Theory Predictions for Higgs Boson Pair Production

Stephen Jones

Borowka, Greiner, Heinrich, Kerner, Schlenk, Schubert, Zirke

arXiv:1608.04798 [hep-ph]

Phys. Rev. Lett. 117 (2016) 012001, Erratum 079901

Motivation

Higgs Lagrangian:

$$\mathcal{L}\supset -V(\Phi), \quad V(\Phi)=\frac{1}{2}\mu^2\Phi^2+\frac{1}{4}\lambda\Phi^4$$

$$\qquad \qquad \text{EW symmetry breaking}$$

$$\frac{m_H^2}{2}H^2+\frac{m_H^2}{2v}H^3+\frac{m_H^2}{8v^2}H^4$$

Higgs pair production probes triple-Higgs coupling

Production Channels

g

 $\sigma(pp \to HH + X) @ 14 \text{ TeV}$

Gluon Fusion

Vector Boson Fusion (VBF)

NLO [1,2] NNLO [3] + non-negligible contribution from $gg \rightarrow HHjj$ LO [5]

Higgs-strahlung NLO [1,2] NNLO [1,4]

- [1] Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira 12;
- [2] Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro 14;
- [3] Ling, Zhang, Ma, Guo, Li, Li 14 [4] Li, Wang 16
- [5] Dolan, Englert, Greiner, Nordstrom, Spannowsky 15;

Production Channels (II)

$$\sigma(pp \to HH + X) \sim \frac{1}{1000} \sigma(pp \to H + X)$$

¹ NLO QCD HEFT HPAIR

² NLO QCD VBFNLO

3 LO QCD (NLO, aMC@NLO)

⁴ NNLO QCD

Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira 12

Gluon Fusion

1. LO (1-loop), Dominated by top (bottom <1%) Glover, van der Bij 88

- 2. Born Improved NLO H(iggs)EFT $m_T \to \infty$ K \approx 2 Dawson, Dittmaier, Spira 98
- A. Including m_T in Real radiation -10% Maltoni, Vryonidou, Zaro 14
- B. Including $\mathcal{O}(1/m_T^{12})$ terms in Virtual MEs $\pm 10\%$ Grigo, Hoff, Melnikov, Steinhauser 13; Grigo, Hoff 14; Grigo, Hoff, Steinhauser 15

3. NLO (2-loop) with full top mass ← this talk
Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16;
Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16

Gluon Fusion (II)

4. Born Improved NNLO HEFT

+20%

De Florian, Mazzitelli 13

Including matching coefficients

Grigo, Melnikov, Steinhauser 14

Including terms $\mathcal{O}(1/m_T^4)$ in Virtual MEs Grigo, Hoff, Steinhauser 15

(Threshold) NNLL + NNLO Matching (SCET) Shao, Li, Li, Wang 13; de Florian, Mazzitelli 15

+9%

Higgs EFT

H(iggs)EFT: $m_T \to \infty$

Effective tree-level couplings between gluons and Higgs Lowers number of loops by 1

Small energy range in which HEFT is technically justified

Born improved NLO HEFT:

$$d\sigma_{\rm NLO}(m_T) \approx d\bar{\sigma}_{\rm NLO}(m_T) \equiv \frac{d\sigma_{\rm NLO}(m_T \to \infty)}{d\sigma_{\rm LO}(m_T \to \infty)} d\sigma_{\rm LO}(m_T)$$

Spira et al. (HPAIR)

LO & Born Improved NLO HEFT

PDF4LHC15_nlo_30_pdfas
$$m_H=125~{
m GeV}$$
 $m_T=173~{
m GeV}$ Uncertainty: $\mu_R=\mu_F=rac{m_{HH}}{2}$ $\mu\in\left[rac{\mu_0}{2},2\mu_0
ight]$ $(7-{
m point})$

