Standard Model EFT at NLO (focus on $h \rightarrow b\bar{b}$)

Rhorry Gauld

QCD@LHC2015 Higgs Parallel - 25/08/16

General outline

- Introduction to the Standard Model EFT Framework
 - General set-up
 - Compute $h \to b \bar b$ at LO
- Computing $h \to b \bar b$ at NLO
 - General approach
 - QCD corrections
 - Vanishing gauge coupling corrections
- Other progress and conclusions

"Generic" theory of physics Beyond-the-SM (BSM)

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \mathcal{L}_5 + \mathcal{L}_6 + \mathcal{L}_7 + \mathcal{L}_8 + \dots$$

$$\mathcal{L}_i = \frac{1}{\Lambda_{\text{NP}}^{i-4}} \sum_j C_j^{(i)} Q_j^{(i)}$$

		fermions					
field	l_{Lp}^{j}	e_{Rp}	$q_{Lp}^{\alpha j}$	u_{Rp}^{α}	d_{Rp}^{α}	H^{j}	
hypercharge	$-\frac{1}{2}$	-1	<u>1</u>	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{2}$	

"Generic" theory of physics Beyond-the-SM (BSM)

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \mathcal{L}_5 + \mathcal{L}_6 + \mathcal{L}_7 + \mathcal{L}_8 + \dots$$

$$\mathcal{L}_i = \frac{1}{\Lambda_{\text{NP}}^{i-4}} \sum_j C_j^{(i)} Q_j^{(i)}$$

Effective operator constructed from gauge invariant combinations of SM fields (Higgs doublet)

		fermions					
field	l_{Lp}^{j}	e_{Rp}	$q_{Lp}^{\alpha j}$	u_{Rp}^{α}	d_{Rp}^{α}	H^{j}	
hypercharge	$-\frac{1}{2}$	-1	<u>1</u>	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{2}$	

"Generic" theory of physics Beyond-the-SM (BSM)

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \mathcal{L}_5 + \mathcal{L}_6 + \mathcal{L}_7 + \mathcal{L}_8 + \dots$$

"Wilson coefficient"

$$\mathcal{L}_i = \frac{1}{\Lambda_{\text{NP}}^{i-4}} \sum_j C_j^{(i)} Q_j^{(i)}$$

New Physics (NP) scale

Effective operator constructed from gauge invariant combinations of SM fields (Higgs doublet)

		fermions						
field	l_{Lp}^{j}	e_{Rp}	$q_{Lp}^{\alpha j}$	u_{Rp}^{α}	d_{Rp}^{α}	H^j		
hypercharge	$-\frac{1}{2}$	-1	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{2}$		

"Generic" theory of physics Beyond-the-SM (BSM)

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_5 + \mathcal{L}_6 + \mathcal{L}_7 + \mathcal{L}_8 + \dots$$

$$\mathcal{L}_6^{\Delta B=0} = \frac{1}{\Lambda_{NP}^2} \sum_j C_j^{(6)} Q_j^{(6)}$$

Ignore operators involving baryon and lepton number violation Truncate predictions for observables at order $\mathcal{O}(\Lambda_{\mathrm{NP}}^{-2})$

		fermions					
field	l_{Lp}^{j}	H^{j}					
hypercharge	$-\frac{1}{2}$	-1	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{2}$	

Warsaw: Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

Motivation: I-loop anomalous dimension calculation in Warsaw basis*

[(Alonso) Jenkins, Manohar, Trott: 1308.2627, 1310.4838, (1312.2014)]

	$1: X^3$	$2: H^6$			$3: H^4D^2$			$5: \psi^2 H^3 + \text{h.c.}$	
Q_G .	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H	$(H^{\dagger}H)^3$	$(H^{\dagger}H)^3$ $Q_{H\Box}$ (2)		$(H^\dagger H)\Box (H^\dagger H)$		$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$igg Q_{\widetilde{G}} \ igg \ .$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$			Q_{HD}	$\left(H^{\dagger}D_{\mu}H\right)$	H)* $(H^{\dagger}D_{\mu}H)$	Q_{uH}	$H^{\dagger}H)(\bar{q}_p u_r \widetilde{H})$	
$Q_W \mid \epsilon$	$e^{IJK}W_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$						Q_{dH}	$H^{\dagger}H)(\bar{q}_p d_r H)$	
$Q_{\widetilde{W}} \mid \epsilon$	$e^{IJK}\widetilde{W}_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$								
$4:X^2H^2 6:y$		$6:\psi^2XH$	+ h.c.		$7:\psi^2H^2D$		D		
Q_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p\sigma^{\mu u}\epsilon$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$		$Q_{Hl}^{(1)}$	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{l}_p \gamma^\mu l_r)$		
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(ar{l}_p\sigma^{\mu u}$	$^{ u}e_{r})HB_{\mu}$	ν	$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
Q_{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$ (\bar{q}_p \sigma^{\mu \nu} T)$	$(T^A u_r)\widetilde{H}$	$\gamma A = \mu \nu$	Q_{He}	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{D}_{\mu}H)(\overline{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}_{\mu\nu}^{I}W^{I\mu\nu}$	Q_{uW}	$= \left (\bar{q}_p \sigma^{\mu \nu} u) \right $	$(u_r)\tau^I\widetilde{H}W$	$I_{\mu\nu}^{I}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{D}_{\mu}H)(\overline{q}_{p}\gamma^{\mu}q_{r})$	
Q_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p\sigma^{\mu u}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$		$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	$(\bar{q}_p \tau^I \gamma^\mu q_r)$	
$Q_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$ (ar{q}_p\sigma^{\mu u}T$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$		Q_{Hu}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{\partial}_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$	
Q_{HWB}	$H^{\dagger} au^I H W^I_{\mu u} B^{\mu u}$	Q_{dW}	$\left \; \left(ar{q}_p \sigma^{\mu u} \epsilon ight. ight.$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$		Q_{Hd}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{\partial}_{\mu}H)(\overline{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{H\widetilde{W}B}$	$H^{\dagger} au^I H \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$ (ar q_p \sigma^{\mu u}$	$^{ u}d_r)HB_{\mu}$	ıν	$Q_{Hud} + \mathrm{h.c.} \; \Big \;$	$i(\widetilde{H}^{\dagger}L$	$(D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

$$\tilde{H}^j = \epsilon_{jk} (H^k)^*$$

classes 1-7

Warsaw: Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

Motivation: I-loop anomalous dimension calculation in Warsaw basis*

[(Alonso) Jenkins, Manohar, Trott: 1308.2627, 1310.4838, (1312.2014)]

