mathcal{B}}$
- Only one decay channel: Normalize results to

$$C_i^{\rm incl} \sqrt{B} = \sqrt{\sigma_{\geq 0}^{\rm meas}/\sigma_{\geq 0}^i}$$

ullet C_i/C_i^{incl} independent of ${\mathcal B}$

- ullet Assume only $C_g
 eq 0$ $\Rightarrow rac{\sigma_0^{ ext{meas}}}{\sigma_>^{ ext{meas}}} = 0.52$
- ullet Assume $\Delta\sigma^{ ext{meas}}_{>0}=20\%$
- $\bullet \; \mathsf{Split} \; \tfrac{\Delta\sigma_0^{\mathsf{meas}}}{\Delta\sigma_{>1}^{\mathsf{meas}}} = \sqrt{\tfrac{\sigma_{\geq 1}^{\mathsf{meas}}}{\sigma_0^{\mathsf{meas}}}}$

Example 1: gluon-like signal.

Normalization

- Can only constrain $C_i\sqrt{\mathcal{B}}$
- Only one decay channel: Normalize results to

$$C_i^{\rm incl} \sqrt{B} = \sqrt{\sigma_{\geq 0}^{\rm meas}/\sigma_{\geq 0}^i}$$

ullet C_i/C_i^{incl} independent of ${\mathcal B}$

- ullet Assume only $C_g
 eq 0$ $\Rightarrow rac{\sigma_0^{ ext{meas}}}{\sigma_{>1}^{ ext{meas}}} = 0.52$
- ullet Assume $\Delta\sigma^{ ext{meas}}_{>0}=20\%$
- $\bullet \; \mathsf{Split} \; \tfrac{\Delta\sigma_0^{\mathsf{meas}}}{\Delta\sigma_{\geq 1}^{\mathsf{meas}}} = \sqrt{\tfrac{\sigma_{\geq 1}^{\mathsf{meas}}}{\sigma_0^{\mathsf{meas}}}}$

Example 2: u-quark like signal.

- ullet Assume only $C_u
 eq 0$ $\Rightarrow rac{\sigma_0^{ ext{meas}}}{\sigma_>^{ ext{meas}}} = 1.57$
- ullet Assume $\Delta\sigma_{>0}^{ ext{meas}}=20\%$
- ullet Split $rac{\Delta \sigma_0^{ ext{meas}}}{\Delta \sigma_{\geq 1}^{ ext{meas}}} = \sqrt{rac{\sigma_{\geq 1}^{ ext{meas}}}{\sigma_0^{ ext{meas}}}}$

Example 3: Mixed u-quark / gluon signal.

- Assume only $C_u, C_g \neq 0$ s.t. $\frac{\sigma_0^{\text{meas}}}{\sigma_{>1}^{\text{meas}}} = 1.00$
- ullet Assume $\Delta\sigma_{>0}^{ ext{meas}}=20\%$
- ullet Split $rac{\Delta \sigma_0^{ ext{meas}}}{\Delta \sigma_{\geq 1}^{ ext{meas}}} = \sqrt{rac{\sigma_{\geq 1}^{ ext{meas}}}{\sigma_0^{ ext{meas}}}}$

Example 4: **b**-quark like signal.

- Assume only $C_b
 eq 0$ $\Rightarrow rac{\sigma_0^{ ext{meas}}}{\sigma_{>1}^{ ext{meas}}} = 0.66$
- ullet Assume $\Delta\sigma_{>0}^{ ext{meas}}=20\%$
- $\bullet \; \mathsf{Split} \; \tfrac{\Delta\sigma_0^{\mathsf{meas}}}{\Delta\sigma_{\geq 1}^{\mathsf{meas}}} = \sqrt{\tfrac{\sigma_{\geq 1}^{\mathsf{meas}}}{\sigma_0^{\mathsf{meas}}}}$

Example 5: c-quark like signal.