LO: HEFT describes distributions poorly, underestimates XS @ LO by 14%

NLO: HEFT indicates $K \approx 2$

JLO HEFT

Born Improved NLO QCD HEFT

$$d\sigma_{\rm NLO}(m_T) \approx d\bar{\sigma}_{\rm NLO}(m_T) \equiv \frac{d\sigma_{\rm NLO}(m_T \to \infty)}{d\sigma_{\rm LO}(m_T \to \infty)} d\sigma_{\rm LO}(m_T)$$

$$K \approx 2$$

A. FTapprox

Maltoni et al.14

$$\mathrm{d}\overline{\sigma}^V(m_T)$$
 $\mathrm{d}\sigma^R(m_T)$ -10%

$$d\sigma^R(m_T)$$

B. Expansion
$$\mathrm{d}\hat{\sigma}(m_T) \equiv \mathrm{d}\sigma_0 + \mathrm{d}\sigma_1 \frac{m_H^2}{m_T^2} + \ldots + \mathrm{d}\sigma_6 \frac{m_H^{12}}{m_T^{12}}$$
 $\mathrm{d}\bar{\sigma}_{\mathrm{NLO}}^{SV}(m_T) \equiv \mathrm{d}\hat{\sigma}_{\mathrm{NLO}}^{SV}(m_T) \frac{\mathrm{d}\sigma_{\mathrm{LO}}^V(m_T)}{\mathrm{d}\hat{\sigma}_{\mathrm{LO}}^V(m_T)}$

$$d\bar{\sigma}_{\rm NLO}^{SV}(m_T) \equiv d\hat{\sigma}_{\rm NLO}^{SV}(m_T) \frac{d\sigma_{\rm LO}^{V}(m_T)}{d\hat{\sigma}_{\rm LO}^{V}(m_T)}$$

$$d\bar{\sigma}_{\rm NLO}^{H}(m_T) \equiv d\hat{\sigma}_{\rm NLO}^{H}(m_T) \frac{\sigma_{\rm LO}^{V}(m_T)}{\hat{\sigma}_{\rm LO}^{V}(m_T)}$$

$$\pm 10\%$$

Grigo, Hoff, Steinhauser 15

A. FT approx

Distribution: Agreement between HEFT approximations in first bin where $\sqrt{\hat{s}} \approx 2m_H$, not much hard real emission

	$\sigma_{ m LO} \ ({ m fb})$	$\sigma_{\rm NLO}$ (fb)
B.I. HEFT	$19.85^{+27.6\%}_{-20.5\%}$	$38.32^{+18.1\%}_{-14.9\%}$
FTapprox	$19.85^{+27.6\%}_{-20.5\%}$	$34.26^{+14.7\%}_{-13.2\%}$
Full Theory	$19.85^{+27.6\%}_{-20.5\%}$	•••

Total: m_T in only reals suppresses XS by 11% compared to HEFT

B. Expansion in Top Quark Mass

Low m_{hh} : Expansion seems ok in first bin

$$\sqrt{\hat{s}} < 2m_T$$

Increasing m_{hh} : Fewer reasons to trust expansion

Total: $\mathcal{O}(5\%)$ differences between first few terms of expansion

(Tom Zirke) Virtuals: asymptotic expansion in $1/m_T^2$ (q2e/exp+ Reduze + matad) Harlander, Seidensticker, Steinhauser 97,99; von Manteuffel, Studerus 12; Steinhauser 00

Mass effects give large uncertainty Required NLO calculation with full mass dependence

NLO Calculation

Virtual MEs:
$$gg \rightarrow HH$$
 $q\bar{q} \rightarrow HH$ \blacksquare **NNLO**

Yukawa only (≤ 4-point)

Self-coupling (≤3-point)

Integrals Known $qq \rightarrow H$

Spira, Djouadi et al. 93, 95; Bonciani, P. Mastrolia 03,04; Anastasiou, Beerli et al. 06;

We check against SUSHI Harlander, Liebler, Mantler 13,16;

Many integrals not known analytically, except:

 $H
ightarrow Z \gamma$ Bonciani, Del Duca, Frellesvig et al. 15; Gehrmann, Guns, Kara 15;

Integral Reduction

Tensor integrals rewritten as inverse propagators

Scalar products:

$$S = \frac{l(l+1)}{2} + lm$$

$$l=2$$
 # Loops $m=3$ # L.I External momenta

$$S = 9$$

4 scales $\hat{s}, \hat{t}, m_T^2, m_H^2$

Choose 5 planar + 3 non-planar integral families

Integrals	1-loop	2-loop
Direct	63	9865
+ Symmetries	21	1601
+ IBPs	8	~260-270 (currently 327)