	$1: X^3$	2:	H^6	$3: H^4D^2$	5:	$\psi^2 H^3 + \text{h.c.}$
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H	$(H^{\dagger}H)^3$ $Q_{H\square}$	$(H^\dagger H) \Box (H^\dagger H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$					$\widetilde{H})$
Q_W	$\epsilon^{IJK}W_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$		F√	cample (cla	cc 5)	• H)
$igg Q_{\widetilde{W}} igg $	$\epsilon^{IJK}\widetilde{W}_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$		L^	ample (cia	33 <i>J</i>	•
	$4: X^2H^2$			/ TT [†] TT	\	177
Q_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	Q_{dI}	$_{H}:(H^{\dagger}H)$)(qa	$(H) \lceil$
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}				
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	<u> </u>	,	T .	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}_{\mu\nu}^{I}W^{I\mu\nu}$	Q_{uW}	$ (\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} V $	$V^I_{\mu u} \qquad \qquad Q^{(1)}_{Hq}$	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{\partial}_{\mu}H)(\overline{q}_{p}\gamma^{\mu}q_{r})$
Q_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_p$	$Q_{Hq}^{(3)}$	$H^{\dagger}i\overleftrightarrow{D}$	$_{\mu}^{I}H)(\bar{q}_{p} au^{I}\gamma^{\mu}q_{r})$
$Q_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$\left (\bar{q}_p \sigma^{\mu\nu} T^A d_r) H \right $	$G^A_{\mu u}$ Q_{Hu}	$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$
Q_{HWB}	$H^\dagger \tau^I H W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$ (\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H V $	$V^I_{\mu u} \qquad \qquad Q_{Hd}$	$H^{\dagger}i\overleftarrow{D}$	$\overrightarrow{\partial}_{\mu}H)(\overline{d}_{p}\gamma^{\mu}d_{r})$
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H\widetilde{W}_{\mu\nu}^{I}B^{\mu\nu}$	Q_{dB}	$ (\bar{q}_p \sigma^{\mu\nu} d_r) H B_p $	$Q_{Hud} + \mathrm{h.c.}$	$i(\widetilde{H}^{\dagger}D)$	$(\bar{u}_p \gamma^\mu d_r)$

$$\tilde{H}^j = \epsilon_{jk} (H^k)^*$$

<u>classes I-7</u>

Warsaw: Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

Motivation: I-loop anomalous dimension calculation in Warsaw basis*

[(Alonso) Jenkins, Manohar, Trott: 1308.2627, 1310.4838, (1312.2014)]

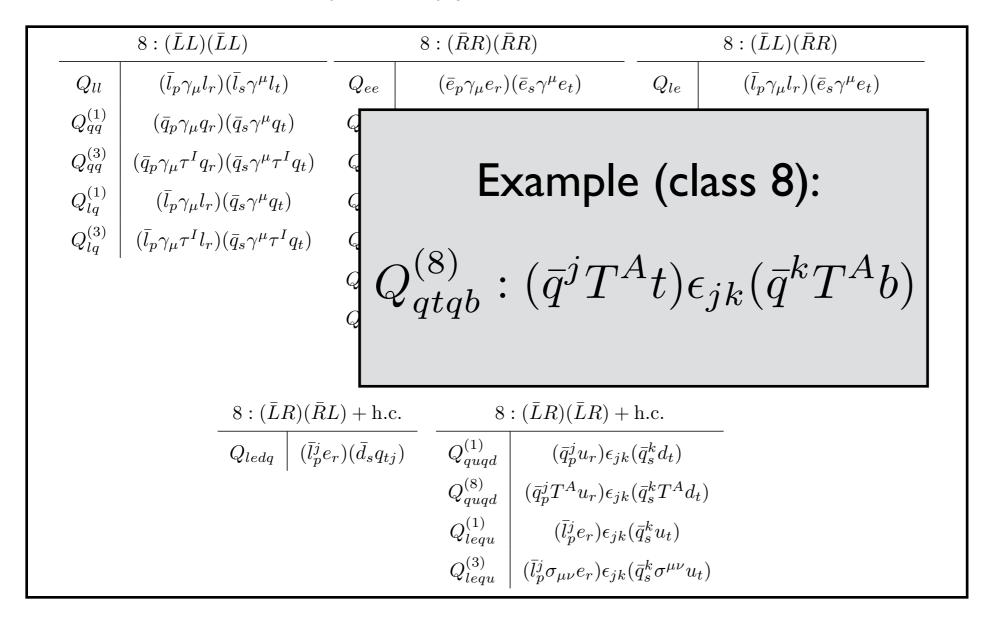
	$8:(\bar{L}L)(\bar{L}L)$		$8:(\bar{R}R)(\bar{I}$	(RR)		$8:(\bar{L}L)(\bar{R}R)$
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)$	$(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)$	$(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)$	$(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)$	$(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$ (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t) $	Q_{ed}	$(ar{e}_p \gamma_\mu e_r)$	$(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)$	$(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)$	$(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$
					$Q_{qd}^{(8)}$	$ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
	$8:(ar{L}R)(ar{R})$	L) + h.c.	. 8	$: (\bar{L}R)(\bar{L}R) +$	h.c.	
	$Q_{ledq} \mid (ar{l}_p^j \epsilon$	$(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk}$	$(\bar{q}_s^k d_t)$	
			$Q_{quqd}^{(8)}$	$\left (\bar{q}_p^j T^A u_r) \epsilon_{jk} \right $	$(\bar{q}_s^k T^A d$	$_{t})$
			$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_{jk}$	$(\bar{q}_s^k u_t)$	
			$Q_{lequ}^{(3)}$	$\left \; (\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} \right $	$(\bar{q}_s^k \sigma^{\mu\nu} u$	$_{t})$

class 8 (four-fermion)

Warsaw: Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

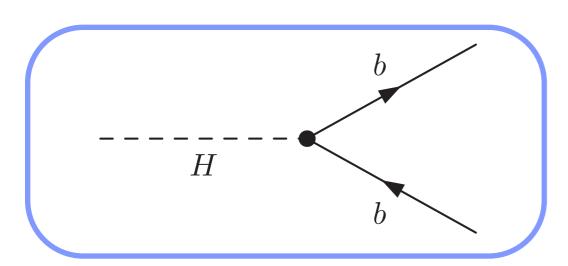
Motivation: I-loop anomalous dimension calculation in Warsaw basis*

[(Alonso) Jenkins, Manohar, Trott: 1308.2627, 1310.4838, (1312.2014)]



<u>class 8</u> (four-fermion)

Let's study $h \to b \overline{b}$



$$\Gamma_{h \to b\bar{b}}^{\rm SM} \approx 2.4 \ {\rm MeV}$$

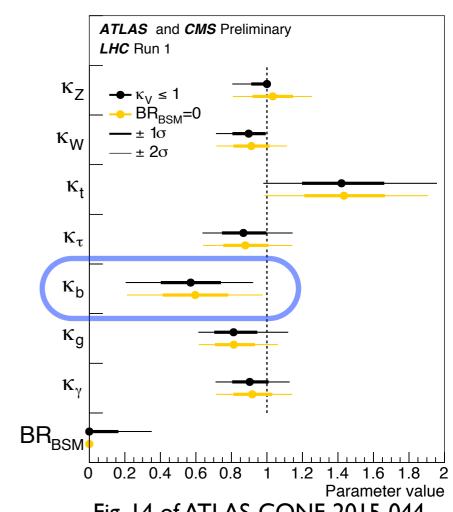
$$BR(h \to b\overline{b}) \approx 0.6$$

Experimentally, access through " $\sigma(pp o h) \cdot \mathrm{BR}(h o X)$ " data

