Theory status of bottom-quark associated Higgs production

Science \& Technology
Facilities Council
Andrew Papanastasiou
Cavendish Laboratory, University of Cambridge

Production modes providing access to Y_{b}

Gluon fusion

- bottom-top loop interference
- few \% of total Higgs production xs

Bottom - associated production

- contributions that feature Tree-level diagrams with a $b \bar{b} h$ vertex
- $\sim 1 \%$ of total rate in SM

Production modes providing access to Y_{b}

Gluon fusion

- bottom-top loop interference
- few $\%$ of total Higgs production xs

Bottom - associated production

- contributions that feature Tree-level diagrams with a $b \bar{b} h$ vertex
- $\sim 1 \%$ of total rate in SM
this talk

$b \bar{b} H @$ LHC is small but non-negligible

- total cross section small, but similar to $t \bar{t} h$ in SM
- enhanced in BSM scenarios, e.g. large $\tan \beta$ 2HDM, SUSY, ...
- common features/issues with other processes involving "initial-state" heavy quarks (e.g. single-top, $b \bar{b} Z, \ldots$)

$4 F / 5 F$ schemes are valid in opposite limits

$$
m_{b} \sim m_{H}
$$

4-flavour scheme

$$
m_{b} \ll m_{H}
$$

5-flavour scheme

- finite- m_{b} effects
- collinear logs $\sim \log \left(m_{b} / m_{H}\right)$ may spoil perturbative behaviour of cross section X
- $\log \left(m_{b} / m_{H}\right)$-terms resummed via DGLAP evolution in effective b-quark PDF
- no mass power-corrections X

Aside from power-corrections m_{b}^{2} / m_{H}^{2}, the two methods of computing the cross section agree at all orders.
$b \bar{b} h$ inclusive cross section

4F NLO [Dittmaier et al ' ${ }^{\circ} 3$; Dawson et al '03, Wiesemann et al. ' 14 (mg5_amC)]
5 F NNLO [Harlander, Kilgore '03 (bbhenn1o, Sushi); Bühler et al '12]
Santander Matching [Harlander, Krämer, Schumacher '11]
NLO+NLL(NNLL $\left.{ }_{\text {partial }}\right)$ matched results [Bonvini, AP,Tackmann '15,'16]
FONLL-A,B results [Forte, Napoletano, Ubial '15,'16]

Fixed order region: $m_{b} \sim Q \sim m_{H}$

Single matching step required

theory of collinear gluons \& light quarks (up to corrections of $\Lambda_{\mathrm{QCD}}^{2} / Q^{2}$) [standard QCD factorization]

$$
\begin{gathered}
\sigma^{\mathrm{FO}}=\sum_{i, j=g, q, \bar{q}} \boldsymbol{D}_{i j}\left(\boldsymbol{m}_{\boldsymbol{H}}, \boldsymbol{m}_{\boldsymbol{b}}, \boldsymbol{\mu}_{\boldsymbol{F}}\right) f_{i}^{[4]}\left(\mu_{F}\right) f_{j}^{[4]}\left(\mu_{F}\right) \\
f_{i}^{[4]}\left(\mu_{F}\right)=\boldsymbol{U}_{i k}^{[4]}\left(\boldsymbol{\mu}_{F}, \boldsymbol{\mu}_{0}\right) f_{k}^{[4]}\left(\mu_{0}\right)
\end{gathered}
$$

Resummation region: $m_{b} \ll Q \sim m_{H}$

Two matching steps required

theory of collinear gluons \& light quarks

$$
\sigma^{\text {Resum }}=\sum_{i, j=g, q, \bar{q}, b, \bar{b}} \boldsymbol{C}_{i j}\left(\boldsymbol{m}_{\boldsymbol{H}}, \boldsymbol{\mu}_{\boldsymbol{F}}\right) f_{i}^{[5]}\left(m_{b}, \mu_{m}, \mu_{F}\right) f_{j}^{[5]}\left(m_{b}, \mu_{m}, \mu_{F}\right)
$$

$$
\begin{array}{r}
f_{i}^{[5]}\left(m_{b}, \mu_{m}, \mu_{F}\right)=\sum_{\substack{k=g, q, \bar{q}, b, \bar{b} \\
l, p=g, q, \bar{q}}} U_{j k}^{[5]}\left(\mu_{F}, \mu_{m}\right) \mathcal{M}_{k l}\left(m_{b}, \mu_{m}\right) U_{l p}^{[4]}\left(\mu_{b}, \mu_{0}\right) f_{p}^{[4]}\left(\mu_{0}\right) \\
\text { standard 5F-PDF set construction }\left(\mu_{m}=m_{b}\right)
\end{array}
$$