Reduction with REDUZE 2 von Manteuffel, Studerus 12

Up to 4 inverse propagators

Simplification, fix:

$$m_T = 173 \text{ GeV}, \ m_H = 125 \text{ GeV}$$

(Mostly) Finite Basis

Panzer 14; von Manteuffel, Panzer, Schabinger 15

Non-planar integrals computed mostly without reduction

Amplitude Structure

 $\overline{\rm MS}$ scheme strong coupling a and OS top-quark mass:

$$\begin{split} \mathbf{F} &= a \mathbf{F}^{(1)} + a^2 (\delta Z_A + \delta Z_a) \mathbf{F}^{(1)} + a^2 \delta m_t^2 \mathbf{F}^{ct,(1)} + a^2 \mathbf{F}^{(2)} + O(a^3) \\ \mathbf{F}^{(1)} &= \left(\frac{\mu_R^2}{M^2}\right)^{\epsilon} \left[b_0^{(1)} + b_1^{(1)} \epsilon + b_2^{(1)} \epsilon^2 + \mathcal{O}(\epsilon^3)\right] & \longleftarrow \text{1-loop} \\ \mathbf{F}^{ct,(1)} &= \left(\frac{\mu_R^2}{M^2}\right)^{\epsilon} \left[c_0^{(1)} + c_1^{(1)} \epsilon + \mathcal{O}(\epsilon^2)\right] & \longleftarrow \text{Mass Counter-Terms} \\ \mathbf{F}^{(2)} &= \left(\frac{\mu_R^2}{M^2}\right)^{2\epsilon} \left[\frac{b_{-2}^{(2)}}{\epsilon^2} + \frac{b_{-1}^{(2)}}{\epsilon} + b_0^{(2)} + \mathcal{O}(\epsilon)\right] & \longleftarrow \text{2-loop} \end{split}$$

Red terms contain integrals, computed numerically at each PS point, not re-evaluated for scale variations

Real Radiation (HH + j...):

$$gg \to HH + g$$
 $g\bar{q} \to HH + \bar{q}$ $q\bar{q} \to HH + g$ $gq \to HH + q$

GoSam for MEs Cullen et al. 14

Catani-Seymour Dipole Subtraction Catani, Seymour 96

Evaluating the Amplitude

All master integrals processed with SecDec

Borowka, Heinrich, Jahn, SJ, Kerner, Schlenk, Zirke

Sector decompose Feynman integrals Hepp 66; Denner, Roth 96; Binoth, Heinrich 00

Contour deformation, Soper 00: Binoth, Guillet, Heinrich et al. 05: Nagy, Soper 06:

Contour deformation Soper 00; Binoth, Guillet, Heinrich et al. 05; Nagy, Soper 06; Borowka et al. 12

Entire 2-loop amplitude evaluated with a single code

$$F = \sum_{i} \left(\sum_{j} C_{i,j} \epsilon^{j} \right) \left(\sum_{k} I_{i,k} \epsilon^{k} \right) = \epsilon^{-2} \left[C_{1,-2}^{(L)} I_{1,0}^{(L)} + \ldots \right]$$
 compute once integral
$$+ \epsilon^{-1} \left[C_{1,-1}^{(L)} I_{1,0}^{(L)} + \ldots \right] + \ldots$$

Dynamically set target precision for each sector, minimising time:

$$T = \sum_{i} t_{i} + \bar{\lambda} \left(\sigma^{2} - \sum_{i} \sigma_{i}^{2} \right), \quad \sigma_{i} \sim t_{i}^{-e}$$

$$\bar{\lambda} - \text{Lagrange multiplier}$$

$$\sigma - \text{precision goal}$$

$$\sigma_{i} - \text{error estimate}$$

Use Quasi-Monte-Carlo (QMC) integration $\mathcal{O}(n^{-1})$ error scaling

Review: Dick, Kuo, Sloan 13; Li, Wang, Yan, Zhao 15

Implemented in OpenCL, evaluated on GPUs

Amplitude Evaluation

Contributing integrals:

$$\sqrt{s} = 327.25 \,\text{GeV}, \, \sqrt{-t} = 170.05 \,\text{GeV}, \, M^2 = s/4$$