Motivation:

- First and foremost, easy theoretically
- Can study QCD and EW corrections
- Largest partial width (in SM)
- *Realistically, need a "Higgs-machine" for %-level precision measurements

Interim Kappa-formalism defined in 1307.1347: Section 10



Yukawa sector in the SMEFT

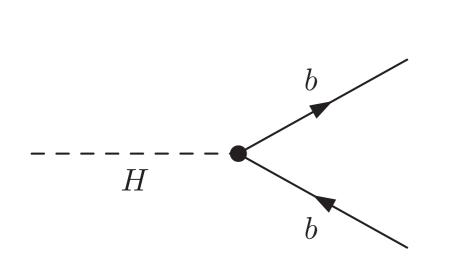
Consider the down-type Yukawa interactions in unbroken phase

$$\mathcal{L}_d = \left[[Y_d]_{rs} H^{\dagger j} \overline{d}_r \, Q_{sj} + h.c. \right] + \left[C_{dH}^* (H^{\dagger} H) H^{\dagger j} \overline{d}_r \, Q_{sj} + h.c. \right]$$

Leads to an effective mass matrix in the broken phase

$$[M_d]_{rs} = \frac{v_T}{\sqrt{2}} \left([Y_d]_{rs} - \frac{v_T^2}{2} C_{dH}^* \right) \tag{1}$$

For simplicity, assume SM-like flavour structure Leads to the following Feynman rule for the $hb\bar{b}-$ vertex



$$-\frac{i}{\sqrt{2}} \left(\left[y_b \left[1 + C_{H, \text{kin}} \right] - \frac{3}{2} v_T^2 C_{bH}^* \right] P_L + h.c. \right)$$

From (1), convert into broken phase

$$y_b \to \sqrt{2} \frac{m_b}{v_T} + \frac{v_T^2}{2} C_{bH}^*$$

$$d\Gamma = \frac{d\phi_2}{2m_H} \sum |\mathcal{M}_{h \to b\bar{b}}|^2$$

Compute the Born amplitude (use Feynman rule from last slide)

$$\mathcal{M}_{h\to b\bar{b}}^{\text{tree}} = -i\bar{u}(p_b) \left(\mathcal{M}_L^{\text{tree}} P_L + \mathcal{M}_L^{\text{tree}*} P_R \right) v(p_{\bar{b}})$$

where
$$\mathcal{M}_L^{\mathrm{tree}} = \frac{m_b}{v_T} \left[1 + C_{H,\mathrm{kin}} \right] - \frac{v_T^2}{\sqrt{2}} C_{bH}^* + \mathcal{O}(\Lambda_{\mathrm{NP}}^{-4})$$

$$d\Gamma = \frac{d\phi_2}{2m_H} \sum |\mathcal{M}_{h \to b\bar{b}}|^2$$

Compute the Born amplitude (use Feynman rule from last slide)

$$\mathcal{M}_{h\to b\bar{b}}^{\text{tree}} = -i\bar{u}(p_b) \left(\mathcal{M}_L^{\text{tree}} P_L + \mathcal{M}_L^{\text{tree}*} P_R \right) v(p_{\bar{b}})$$

where
$$\mathcal{M}_{L}^{\mathrm{tree}} = \frac{m_{b}}{v_{T}} \left[1 + C_{H,\mathrm{kin}} \right] - \frac{v_{T}^{2}}{\sqrt{2}} C_{bH}^{*} + \mathcal{O}(\Lambda_{\mathrm{NP}}^{-4})$$

SM
$$\Gamma^{(4,0)} = \frac{N_c m_h m_b^2 \beta^3}{8\pi v_T^2}$$

EFT
$$\Gamma^{(6,0)} = \left(2C_{H,\text{kin}} - \frac{\sqrt{2}v_T^3}{m_b}C_{bH}\right)\Gamma^{(4,0)} + \mathcal{O}(\Lambda_{\text{NP}}^{-4})$$

$$d\Gamma = \frac{d\phi_2}{2m_H} \sum |\mathcal{M}_{h \to b\bar{b}}|^2$$

Compute the Born amplitude (use Feynman rule from last slide)

$$\mathcal{M}_{h\to b\bar{b}}^{\text{tree}} = -i\bar{u}(p_b) \left(\mathcal{M}_L^{\text{tree}} P_L + \mathcal{M}_L^{\text{tree}*} P_R \right) v(p_{\bar{b}})$$

where
$$\mathcal{M}_{L}^{\mathrm{tree}} = \frac{m_{b}}{v_{T}} \left[1 + C_{H,\mathrm{kin}} \right] - \frac{v_{T}^{2}}{\sqrt{2}} C_{bH}^{*} + \mathcal{O}(\Lambda_{\mathrm{NP}}^{-4})$$

(4 = SM, 0 = LO)

SM

$$\Gamma^{(4,0)} = \frac{N_c m_h m_b^2 \beta^3}{8\pi v_T^2}$$

*More realistic UV completion

$$\tilde{Q}_{bH} = y_b \left(H^{\dagger} H \right) \left(\bar{q}_L b_R H \right)$$

see: J. Elias-Mero et al. 1308.1879

EFT
$$\Gamma^{(6,0)} = \left(2C_{H,\text{kin}} - 2v_T^2 \frac{C_{bH}}{y_b}\right) \Gamma^{(4,0)} + \mathcal{O}(\Lambda_{\text{NP}}^{-4})$$

$$d\Gamma = \frac{d\phi_2}{2m_H} \sum |\mathcal{M}_{h \to b\bar{b}}|^2$$

Compute the Born amplitude (use Feynman rule from last slide)

$$\mathcal{M}_{h\to b\bar{b}}^{\text{tree}} = -i\bar{u}(p_b) \left(\mathcal{M}_L^{\text{tree}} P_L + \mathcal{M}_L^{\text{tree}*} P_R \right) v(p_{\bar{b}})$$

where
$$\mathcal{M}_L^{\mathrm{tree}} = \frac{m_b}{v_T} \left[1 + C_{H,\mathrm{kin}} \right] - \frac{v_T^2}{\sqrt{2}} C_{bH}^* + \mathcal{O}(\Lambda_{\mathrm{NP}}^{-4})$$