Perturbative counting

Standard counting

- counting in 4F and 5F schemes assigned only to $\boldsymbol{D}_{i} \& C_{i, b}$
- in particular, 5FS counts $f_{b}^{[5]} \sim 1$

$$
\begin{gathered}
f_{b}^{[5]}\left(m_{b}, \mu_{H}\right)=\left[U_{b g}^{[5]}\left(\mu_{H}, \mu_{m}\right)+U_{b b}^{[5]}\left(\mu_{H}, \mu_{m}\right) \mathcal{M}_{b g}^{(1)}\left(m_{b}, \mu_{m}\right)+\ldots\right] f_{g}^{[4]}\left(\mu_{m}\right) \\
\sim 1
\end{gathered} \sim \alpha_{s} \quad \text { (naïvely) }
$$

At fixed order results can differ wildly

- LO: huge μ_{F} dependence
- NLO: not much better

Until recently, a theoretically consistent approach for combining virtues of 4 F and 5 F schemes for $b \bar{b} H$ was missing.

- large differences are due to different logarithmic structures present at fixed-order in each scheme
- 'best' prediction was a weighted average of $4 \mathrm{~F} \& 5 \mathrm{~F}$:

Santander Matching [Harlander, Krämer,Schumacher '11]

Perturbative counting

b-PDF is perturbative and counts as $\mathcal{O}\left(\alpha_{s}\right)$

- counting in 4F and 5F schemes assigned only to $\boldsymbol{D}_{i} \& \boldsymbol{C}_{\boldsymbol{i}, \boldsymbol{b}}$
- in particular, 5FS counts $f_{b}^{[5]} \sim 1$

$$
\begin{gathered}
f_{b}^{[5]}\left(m_{b}, \mu_{H}\right)=\left[U_{b g}^{[5]}\left(\mu_{H}, \mu_{m}\right)+U_{b b}^{[5]}\left(\mu_{H}, \mu_{m}\right) \mathcal{M}_{b g}^{(1)}\left(m_{b}, \mu_{m}\right)+\ldots\right] f_{g}^{[4]}\left(\mu_{m}\right) \\
\sim 1
\end{gathered} \sim \alpha_{s} \quad \text { (naïvely) }
$$

- however, $U_{b g}^{[5]}$ is off-diagonal evolution factor: $\sim \alpha_{s} \log \left(\mu_{H} / \mu_{m}\right)$
- $U_{b g}^{[5]} \sim 1$ formally only for $\mu_{H} \gg \mu_{m}, U_{b g}^{[5]} \sim \alpha_{s}$ a more appropriate counting for $\mu_{m} \sim m_{b}$ and typical LHC hard scales
- for LHC pheno: $f_{b}^{[5]}\left(m_{b}, \mu_{H}\right)$ effectively counts as $\mathcal{O}\left(\alpha_{s}\right)$

Combining fixed-order and resummation

 Add pure m_{b}^{2} / Q^{2} corrections to resummed resultWant to combine the results $d \sigma^{\mathrm{FO}}$ and $d \sigma^{\text {resum }}$ valid different parametric regions to obtain a result valid for any value of m_{b} / Q

- terms missing in $d \sigma^{\text {resum }}$ are the $\mathcal{O}\left(\frac{m_{b}^{2}}{Q^{2}}\right)$ terms in $d \sigma^{\text {FO }}$ Write full cross section as

$$
d \sigma=d \sigma^{\text {resum }}+\underbrace{\left(d \sigma^{\mathrm{FO}}-\left.d \sigma^{\text {resum }}\right|_{\mu_{m}=\mu_{H}}\right)}_{d \sigma^{\text {nonsingular }}}
$$

- taking perturbative counting we prescribe, then $\left.d \sigma^{\text {resum }}\right|_{\mu_{m}=\mu_{H}}$ exactly reproduces all singular contributions (terms that do not vanish in $m_{b} \rightarrow 0$ limit) in $d \sigma^{\text {FO }}$
- note: $d \sigma \rightarrow d \sigma^{\mathrm{FO}}$ in limit $\mu_{m} \rightarrow \mu_{H}$