- ullet Assume only $C_c
 eq 0$ $\Rightarrow rac{\sigma_0^{ ext{meas}}}{\sigma_{>1}^{ ext{meas}}} = 1.12$
- ullet Assume $\Delta\sigma_{>0}^{ ext{meas}}=20\%$
- ullet Split $rac{\Delta \sigma_0^{ ext{meas}}}{\Delta \sigma_{\geq 1}^{ ext{meas}}} = \sqrt{rac{\sigma_{\geq 1}^{ ext{meas}}}{\sigma_0^{ ext{meas}}}}$

Example 6: gluon-like signal.

- ullet Assume only $C_g
 eq 0$ $\Rightarrow rac{\sigma_0^{ ext{meas}}}{\sigma_{>1}^{ ext{meas}}} = 0.52$
- ullet Assume $\Delta\sigma_{>0}^{ ext{meas}}=20\%$
- $\bullet \; \mathsf{Split} \; \tfrac{\Delta\sigma_0^{\mathsf{meas}}}{\Delta\sigma_{\geq 1}^{\mathsf{meas}}} = \sqrt{\tfrac{\sigma_{\geq 1}^{\mathsf{meas}}}{\sigma_0^{\mathsf{meas}}}}$

Conclusion.

Conclusion.

Jet binning to identify the initial state of high-mass resonances

- Model-independent technique
- Theoretically clean
 - Uncertainties well under control
- Requires only small data sets
 - ▶ Applicable in the early discovery phase
- Can reliably distinguish (depending on measurement)
 - ▶ light quarks from gluons ✓
 - ▶ light quarks from heavy quarks √
 - ▶ b-quarks from gluons X

Outlook

- Easily applicable to newly discovered resonances
- Measurements should be reported fiducially
- ullet Method works for $m_X \gtrsim 300 \; {
 m GeV}$

Conclusion.

Jet binning to identify the initial state of high-mass resonances

- Model-independent technique
- Theoretically clean
 - Uncertainties well under control
- Requires only small data sets
 - ► Applicable in the early discovery phase
- Can reliably distinguish (depending on measurement)
 - ▶ light quarks from gluons ✓
 - ▶ light quarks from heavy quarks √
 - ▶ **b**-quarks from gluons **X**

Outlook

- Easily applicable to newly discovered resonances
- Measurements should be reported fiducially
- ullet Method works for $m_X \gtrsim 300 \; {
 m GeV}$

Thank you for your attention!

Backup slides.

Overview of results.

Details on $p_T^{ m cut}$ resummation.

Resummation of large logs:

• Singular cross section plagued by large logarithms $L=\ln \frac{p_{c}^{\rm crit}}{m_X}$:

$$\sigma_0^{ ext{sing}}(p_T^{ ext{cut}}) = \sigma_{ ext{LO}} \left(1 - rac{lpha_s C_{F,A}}{\pi} 2 \ln^2 rac{p_T^{ ext{cut}}}{m_X} + \cdots
ight)$$

- ullet Factorization: $\sigma_0^{ ext{sing}}(p_T^{ ext{cut}}) = H(m_X,\mu) B(p_T^{ ext{cut}},\mu,
 u)^2 S(p_T^{ ext{cut}},\mu,
 u)$
- Logarithms are split:

$$2\ln^2\frac{p_T^{\text{cut}}}{m_X} = 2\ln^2\frac{m_X}{\mu} + 4\ln\frac{p_T^{\text{cut}}}{\mu}\ln\frac{\nu}{m_X}$$

$$+ 2\ln\frac{p_T^{\text{cut}}}{\mu}\ln\frac{\mu p_T^{\text{cut}}}{\nu^2}$$

• Large logarithms can be resummed using RG-evolution for $\pmb{H}, \pmb{B}, \pmb{S}$ (See [Tackmann, Walsh, Zuberi, '12] for details)

Resummation uncertainties.

ullet Large cancellations between singular and non-singular contributions for large $p_{T}^{
m cut}\sim m_{X}$

- Resummation must be turned off
- Achieved using profiles: Smooth matching onto fixed order using $\mu_i = \mu_i(p_T^{\text{cut}}), \ \nu_i = \nu_i(p_T^{\text{cut}})$
- Ambiguity is a scale uncertainty
 - Leaves $\sigma_{>0}$ invariant
 - lacktriangle Anticorrelated between σ_0 and $\sigma_{\geq 1}$

[Stewart, Tackmann, Walsh, Zuberi '13]