Evaluate numerically: $\{m_b = 4.5, m_h = 125, v_T \approx 246\}$ GeV

SM

$$\Gamma^{(4,0)} \approx 5 \text{ MeV}$$

*More realistic UV completion

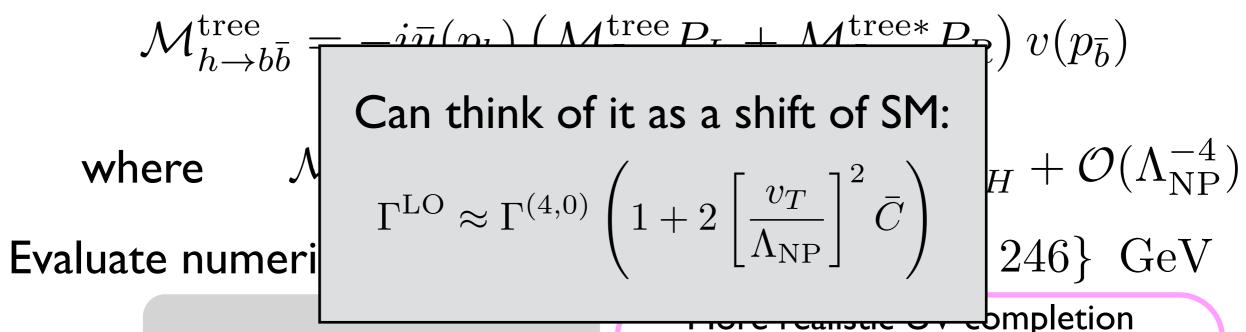
$$\tilde{Q}_{bH} = y_b \left(H^{\dagger} H \right) \left(\bar{q}_L b_R H \right)$$

see: J. Elias-Mero et al. 1308.1879

EFT
$$\Gamma^{(6,0)} pprox \left(rac{v_T}{\Lambda_{
m NP}}
ight)^2 \left[2ar{C}_{H,
m kin} - 2rac{ar{C}_{bH}}{y_b}
ight] \Gamma^{(4,0)} + \dots$$

$$d\Gamma = \frac{d\phi_2}{2m_H} \sum |\mathcal{M}_{h \to b\bar{b}}|^2$$

Compute the Born amplitude (use Feynman rule from last slide)



SM

$$\Gamma^{(4,0)} \approx 5 \text{ MeV}$$

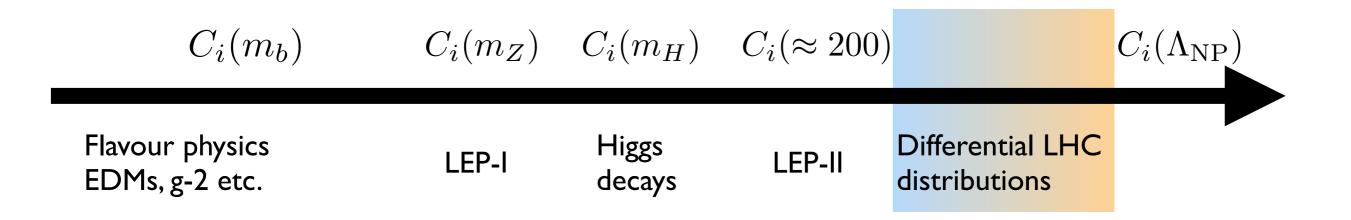
 $ilde{Q}_{bH}=y_b\left(H^\dagger H\right)(ar{q}_L b_R H)$ see: J. Elias-Mero et al. 1308.1879

EFT
$$\Gamma^{(6,0)} pprox \left(rac{v_T}{\Lambda_{
m NP}}
ight)^2 \left[2ar{C}_{H,
m kin} - 2rac{ar{C}_{bH}}{y_b}
ight] \Gamma^{(4,0)} + \dots$$

Are we done? Going beyond LO?

It's not difficult to compute observables at LO in the SMEFT Do a global fit to LHC/LEP/Low energy Observables at LO? NO!

- I) E.g. this decay constrains: $C_{bH}(m_H)$, $C_{H,\mathrm{kin}}(m_H)$
 - the Wilson coefficients are scale dependent and mix
 - must be taken into account when performing a global fit to data (full RGE is known*)



^{*}I-loop anomalous dimension: (Alonso) Jenkins, Manohar, Trott: 1308.627, 1310.4838, (1312.2014)

Are we done? Going beyond LO?

It's not difficult to compute observables at LO in the SMEFT Do a global fit to LHC/LEP/Low energy Observables at LO? NO!

- I) E.g. this decay constrains: $C_{bH}(m_H)$, $C_{H,\mathrm{kin}}(m_H)$
 - the Wilson coefficients are scale dependent and mix
 - must be taken into account when performing a global fit to data (full RGE is known*)
- *I-loop anomalous dimension: (Alonso) Jenkins, Manohar, Trott: 1308.627, 1310.4838, (1312.2014)
 - 2) The SMEFT is like the SM (or other UV completions) where are perturbative expansion is applied
 - higher-orders give better precision*
 - the Wilson coefficients which appear at one-loop may not be present in tree-level observables (e.g. maybe poorly constrained Wilson coefficients)
 - new diagrams appear

^{*}There is a substantial theoretical effort in this direction (QCD/EW) by many groups

Interim

- Computing $h \to b\bar{b}$ at NLO (w/ B.D. Pecjak, D.J.Scott)
 - General approach
 - QCD corrections
 - Vanishing gauge coupling corrections

Other progress and conclusions

Renormalisation I (field/parameter)

Perform field and parameter renormalisation on-shell*

Choose a set of independent parameters

$$\{\bar{e}, m_H, M_W, M_Z, m_f, C_i\}$$

 Write bare parameters/fields as a combination of renormalised parameters and renormalisation constants:

$$f_L^{(0)} = \sqrt{Z_f^L} f_L = \left(1 + \frac{1}{2} \delta Z_f^L\right) f_L$$

Fix the counterterms with renormalisation conditions (e.g. on-shell)

$$\begin{split} \delta Z_f^L &= -\widetilde{\operatorname{Re}} \, \Sigma_f^L(m_f^2) + \Sigma_f^S(m_f^2) - \Sigma_f^{S*}(m_f^2) \\ &- m_f^2 \frac{\partial}{\partial p^2} \widetilde{\operatorname{Re}} \left[\Sigma_f^L(p^2) + \Sigma_f^R(p^2) + \Sigma_f^S(p^2) + \Sigma_f^{S*}(p^2) \right] \bigg|_{p^2 = m_f^2} \end{split}$$

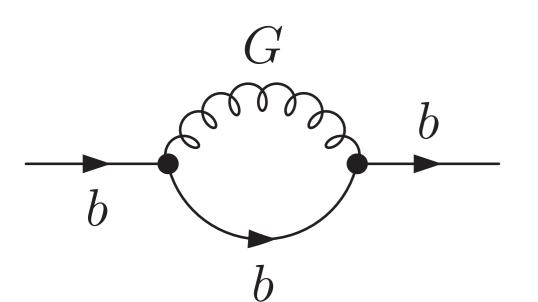
Express physical quantities in terms of renormalised parameters

$$\Gamma^{(4,0)} = \frac{N_c m_h m_b^2 \beta^3}{8\pi v_T^2} \to \frac{N_c m_h m_b^2 \bar{e}^2 \beta^3}{32\pi M_W^2 (1 - M_W^2 / M_Z^2)}$$

Fix input values for renormalised parameters with data

Renormalisation I (field/parameter)

Perform field and parameter renormalisation on-shell*

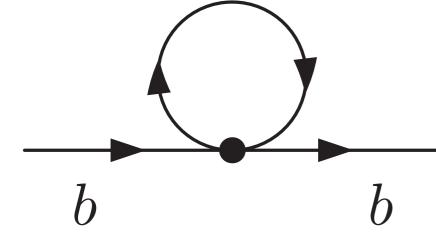


Usual SM piece

$$\frac{\delta m_b}{m_b} \propto -\frac{\alpha_s C_F C_\epsilon^b}{\pi} \left[\frac{m_b v_T}{\sqrt{2}} \left(\frac{3}{\hat{\epsilon}} + 1 \right) Re \left\{ C_{bG} \right\} + \left(\frac{3}{4\hat{\epsilon}} + 1 \right) \right]$$