NLO+NLL matched result

[Bonvini,AP,Tackmann '15,'16]

$$
\begin{aligned}
\sigma^{\mathrm{FO}+\mathrm{Resum}} & =\sum_{i, j=b, \bar{b}} \boldsymbol{C}_{\boldsymbol{i}}\left(\boldsymbol{m}_{\boldsymbol{H}}, \boldsymbol{\mu}_{\boldsymbol{F}}\right) \otimes f_{i}^{[5]}\left(m_{b}, \mu_{F}\right) \otimes f_{j}^{[5]}\left(m_{b}, \mu_{F}\right) \\
& +\sum_{\substack{i=b, \bar{b} \\
j=g, q, \bar{q}}}\left[\boldsymbol{C}_{\boldsymbol{i}}\left(\boldsymbol{m}_{\boldsymbol{H}}, \boldsymbol{\mu}_{\boldsymbol{F}}\right) \otimes f_{i}^{[5]}\left(m_{b}, \mu_{F}\right) \otimes f_{j}^{[5]}\left(m_{b}, \mu_{F}\right)+(i \leftrightarrow j)\right] \\
& +\sum_{i, j=g, q, \bar{q}} \overline{\boldsymbol{C}}_{i j}\left(\boldsymbol{m}_{\boldsymbol{H}}, \boldsymbol{m}_{\boldsymbol{b}}, \boldsymbol{\mu}_{\boldsymbol{F}}\right) \otimes f_{i}^{[5]}\left(m_{b}, \mu_{F}\right) \otimes f_{j}^{[5]}\left(m_{b}, \mu_{F}\right),
\end{aligned}
$$

- fixed-order finite m_{b}-effects contained in $\bar{C}_{i j}$ (up to NLO) [similar construction to S-ACOT and FONLL coefficient functions] Expanding (with perturbative counting as before):

$$
\begin{array}{rlrl}
\mathrm{LO}+\mathrm{LL} & \sigma & =\alpha_{s}^{2} \overline{\boldsymbol{C}}_{i j}^{(2)} f_{i} f_{j}+\alpha_{s} 4 \boldsymbol{C}_{b g}^{(1)} f_{b} f_{g}+2 \boldsymbol{C}_{b \bar{b}}^{(0)} f_{b} f_{b} & \sim \alpha_{s}^{2} \\
\mathrm{NLO}+\mathrm{NLL} & +\alpha_{s}^{3} \overline{\boldsymbol{C}}_{i j}^{(3)} f_{i} f_{j}+\alpha_{s}^{2} 4 \boldsymbol{C}_{b k}^{(2)} f_{b} f_{k}+\alpha_{s} 2 \boldsymbol{C}_{b \bar{b}}^{(1)} f_{b} f_{b} & \sim \alpha_{s}^{3}
\end{array}
$$

NLO+NLL matched result: ingredients

[Bonvini,AP,Tackmann '15,'16]

- we extract $D_{i}^{(3)}\left(m_{H}, m_{b}, \mu_{H}\right)$ using MG5_AMC@NLO
[Alwall et al. '14]
- in-house implementation of $C_{b \bar{b}}^{(1,2)} C_{b g}^{(1,2)}, C_{b q}^{(2)}$
- $\mathcal{M}_{i j}^{(2)}\left(m_{b}, \mu_{m}\right)$ known [Buza et al '96] : we implemented in APFEL [Bertone et al '13] for general μ_{m}
- construct $\bar{C}_{i j}^{(1,2)}$ from these known ingredients

$$
\begin{array}{rrrr}
\mathrm{LO}+\mathrm{LL} & \sigma=\alpha_{s}^{2} \bar{C}_{i j}^{(2)} f_{i} f_{j}+\alpha_{s} 4 C_{b g}^{(1)} f_{b} f_{g}+2 C_{b \bar{b}}^{(0)} f_{b} f_{b} & \sim \alpha_{s}^{2} \\
\mathrm{NLO}+\mathrm{NLL} & +\alpha_{s}^{3} \overline{\boldsymbol{C}}_{\boldsymbol{i j}}^{(3)} f_{i} f_{j}+\alpha_{s}^{2} 4 \boldsymbol{C}_{b k}^{(2)} f_{b} f_{k}+\alpha_{s} 2 C_{b \bar{b}}^{(1)} f_{b} f_{b} & \sim \alpha_{s}^{3}
\end{array}
$$

and its uncertainties (vary all scales)

[Bonvini,AP,Tackmann '16]

- $Y_{b} Y_{t}$: interferences of Born-level diagrams with diagrams involving a top-quark loop (additional nonsingular terms)
- NLO+NNLL ${ }_{\text {partial }}$ contains pure 2-loop terms from 5 F which are higher order in our approach

$\sigma^{\text {Santander }}$ systematically different from $\sigma^{\text {NLO+NLL }}$

[Bonvini,AP,Tackmann '15]