integral	value	error	time [s]	_	
F1_011111110_ord0	(0.484, 4.96e-05)	(4.40e-05, 4.23e-05)	11.8459	00000	
$N3_1111111100_k1p2k2p2_ord0$	(0.0929, -0.224)	(6.32e-05, 5.93e-05)	235.412		
$N3_{1111111100_{1}}$ ord0	(-0.0282, 0.179)	(8.01e-05, 9.18e-05)	265.896		
$N3_1111111100 k1p2k1p2_ord0$	(0.0245, 0.0888)	(5.06e-05, 5.31e-05)	282.794		
N3_111111100_k1p2_ord0	(-0.00692, -0.108)	(3.05e-05, 3.05e-05)	433.342		

sector	integral value	error	time [s]	# points	
5	(-1.34e-03, 2.00e-07)	(2.38e-07, 2.69e-07)	0.255	1310420	
6	(-1.58e-03, -9.23e-05)	(7.44e-07, 5.34e-07)	0.266	1310420	
• • •					
41	(0.179, -0.856)	(1.10e-05, 1.22e-05)	29.484	79952820	Slide:
42	(0.359, -1.308)	(1.40e-06, 1.58e-06)	80.24	211436900	Matthias Kerner
44	(0.0752, -1.185)	(5.44e-07, 6.76e-07)	99.301	282904860	(LL 2016)

Results (I): Invariant Mass

PDF4LHC15_nlo_30_pdfas

$$m_H = 125 \text{ GeV}$$

$$m_T = 173 \text{ GeV}$$

Uncertainty:

$$\mu_R = \mu_F = \frac{m_{HH}}{2}$$

$$\mu \in \left[\frac{\mu_0}{2}, 2\mu_0\right] \quad (7 - \text{point})$$

HEFT: Outside scale var.

$$m_{hh} > 420 \, {\rm GeV}$$

FTapp: Outside scale var.

$$m_{hh} > 620 \,\mathrm{GeV}$$

Full Theory

HEFT overestimates by 16% FTap. overestimates by 4%

$$\pm 0.3\% (\mathrm{stat.}) \pm 0.1\% (\mathrm{int.})$$

Results (II): pT either Higgs

HEFT: Can poor approx. for larger $p_{T,h}$

Note: ambiguous how to rescale HEFT reals by full LO born differentially

FTapp: Significantly better but still overestimating

Real radiation plays larger role for large $p_{T,h}$ (As hoped) Including full reals does improve over HEFT in tails

Results (III): 100TeV

Difference between full theory and HEFT more pronounced

Comparison to Expansion

Can compare just virtual ME to expansion:

$$d\hat{\sigma}_N = \sum_{\rho=0}^N d\hat{\sigma}^{(\rho)} \left(\frac{\Lambda}{m_t}\right)^{2\rho} \qquad \Lambda \in \left\{\sqrt{\hat{s}}, \sqrt{\hat{t}}, \sqrt{\hat{u}}, m_h\right\}$$

$$V_N = \left(d\hat{\sigma}_N^V + d\hat{\sigma}_N^{LO} \otimes \mathbf{I}\right)$$

$$V_N' = V_N \frac{d\hat{\sigma}^{LO}}{d\hat{\sigma}_N^{LO}}$$

Rescaled better but does not describe full above threshold

 $V_{N\geq 4}$ thanks to J. Hoff Grigo, Hoff, Steinhauser 15

Expansion converges on full $\sqrt{\hat{s}} < 2m_T$

Triple-Higgs Coupling Sensitivity

SM: Destructive interference between g_{hhh} and y_T^2 contrib.

Distributions: can help to distinguish between λ values

VBF: More sensitive (but small XS)

Can increase sensitivity to HH:

- $p_{T,jet}^{min}$ cut
- $\sigma(gg \to HH)/\sigma(gg \to H)$
- Multivariate $b\bar{b}b\bar{b}$

Barr, Dolan, Englert, Ferreira de Lima, Spannowsky 15; Mangano et al. 16; Goertz, Papaefstathiou, Yang, Zurita 13; Behr, Bortoletto, Frost, Hartland, Issever, Rojo 15

Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira 12

BSM EFT

Parametrise **non-resonant** new physics with EFT (5 parameters):

Azatov, Contino, Panico, Son 15;
(Cluster analysis) Dall'Osso, Dorigo, Gottardo, Oliveira, Tosi, Goertz 15;
+ Carvalho, Manzano, Dorigo, Gouzevich 16;
(B.I. HEFT) Gröber, Mühlleitner, Spira, Streicher 15;