Generated by $Q_{bG}:g_s(\bar{q}\sigma^{\mu\nu}T^Ab)HG^A_{\mu\nu}$

Generated by four-fermion operators (bbtt)



$$\frac{\delta m_b}{m_b} \propto \frac{m_t^3 C_{\epsilon}^t}{m_b} \left(\frac{1}{\hat{\epsilon}} + 1 \right) \left[(2N_c + 1)Re \left\{ C_{qtqb}^{(1)} \right\} + C_F Re \left\{ C_{qtqb}^{(8)} \right\} \right]$$

$$\frac{1}{\hat{\epsilon}} = \frac{1}{\epsilon} - \gamma_E + \ln(4\pi) \quad C_{\epsilon}^f = 1 + \epsilon \ln \left| \frac{\mu^2}{m_f^2} \right|$$

$$C_{\epsilon}^{f} = 1 + \epsilon \ln \left[\frac{\mu^{2}}{m_{f}^{2}} \right]$$

Renormalisation II (Operators)

Fortunately, can use the results of the full one-loop anomalous dimension calculation performed in the un-broken phase:

[(Alonso) Jenkins, Manohar, Trott: 1308.2627, 1310.4838, (1312.2014)]

$$C_i^{(0)} = C_i(\mu) + \delta C_i(\mu) = C_i(\mu) + \frac{1}{2\hat{\epsilon}} \frac{\dot{C}_i(\mu)}{(4\pi)^2} \qquad \frac{\dot{C}_i(\mu)}{(4\pi)^2} \equiv \mu \frac{d}{d\mu} C_i(\mu)$$

- I. Check which operators appear at tree-level (e.g. C_{bH})
- 2. Take the relevant Lambda/Yukawa/Gauge dependent terms
- 3. Convert to broken phase using LO SM relations, e.g.

$$y_f \to \frac{\sqrt{2}m_f}{v_T} \,, \quad \lambda \to \frac{m_H^2}{2v_T^2}$$

The combination of field/parameter/wilson coefficient renormalisation allows to construct the necessary I-loop UV CTs

See RG, Ben D. Pecjak, D. J. Scott - 1607.06354

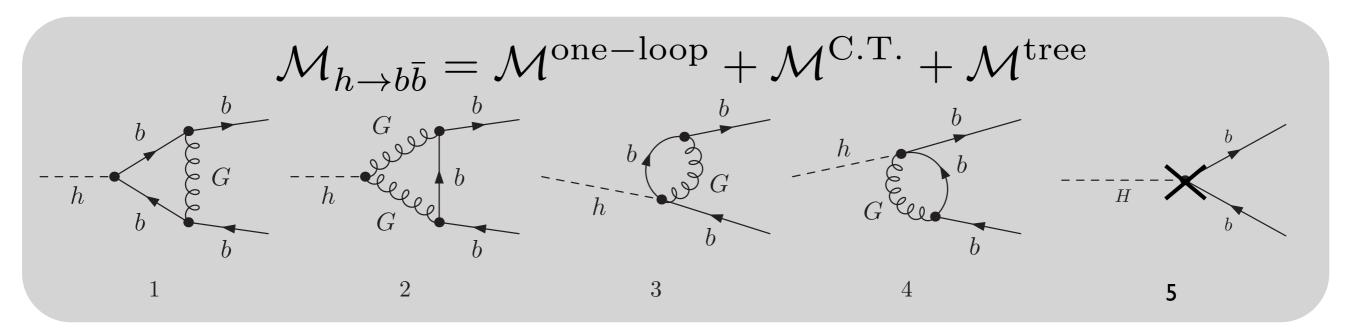
$$d\Gamma = \frac{d\phi_2}{2m_h} \sum \left| \mathcal{M}_{h \to b\bar{b}} \right|^2 + \frac{d\phi_3}{2m_h} \sum \left| \mathcal{M}_{h \to b\bar{b}g} \right|^2$$

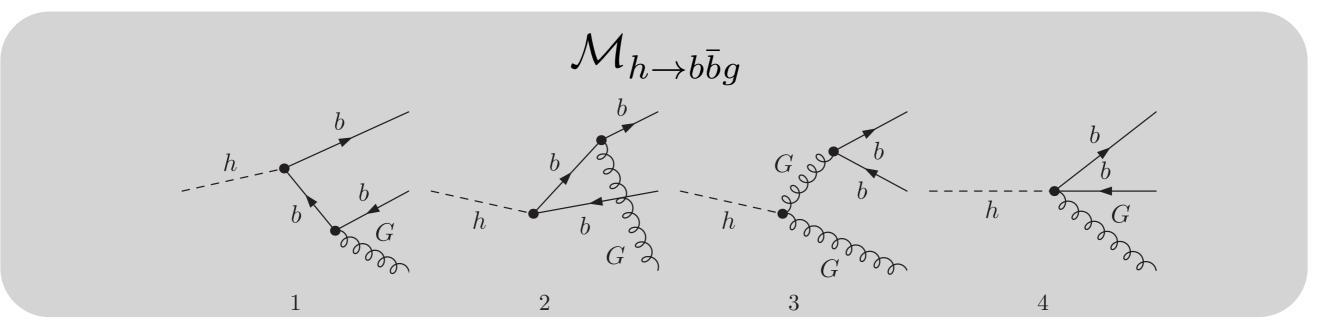
Relevant operators

$Q_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	
Q_{HD}	$\left(H^\dagger D_\mu H\right)^* \left(H^\dagger D_\mu H\right)$	Appear at tree-level
Q_{dH}	$(H^\dagger H)(ar q_p d_r H)$	
Q_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	New vertices:
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}_{\mu\nu}^{A}G^{A\mu u}$	QHG - hgg
Q_{dG}	$g_s(\bar{q}_p\sigma^{\mu\nu}T^Ad_r)HG^A_{\mu\nu}$	QdG - hbbg

See RG, Ben D. Pecjak, D. J. Scott - 1607.06354

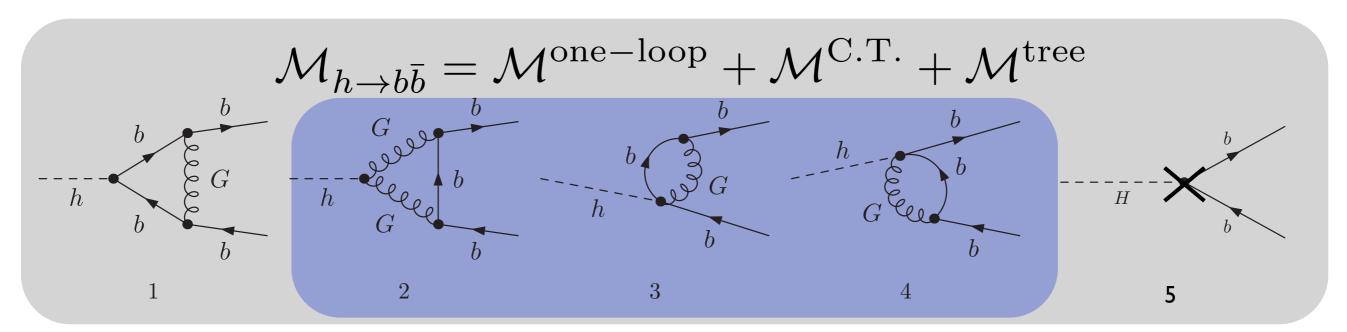
$$d\Gamma = \frac{d\phi_2}{2m_h} \sum \left| \mathcal{M}_{h \to b\bar{b}} \right|^2 + \frac{d\phi_3}{2m_h} \sum \left| \mathcal{M}_{h \to b\bar{b}g} \right|^2$$