FONLL-A,B results

- in parallel, work done in FONLL approach by [Forte, Napoletano, Ubiali '15,'16]
- schematic result: $\sigma^{\text {FONLL }}=\sigma^{5 \mathrm{~F}}+\sigma^{4 F}-\sigma^{\text {double-counting }}$
- FONLL- $\mathrm{A} \& \mathrm{~B}$ use $\sigma^{4 \mathrm{~F}}$ at LO \& NLO respectively (with appropriate subtractions to remove double-counting)
- construction of coefficient functions equivalent to that of NLO+NLL results
- results have been fully benchmarked against each other and agree when same perturbative ingredients are included and scales chosen to be the same (FONLL-B is equivalent to $\mathrm{NLO}+\mathrm{NNLL}_{\text {partial }}$)

FONLL-A,B results

[Forte,Napoletano,Ubiali '16]

Choosing μ_{F} for $b \bar{b} H$

- standard factorization scale choice for both 4 F and 5 F is $\mu_{F} \sim m_{H} / 4$
- this is smaller than what might be naïvely chosen, i.e.

$$
\mu_{F}=m_{H} / 2 \text { or } \mu_{F}=m_{H}
$$

- this is also a region where the 4 F and 5 F results are closest ...

To obtain a better understanding as to why this pattern holds, [Lim,Maltoni,Ridolfi,Ubiali '16] perform an analysis of the leading logarithms present in the $4 \mathrm{~F} b \bar{b} H$ cross section. These take the form $\sim \log \left(\frac{m_{H}}{m_{b}} \frac{(1-z)^{2}}{z}\right)$
[$(z$ being the momentum fraction in one of the $g \rightarrow b \bar{b}$ splittings in the
4F LO diagram)]
Bottom line: to resum the leading collinear logarithms present in the 4 F result, the choice $\mu_{F} \simeq m_{H} / 3$ is more appropriate.

Differential - fixed order, resummation, parton showers
4F NLO parton-level, fully differential [Dittmaier, Kramer, Spira '03; Dawson et al ${ }^{\circ} 03$] 5F NLO parton-level, fully differential [Dicus et al. '98;

Campbell et al. '02, Maltoni et al. '03 (MCFM)]
5F NNLO parton-level, fully differential [Büher, Herzog, Lazopoulos, Müller '12]
5F NNLO+NNLL $p_{T}(H)$ distribution [Harlander, Tripathi, Wiesemann '14]
4F NLO+PS (MC@NLO) [Wiesemann,Frederix et al '14 (mg5_anc)]
5F NLO+PS (MC@NLO) [Wiesemann,Frederix et al '14 (mg5.anc)] $\}$ focus
4F NLO+PS (POWHEG) [Jager,Reina, Wackeroth '15 (Powieg box)]

4F NLO+PS (MC@NLO): $Y_{b} Y_{t}$ terms for $m_{B B}$

[Wiesemann,Frederix,Frixione,Hirschi,Maltoni, Torrielli '14]

- generically: $Y_{b} Y_{t}$ terms are flat across distributions (i.e. rescaling Y_{b}^{2} distributions is relatively safe)
- however, striking peak structure of $Y_{b} Y_{t}$ terms for $m_{B B}$ in inclusive H setup (not a shower effect)

4 F vs 5 F NLO+PS (MC@NLO): $p_{T}(H)$

[Wiesemann,Frederix,Frixione,Hirschi,Maltoni, Torrielli '14]

4F / 5F comparison:

- schemes agree within 20% of eachother for $p_{T}(H) \gtrsim 50 \mathrm{GeV}$
- schemes predict very different shapes at low $p_{T}(H)$
- differences when inclusive over 1 or $2 b$-jets motivate studies on fixed-order/resummation matching for distributions
- also a better understanding of PS treatment of massless initial-state b-quarks ?

4F NLO+PS (POWHEG): $p_{T}(H) \& \eta(H)$

[Jäger,Reina,Wackeroth '15]

- shower effects generally small for many observables
- fixed order $p_{T}(H)$ distribution tilted by PS
- scale dependence generally large $\sim 25 \%$ (not shown in plot)

Conclusions \& Outlook

Inclusive cross section

- theoretically consistent combination of m_{b}^{2} / Q^{2}-corrections with $\log \left(m_{b} / Q\right)$-resummation for $b \bar{b} H$ has been made
- robust error-estimate through variation of all matching scales (fixed-order + resummation uncertainties)
- recommendation is to use these new consistently-matched predictions (grids are currently in preparation)
Differential and fully exclusive results
- NLO+PS codes available in MC@NLO (4F \& 5F) and POWHEG (4F) matching schemes ($Y_{b} Y_{t}$ included)
- when inclusive over 1 or $2 b$-jets still need to carefully study differences of $4 \mathrm{~F} / 5 \mathrm{~F}$ results at the differential level
- many more details \& discussion in YR4 chapter on $b \bar{b} H / b H$

Conclusions \& Outlook

Thank you for your attention!