*Just varying λ : one ``direction'' in EFT parameter space

NLO Improved NNLO HEFT

First attempt to combine full NLO

Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16

+

NNLO HEFT (Differential)

de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16

$$\frac{\mathrm{d}\sigma^{\mathrm{approx.}}}{\mathrm{d}m_{hh}} \equiv \frac{\mathrm{d}\sigma_{\mathrm{NLO}}}{\mathrm{d}m_{hh}} \times \frac{\mathrm{d}\sigma^{\mathrm{HEFT}}_{\mathrm{NNLO}}/\mathrm{d}m_{hh}}{\mathrm{d}\sigma^{\mathrm{HEFT}}_{\mathrm{NLO}}/\mathrm{d}m_{hh}}$$

Bin-by-bin rescaling of NLO by NNLO HEFT K-factor

$$\sigma^{approx.} = 38.67^{+5.2\%}_{-7.6\%}$$

Conclusion

Gluon Fusion

- Key measurement for probing the self coupling (HL-LHC era)
- NLO deviates from Born Improved HEFT
 -14% @ 14 TeV, -24% @ 100 TeV
- Distributions altered significantly

Future

- Improve combination with NNLO HEFT (?), include resummation (?)
- Apply methods/framework GoSam-2L+SecDec to other processes

Thank you for listening!

Backup

Current Experimental Limits

Decay Ch.	B.R.	95% Excl.	Analysis $([fb^{-1}], \sqrt{s} \text{ [TeV]})$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	33%	$< 29 \cdot \sigma_{\rm SM}$	ATLAS-CONF-2016-017 (3.2,13)
			ATLAS-CONF-2016-049 (13.3,13)
$b\overline{b}WW$	25%	_	
$b\overline{b} au au$	7.3%	$< 200 \cdot \sigma_{\mathrm{SM}}$	CMS PAS HIG-16-012 (2.7,13)
			CMS PAS HIG-16-028 (12.9,13)
			CMS PAS HIG-15-013 (18.3,8)
$b \overline{b} Z Z$	3.0%	_	<u> </u>
WW au au	2.71%	_	_
WWZZ	1.13%	_	_
$b\overline{b}\gamma\gamma$	0.26%	< 3.9pb	ATLAS-CONF-2016-004 (3.2,13)
		$< 74 \cdot \sigma_{\mathrm{SM}}$	CMS-HIG-13-032 (19.7,8)
$\gamma\gamma\gamma\gamma$	0.001%	_	<u>—</u>
$\overline{bbVV(\rightarrow l\nu l\nu)}$	1.23%	$400 \cdot \sigma_{\mathrm{SM}}$	CMS PAS HIG-16-024 (2.3,13)
$\gamma \gamma WW^*(\rightarrow l\nu jj)$	_	< 25pb	ATLAS-CONF-2016-071 (13.3,13)
Comb Ch.	_	$< 70 \cdot \sigma_{\mathrm{SM}}$	ATLAS arXiv:1509.04670v2 (20.3,8)

Future Experimental Prospects

HL-LHC (14 TeV)

ATLAS+CMS bbγγ + bbττ: Expected significance 1.9 sigma CERN-LHCC-2015-10

ATLAS bbγγ: Signal significance 1.3 sigma ATL-PHYS-PUB-2014-019

ATLAS bbtt: Signal significance 0.6 sigma ATL-PHYS-PUB-2015-046

FCC (100 TeV)

This rate is expected to provide a clear signal in the $HH \to (b\bar{b})(\gamma\gamma)$ channel and to allow determination of λ_{3H} with an accuracy of 30-40% with a luminosity of 3 ab⁻¹, and of 5-10% with a luminosity of 30 ab⁻¹ [497–499]. A rare decay channel which is potentially interesting is $HH \to (b\bar{b})(ZZ) \to (b\bar{b})(4l)$, with a few expected signal events against $\mathcal{O}(10)$ background events at 3 ab⁻¹ [500].

arXiv:1607.01831

YR4 Numbers (maybe...)