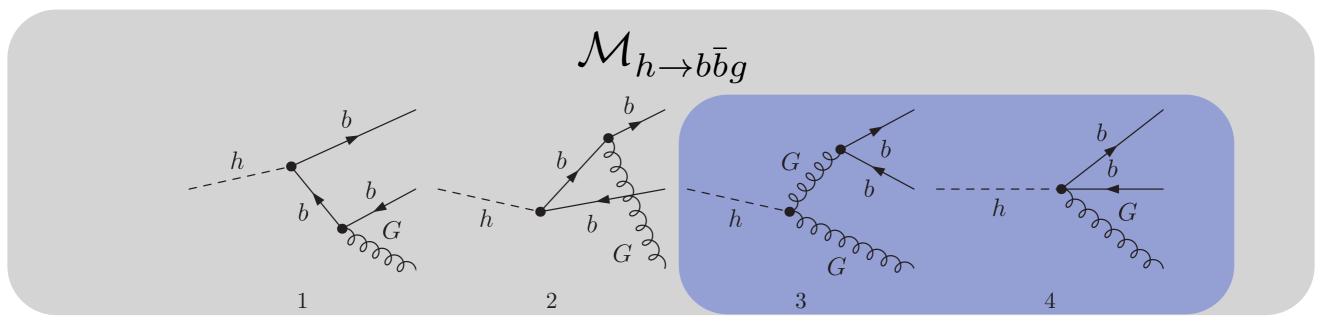




See RG, Ben D. Pecjak, D. J. Scott - 1607.06354

$$d\Gamma = \frac{d\phi_2}{2m_h} \sum \left| \mathcal{M}_{h \to b\bar{b}} \right|^2 + \frac{d\phi_3}{2m_h} \sum \left| \mathcal{M}_{h \to b\bar{b}g} \right|^2$$





See RG, Ben D. Pecjak, D. J. Scott - 1607.06354

(Answer in MSbar scheme for b-quark mass, and limit eta o 1)

Proportional to NLO SM result

$$\overline{\Gamma}_{\beta \to 1}^{(6,1)} = \left(2C_{H,\text{kin}} - 2v_T^2 \frac{C_{bH}}{\overline{y}_b}\right) \overline{\Gamma}_{\beta \to 1}^{(4,1)}
+ \frac{\alpha_s C_F}{\pi} \frac{N_c m_h^3 \overline{m}_b}{8\sqrt{2}\pi v_T} C_{bG}
+ \frac{\alpha_s C_F}{\pi} \frac{N_c m_h \overline{m}_b^2}{8\pi} C_{HG} \left(19 - \pi^2 + \ln^2 \left[\frac{\overline{m}_b^2}{m_h^2}\right] + 6 \ln \left[\frac{\mu^2}{m_h^2}\right]\right)$$

Contributions from new diagrams

See RG, Ben D. Pecjak, D. J. Scott arXiv: I 607.06354 (Answer in MSbar scheme for b-quark mass, and limit $\beta \to 1$)

*More realistic UV completion $\tilde{Q}_{bH}=y_b\left(H^\dagger H\right)\left(\bar{q}_L b_R H\right)$ see: J. Elias-Mero et al. 1308.1879

$$\overline{\Gamma}_{\beta \to 1}^{(6)} = \left(\frac{v_T}{\Lambda_{\text{NP}}}\right)^2 \left(5.33\overline{C}_{H,\text{kin}} - 5.33\overline{\frac{C}_{bH}}\right) \text{ MeV}$$

$$+ \left(\frac{v_T}{\Lambda_{\text{NP}}}\right)^2 \left(1.57\overline{C}_{bG} + 6.91\overline{C}_{HG}\right) \text{ MeV}$$

$$0\mu = m_H$$

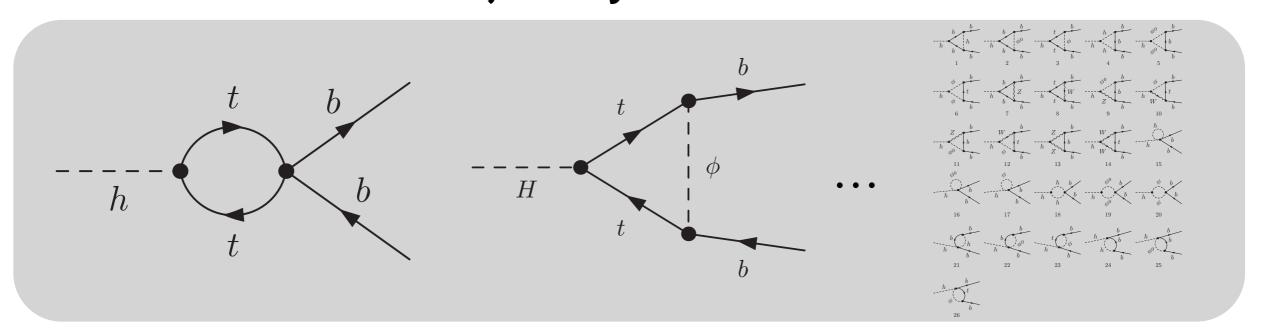
$$\bar{C}_i = \Lambda_{\rm NP}^2 C_i$$

$$\frac{1}{y_b(m_H)} \approx 60$$

- ullet QCD corrections involving C_{HG} and C_{bG} important
- ullet C_{bH} , $C_{H,\mathrm{kin}}$ contributions should scale by N4LO SM QCD
- If C_{bH} $\mathcal{O}(1)$, only sensitive to this effective operator

$$\bar{C}_{H,\text{kin}} = \left(C_{H\square} - \frac{1}{4}C_{HD}\right)\Lambda_{\text{NP}}^2$$

Vanishing gauge coupling corrections See RG, Ben D. Pecjak, D. J. Scott arXiv:1512.02508