$4 \mathrm{~F} / 5 \mathrm{~F}:$ expansion of partonic cross sections

5F

$$
\hat{\sigma}^{5 \mathrm{~F}}=Y_{b}^{2}(\sigma_{\left[Y_{b}^{2}\right]}^{(0)}+\underbrace{\left.\alpha_{s} \sigma_{\left[Y_{b}^{2}\right]}^{(1)}+\alpha_{s}^{2} \sigma_{\left[Y_{b}^{2}\right]}^{(2)}+\ldots\right)}_{\text {corrections to Born }}
$$

4F

Comparing approaches

A practical way to combine 4 F and 5 F predictions is given by:

$$
\sigma^{\text {Santander }}=\frac{\sigma^{4 \mathrm{FS}, \mathrm{NLO}}+\omega \sigma^{5 \mathrm{FS}, \mathrm{NNLO}}}{1+\omega}, \quad \text { where } \quad \omega=\log \left(\frac{m_{H}}{m_{b}}\right)-2
$$

and uncertainties obtained by applying formula to upper and lower $4 \mathrm{~F} \& 5 \mathrm{~F}$ results.

Meaningful/fair comparison ('15 paper):

- PDFs: MSTW08 (NLO/NNLO and nf4/nf5 as appropriate)
- $m_{b}=4.75 \mathrm{GeV}$ (as used in MSTW08)
- $\overline{m_{b}}\left(\overline{m_{b}}\right)=4.18 \mathrm{GeV}$, same RGE-evolution for all results
- central scale: $\mu_{H}=\left(m_{H}+2 m_{b}\right) / 4 \quad\left(\mu_{H}=\mu_{F}=\mu_{R}\right)$

Other approaches to initial-state HOs available (mainly DIS)

Alternative approaches to combining fixed-order mass effects with resummation of logarithms in DIS have been around for a while ...

- ACOT [Aivazis,Collins,Olness,Tung]
- TR [Thorne,Roberts]
- S-ACOT (χ) [Collins; Krämer,OIness,Soper; ...]
- FONLL [Cacciari,Greco,Nason; Forte,Laenen,Nason,Rojo]

These differ mainly in the way in which they choose to incorporate the m_{b}^{2} / Q^{2} corrections. Compared to what we have outlined:

- construction of coefficient functions equivalent to S-ACOT and FONLL
- we consider $f_{b}\left(m_{b}, \mu_{H}\right)$ a perturbative $\mathcal{O}\left(\alpha_{s}\right)$ object (strictly expanded together with coefficient functions)
- we take the matching scale μ_{m} to be $\mathcal{O}\left(m_{b}\right)$, but not strictly equal to m_{b}

Perturbative stability

Consistent matching and counting stabilizes cross section
(fixing $\mu_{m}=m_{b}$)

- scale dependence of $\mathrm{LO}+\mathrm{LL}$ and NLO+NLL improved w.r.t LO and NLO 4F and 5F
- 4F stabilized: resum large logs
- 5F stabilized: put together channels that contribute at same perturbative order ($b \bar{b}$, $b g, g g$)

Proof of concept: cross section as a function of m_{b}

[Bonvini,AP,Tackmann '15]

- checks smooth matching to FO
- $\left(\Rightarrow\right.$ very stringent check of construction of coefficients \bar{C}_{i} and implementation of $\mathcal{M}_{i j}$)
- check whether our uncertainty determination is useful

$$
\begin{aligned}
& m_{H}=125 \mathrm{GeV}, \mu_{H}=m_{H} / 4 \\
& d \sigma^{(\mathrm{N}) \mathrm{LO}+(\mathrm{N}) \mathrm{LL} \rightarrow \sigma^{(\mathrm{N}) \mathrm{LO}} \mathrm{in}} \\
& \quad \text { limit } \mu_{m} \rightarrow \mu_{H}\left(\text { large } m_{b}\right)
\end{aligned}
$$

NLO+NLL lies within LO+LL uncertainty band
resummed result appears perturbatively more stable than FO result

$\sigma^{\text {Santander }}$ systematically lower than $\sigma^{\text {NLO+NLL }}$

[Bonvini,AP,Tackmann '15]