Again, proceeds in a similar way to the SM calculation

unbroken phase

$$\{y_i, g_i, \lambda, C_i\}$$

broken phase

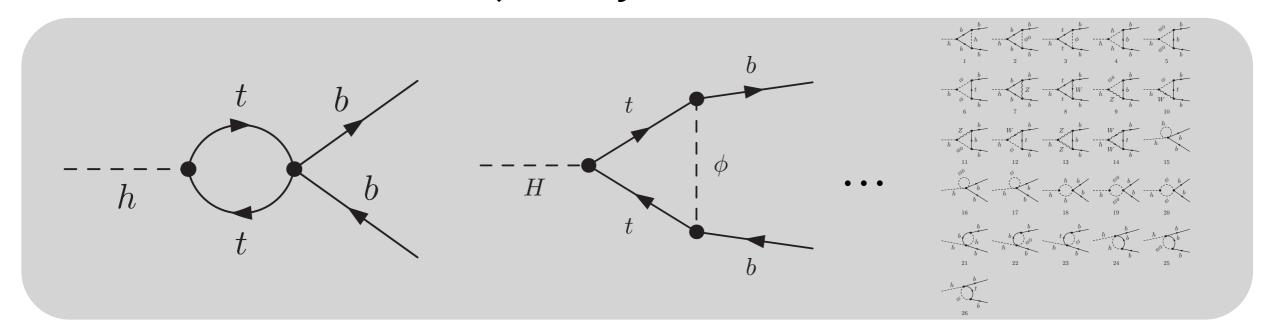
$$\{\bar{e}, g_s, m_f, M_W, M_Z, m_H, C_i\}$$

Apply vanishing gauge couplings \$\frac{1}{2}\$

$$\{y_i, \lambda, C_i\}$$

$$\{m_f, \, \bar{e}/M_W, \, \bar{e}/M_Z, \, m_H, \, C_i\}$$

Vanishing gauge coupling corrections See RG, Ben D. Pecjak, D. J. Scott arXiv:1512.02508



Much more complicated, over 20 operators contribute

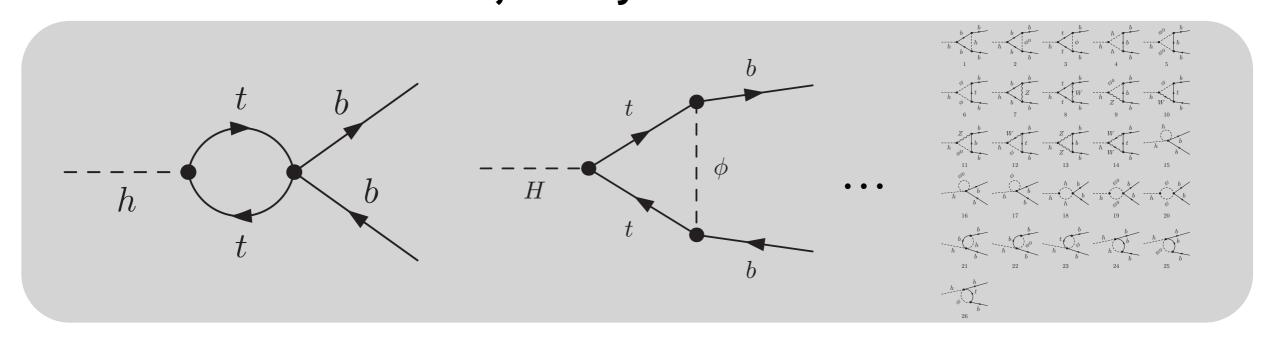
$$\overline{\Gamma}_{\beta \to 1}^{(6)QCD} = \left(\frac{v_T}{\Lambda_{\rm NP}}\right)^2 \left(-5.33 \frac{\bar{C}_{bH}}{y_b} + 1.57 \bar{C}_{bG} + 6.91 \bar{C}_{HG}\right) \text{ MeV} \qquad @\mu = m_H$$

$$\overline{\Gamma}_{\beta \to 1}^{(6)QCD+EW} = \left(\frac{v_T}{\Lambda_{\rm NP}}\right)^2 \left(-5.46 \frac{\bar{C}_{bH}}{y_b} + 1.57 \bar{C}_{bG} + 6.91 \bar{C}_{HG} + 0.02 \frac{\bar{C}_{Htb}}{y_b y_t} + 0.08 \frac{\bar{C}_{qtqb}^{(1)}}{y_b y_t} + \dots\right) \text{ MeV}$$

assume operators scales as

$$\tilde{Q}_{qtqb}^{(1)} = y_b y_t(\bar{q}_3^j t) \epsilon_{jk}(\bar{q}_3^k b)$$

Vanishing gauge coupling corrections See RG, Ben D. Pecjak, D. J. Scott arXiv:1512.02508



Much more complicated, over 20 operators contribute

$$\overline{\Gamma}_{\beta \to 1}^{(6)QCD} = \left(\frac{v_T}{\Lambda_{\rm NP}}\right)^2 \left(-5.33 \frac{\bar{C}_{bH}}{y_b}\right)^2 \left(-5.46 \frac{\bar{C}_{b$$

Summary of QCD + ~EW corrections

• QCD corrections for C_{bH} = those in SM (known to N4LO) [P.A. Baikov, K.G. Chetyrkin, J.H. Kühn - 0511063]

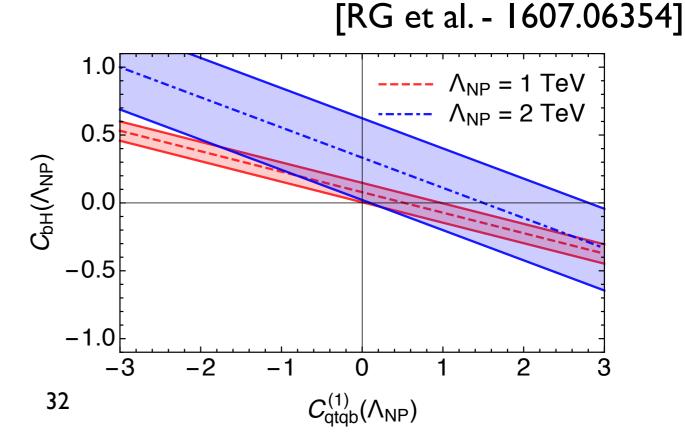
and implemented in eHDecay

[R. Cotino et al. - 1403.3381, 1303.3876]

- Yukawa and Lambda corrections for C_{bH} ~ N2LO QCD ones [RG et al. 1512.02508]
- Under the assumption of MFV-like scaling of C_{bH} , the NLO corrections involving operators such as C_{HG} , C_{bG} important A scaling of the effective Hbb-vertex (kappa) not appropriate

• Else: Higgs signal strength measurement already constrains $C_{bH}(m_H)$

Can interpret this in terms of $C_{bH}(\Lambda_{\rm NP}), C_{qtqb}^{(1)}(\Lambda_{\rm NP})$



Other progress in SMEFT at NLO

Automation: QCD corrections with MG5_aMC@NLO:

[O. B. Bylund, C. Degrande, G. Durieux, D. B. Franzosi, F. Maltoni, I. Tsinikos, E. Vryonidou, J. Wang, C. Zhang] - see ICHEP talk of Cen Zhang here (focus on top-quark sector)

Other QCD corrections:

Double Higgs production [R. Grober, M. Muhlleitner, M. Spira, J. Steircher - 1504.06577] Progress in full/partial electroweak corrections:

```
\mu\to e\gamma [G. M. Pruna, A. Signer - 1408.3565] h\to\gamma\gamma [C. Hartmann, M. Trott - 1505.02646, 1507.03568] h\to VV^{(*)} [M. Ghezzi, R. Gomez-Ambrosio, G. Passarino, S. Uccirati - 1505.0370] h\to b\bar b(\tau\bar\tau) [RG, B. D. Pecjak, D. J. Scott - 1512.02508, 1607.06354], vanishing g1, g2 gg\to h [M. Gorbahn, U. Haisch - 1607.03773], lambda dependence@2-loop h\to\gamma\gamma
```

... If I have missed some, apologies and please let me know!

Haven't even mentioned:

- Several partial/complete SMEFT anomalous dimension calculations
- Global fits, and several important works on input parameter schemes choices See yellow report for review [G. Passarino, M. Trott cds.cern.ch/record/2138031]

Back-ups

Relevant generalities of the SMEFT

Usual SM relations between parameters altered

For example, the shape of the scalar potential

$$V(H) = \lambda \left(H^{\dagger} H - \frac{v^2}{2} \right)^2 - C_H \left(H^{\dagger} H \right)^3$$

Yielding the minimum:

$$\langle H^{\dagger}H\rangle = \frac{v^2}{2} \left(1 + \frac{3C_H v^2}{4\lambda}\right) \equiv \frac{v_T^2}{2}$$

Higgs field in general gauge:

$$H(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} -\sqrt{2}i\phi^{+}(x) \\ \left[1 + C_{H,\text{kin}}\right]h(x) + i\left[1 - \frac{v^{2}}{4}C_{HD}\right]\phi^{0}(x) + v_{T} \end{pmatrix}$$

*Normalisation of fields in $H(\boldsymbol{x})$ to fix Higgs kinetic terms

35

$$C_{H,\text{kin}} \equiv \left(C_{H\square} - \frac{1}{4}C_{HD}\right)v_T^2$$

Choice of input parameters/vev

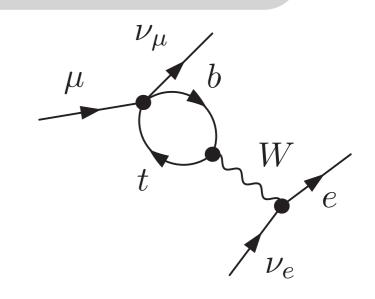
$$\frac{1}{v_T} = \frac{1}{\hat{v}_T} + \frac{\hat{c}_W}{\hat{s}_W} \left(C_{HWB} + \frac{\hat{c}_W}{4\hat{s}_W} C_{HD} \right) \hat{v}_T$$

where $\hat{v}_T \equiv \frac{2M_W\hat{s}_w}{\bar{e}}$; $\hat{s}_w^2 \equiv 1 - \frac{M_W^2}{M_Z^2}$, $\hat{c}_w^2 \equiv 1 - \hat{s}_w^2$ Renormalise vev with $\{M_W, M_Z, \bar{e}, C_{HWB}, C_{HD}\}$ RC

In practice, eliminate MW dependence in favour GFermi using the precise measurement from Muon decay

$$\frac{1}{\sqrt{2}} \frac{1}{v_T^2} = G_F - \frac{1}{\sqrt{2}} \left(C_{Hl}^{(3)} + C_{Hl}^{(3)} \right) + \frac{1}{2\sqrt{2}} \left(C_{\mu ee\mu}^{ll} + C_{e\mu\mu}^{ll} \right)$$

At NLO, must also compute finite matching corrections! Partial results in 1512.02508



The running b-quark mass

In Higgs decay, resum the Log[mb/mh] with the running b-mass

- Convert decay rate into MSbar for b-quark mass (drop finite del m)
- Find the LL solution for the b-quark mass. Eg: for the QCD corrections

$$m_b = \overline{m}_b(\mu) \left(1 - \delta_m(\mu)\right)$$

$$\delta_m^{(4)}(\mu) = -\frac{\alpha_s C_F}{\pi} \left(1 + \frac{3}{4} \ln \left[\frac{\mu^2}{\overline{m}_b^2} \right] \right)$$
 SM

$$\delta_m^{(6)}(\mu) = -\frac{\alpha_s C_F}{\pi} \frac{v_T \overline{m}_b}{\sqrt{2}} C_{bG} \left(1 + 3 \ln \left[\frac{\mu^2}{\overline{m}_b^2} \right] \right)$$
EFT

Must solve:
$$\frac{d\,\overline{m}_b}{d\ln(\mu)} = -\frac{\alpha_s C_F}{\pi} \frac{3}{2} \overline{m}_b \left(1 + 2\sqrt{2} v_T \overline{m}_b C_{bG} \right) + \mathcal{O}(\alpha_s^2)$$

Find solution for CbG, then we find simple analytic formula

$$\overline{m}_b(\mu) = \overline{m}_b(\mu_0) \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{\frac{\gamma_m^0}{\beta_0}} \left(1 + \frac{2\sqrt{2}v_T}{\gamma_m^0 + \gamma_c^0} \left[\overline{m}_b^{(4)}(\mu)C_{bG}(\mu) - \overline{m}_b^{(4)}(\mu_0)C_{bG}(\mu_0)\right]\right)$$

$$\gamma_C^0 = -\frac{5C_F - 2N_c}{4} \qquad \gamma_m^0 = \frac{3}{4}C_F$$

Anomalous dimension example

QCD corrections

$$\delta C_{bH} = \frac{\alpha_s C_F}{\pi} \frac{3}{v_T^2} \frac{1}{\hat{\epsilon}} \times \left(2m_b^2 C_{bG} + v_T \left(\sqrt{2} m_b C_{HG} - \frac{v_T}{4} C_{bH} \right) \right)$$

Yukawa and Lambda corrections

$$\begin{split} \frac{v_T^2}{\sqrt{2}} \delta C_{bH} &= \frac{1}{\epsilon} \frac{1}{v_T} \left[-m_b \left(6m_b^2 + m_H^2 \right) \frac{C_{H,\text{kin}}}{v_T^2} + \frac{1}{4} m_b \left(2m_b^2 - m_H^2 \right) C_{HD} \right. \\ &\quad + \frac{v_T}{2\sqrt{2}} \left((10N_c + 21)m_b^2 + 12m_H^2 + (6N_c - 3)m_t^2 + 6m_\tau^2 \right) C_{bH} \\ &\quad - \frac{(3 - 2N_c)v_T m_b m_t C_{tH}}{\sqrt{2}} + \sqrt{2} v_T m_b m_\tau C_{\tau H} - 4m_b m_\tau^2 C_{H\tau}^{(3)} \\ &\quad - m_b \left(4N_c m_b^2 - 3m_H^2 + (4N_c - 6)m_t^2 \right) C_{Hq}^{(3)} + m_b \left(2m_b^2 + m_H^2 \right) \left(C_{Hq}^{(1)} - C_{Hb} \right) \\ &\quad - m_t \left(-4N_c m_b^2 + m_H^2 + 2m_t^2 \right) C_{Htb} \right] + \frac{v_T^2}{\sqrt{2}} \delta C_{bH}^{(4f)} \end{split}$$