YR4 Prescription:

$$\sigma(gg \to hh)_{NLO}^{exact} = \sigma(gg \to hh)_{NLO}^{HEFT} (1 + \delta_t)$$
$$\sigma'_{NNLL} = \sigma_{NNLL} + \delta_t \sigma_{NLO}^{HEFT}$$

\sqrt{S}	σ'_{NNLL} (fb)	Scale Unc. (%)	PDF Unc. (%)	α_S Unc. (%)
7 TeV	7.078	+4.0 - 5.7	± 3.4	± 2.8
8 TeV	10.16	+4.1 - 5.7	± 3.1	± 2.6
13 TeV	33.53	+4.3 - 6.0	± 2.1	± 2.3
14 TeV	39.64	+4.4 - 6.0	± 2.1	± 2.2

UNOFFICIAL

Top-quark Width Effects

Total XS @ LO: reduced by 2% by including top-quark width

Figure 3: Top width effect on the one-loop (Born) matrix element squared for $gg \to HH$. The results for $\Gamma_t = 0$ and 1.5 GeV are shown along with the corresponding ratio.

Maltoni, Vryonidou, Zaro 14

Lambda Variation

Lambda Variation

Scaling

$$\sqrt{s} = 14 \, \mathrm{TeV}$$

Lambda 0 x SM

$$\sqrt{s} = 14 \, \mathrm{TeV}$$

Lambda 2 x SM

$$\sqrt{s} = 14 \, \mathrm{TeV}$$

Lambda 5 x SM

$$\sqrt{s} = 14 \, \mathrm{TeV}$$

Resonant Production

YR4 details two benchmark scenarios for initial study

Higgs Singlet Model

$$V = -m^2 \Phi^{\dagger} \Phi - \mu^2 S^2 + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 S^4 + \lambda_3 \Phi^{\dagger} \Phi S^2$$

$$\Phi^{T} = (\phi^{+}, \tilde{\phi}_{0} = \frac{\phi_{0} + v}{\sqrt{s}})$$
$$S = \frac{s + \langle S \rangle}{\sqrt{2}}$$

Large $\mathcal{O}(20-30\%)$ $H\to hh$

Cross-section can be enhanced by up to 10-20x

2 Higgs Doublet Model (2HDM)

2 neutral scalars $\rightarrow h^0, H^0, A, H^+, H^- \leftarrow$ 2 charged Higgs Pseudoscalar

Behaviour strongly depends on the scenario

Hespel, López-Val, Vryonidou 14

Checks

Real Emission / Subtraction Terms

- Independence of dipole-cut lpha parameter Nagy `03
- Agreement with Maltoni, Vryonidou, Zaro `14

Virtual Corrections

- Two calculations of amplitude up to reduction
- Amplitude result invariant under $t \leftrightarrow u$
- Pole cancellation
- Mass renormalization using two methods: counter-term insertion vs. calculating ${\rm d}\mathcal{M}^{\rm LO}/{\rm d}m_t^2$ numerically
- Agreement of contributions $gg \rightarrow H \rightarrow HH$ with SusHi
- Convergence of $1/m_T$ expansion to full result where agreement is expected

Slide: Matthias Kerner (Loopfest 2016)

Integral Families

tensor integrals: scalar products \rightarrow inverse propagators

l.i. scalar products:

Slide: Matthias Kerner

$$S = \frac{l(l+1)}{2} + lm$$

$$=2:$$
 # loop

 $S = \frac{l(l+1)}{2} + lm$ l = 2: # loops m = 3: # l.i. external momenta

- \rightarrow integral families with 9 propagators
- \rightarrow general loop integral:

$$I_{\nu_1,\dots,\nu_9}^{\text{fam}_j} = \int d^d p_1 \int d^d p_2 \frac{1}{D_1^{\nu_1} D_2^{\nu_2} \cdots D_9^{\nu_9}}$$

$$\nu_i \in \mathbb{Z}$$

planar family 1:

$$D_{1} = p_{1}^{2} - m_{t}^{2}$$

$$D_{2} = p_{2}^{2} - m_{t}^{2}$$

$$D_{3} = (p_{1} - p_{2})^{2}$$

$$D_{4} = (p_{1} + k_{1})^{2} - m_{t}^{2}$$

$$D_{5} = (p_{2} + k_{1})^{2} - m_{t}^{2}$$

$$D_{6} = (p_{1} - k_{2})^{2} - m_{t}^{2}$$

$$D_{7} = (p_{2} - k_{2})^{2} - m_{t}^{2}$$

$$D_{8} = (p_{1} - k_{2} - k_{3})^{2} - m_{t}^{2}$$

$$D_{9} = (p_{2} - k_{2} - k_{3})^{2} - m_{t}^{2}$$

Integral Families

tensor integrals: scalar products \rightarrow inverse propagators

l.i. scalar products:

Slide: Matthias Kerner

0000,000

$$S = \frac{l(l+1)}{2} + lm$$
 $l = 2: \# loops$ $m = 3: \# l.i. external momenta$

$$l=2:$$
 #loops

$$m = 3$$
: # l.i. external momenta

$$\Rightarrow$$
 $S=9$

 \rightarrow integral families with 9 propagators

planar families

3 non-planar families:

Form Factor Decomposition

Expose tensor structure: $\mathcal{M} = \epsilon_{\mu}^{1} \epsilon_{\nu}^{2} \mathcal{M}^{\mu\nu}$

Form Factors (Contain integrals)

$$\mathcal{M}^{\mu\nu} = F_1(\hat{s}, \hat{t}, m_h^2, m_t^2, D) T_1^{\mu\nu} + F_2(\hat{s}, \hat{t}, m_h^2, m_t^2, D) T_2^{\mu\nu}$$

(Tensor) Basis, built from external momenta & metric

Choose:

$$\mathcal{M}^{++} = \mathcal{M}^{--} = -F_1$$

$$\mathcal{M}^{+-} = \mathcal{M}^{-+} = -F_2$$

Glover, van der Bij 88

- $\mathcal{M}^{++} = \mathcal{M}^{--} = -F_1 \longleftarrow \bullet$ Self-coupling diagrams are 1PR by cutting a scalar propagator
 - By angular momentum conservation they contribute only to F_1

Construct projectors such that:

$$P_1^{\mu\nu}\mathcal{M}_{\mu\nu} = F_1(\hat{s}, \hat{t}, m_h^2, m_t^2, D)$$

$$P_2^{\mu\nu}\mathcal{M}_{\mu\nu} = F_2(\hat{s}, \hat{t}, m_h^2, m_t^2, D)$$

Form Factor Decomposition (II)

$$T_1^{\mu\nu} = g^{\mu\nu} - \frac{p_2^{\mu}p_1^{\nu}}{p_1 \cdot p_2}$$

$$p_T^2 = \frac{ut - m_H^4}{s}$$

$$T_2^{\mu\nu} = g^{\mu\nu} + \frac{m_H^2 p_2^{\mu} p_1^{\nu}}{p_T^2 p_1 \cdot p_2} - \frac{2p_1 \cdot p_3 p_2^{\mu} p_3^{\nu}}{p_T^2 p_1 \cdot p_2} - \frac{2p_2 \cdot p_3 p_3^{\mu} p_1^{\nu}}{p_T^2 p_1 \cdot p_2} + \frac{2p_3^{\mu} p_3^{\nu}}{p_T^2}$$

Glover, van der Bij 88

Projectors (CDR $D=4-2\epsilon$):

$$P_1^{\mu\nu} = \frac{1}{4} \frac{D-2}{D-3} T_1^{\mu\nu} - \frac{1}{4} \frac{D-4}{D-3} T_2^{\mu\nu}$$

$$P_2^{\mu\nu} = -\frac{1}{4} \frac{D-4}{D-3} T_1^{\mu\nu} + \frac{1}{4} \frac{D-2}{D-3} T_2^{\mu\nu}$$
 Same Basis as amplitude

Compute:

$$P_1^{\mu\nu}\mathcal{M}_{\mu\nu} = F_1(\hat{s}, \hat{t}, m_h^2, m_t^2, D)$$
$$P_2^{\mu\nu}\mathcal{M}_{\mu\nu} = F_2(\hat{s}, \hat{t}, m_h^2, m_t^2, D)$$

Virtual MEs: Tool Chain

Partial cross-check: 2 Implementations

Master Integrals

Known Analytically:

3-point, 2 off-shell legs Generalized HPLs, 12 Letters

Numeric Evaluation:

Slide: Matthias Kerner

Numerical Master Integrals

To evaluate Master Integrals we use SecDec which implements Sector Decomposition

Collaboration: Borowka, Heinrich, Jahn, SJ, Kerner, Schlenk, Zirke

Completely automated procedure

Sector Decomposition

1) Feynman Parametrise integral and compute momentum integrals

$$G = (-1)^{N_{\nu}} \frac{\Gamma(N_{\nu} - LD/2)}{\prod_{j=1}^{N} \Gamma(\nu_{j})} \int_{0}^{\infty} \prod_{j=1}^{N} dx_{j} \ x_{j}^{\nu_{j}-1} \delta(1 - \sum_{i=1}^{N} x_{i}) \frac{\mathcal{U}^{N_{\nu} - (L+1)D/2}(\vec{x})}{\mathcal{F}^{N_{\nu} - LD/2}(\vec{x}, s_{ij})}$$

Here U, \mathcal{F} are 1st, 2nd Symanzik Polynomials

We have exchanged L momentum integrals for N parameter integrals

Sector Decomposition

2) After integrating out δ we are faced with integrals of the form:

$$G_i = \int_0^1 \left(\prod_{j=1}^{N-1} \mathrm{d} x_j x_j^{\nu_j - 1} \right) \frac{\mathcal{U}_i(\vec{x})^{\exp \mathcal{U}(\epsilon)}}{\mathcal{F}_i(\vec{x}, s_{ij})^{\exp \mathcal{F}(\epsilon)}}$$
Powers depending on ϵ

Polynomials in F.P

Which may contain overlapping singularities which appear when several $x_j \rightarrow 0$ simultaneously (corresponding to UV/IR singularities)

Sector decomposition maps each integral into integrals of the form:

$$G_{ik} = \int_0^1 \left(\prod_{j=1}^{N-1} dx_j x_j^{a_j - b_j \epsilon} \right) \frac{\mathcal{U}_{ik}(\vec{x})^{\exp \mathcal{U}(\epsilon)}}{\mathcal{F}_{ik}(\vec{x}, s_{ij})^{\exp \mathcal{F}(\epsilon)}}$$

Singularity structure can be read off

$$\mathcal{U}_{ik}(\vec{x}) = 1 + u(\vec{x})$$
 Singularity structure can $\mathcal{F}_{ik}(\vec{x}) = -s_0 + f(\vec{x})$ $u(\vec{x}), f(\vec{x})$ have no constant term

Sector Decomposition (II)

One technique Iterated Sector Decomposition repeat:

$$\int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}x_{2} \frac{1}{(x_{1} + x_{2})^{2 + \epsilon}} \longrightarrow \text{Overlapping singularity for} \quad x_{1}, x_{2} \to 0$$

$$= \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}x_{2} \frac{1}{(x_{1} + x_{2})^{2 + \epsilon}} (\theta(x_{1} - x_{2}) + \theta(x_{2} - x_{1}))$$

$$= \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{x_{1}} \mathrm{d}x_{2} \frac{1}{(x_{1} + x_{2})^{2 + \epsilon}} + \int_{0}^{1} \mathrm{d}x_{2} \int_{0}^{x_{2}} \mathrm{d}x_{1} \frac{1}{(x_{1} + x_{2})^{2 + \epsilon}}$$

$$= \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}t_{2} \frac{x_{1}}{(x_{1} + x_{1}t_{2})^{2 + \epsilon}} + \int_{0}^{1} \mathrm{d}x_{2} \int_{0}^{1} \mathrm{d}t_{1} \frac{x_{2}}{(x_{2}t_{1} + x_{2})^{2 + \epsilon}}$$

$$= \int_{0}^{1} \mathrm{d}x_{1} \int_{0}^{1} \mathrm{d}t_{2} \frac{x_{1}^{-1 - \epsilon}}{(1 + t_{2})^{2 + \epsilon}} + \int_{0}^{1} \mathrm{d}x_{2} \int_{0}^{1} \mathrm{d}t_{1} \frac{x_{2}^{-1 - \epsilon}}{(t_{1} + 1)^{2 + \epsilon}} - \text{Singularities factorised}$$

If this procedure terminates depends on order of decomposition steps

An alternative strategy **Geometric Sector Decomposition** always terminates; both strategies are implemented in **SecDec**.

Kaneko, Ueda 10; See also: Bogner, Weinzierl 08; Smirnov, Tentyukov 09

Sector Decomposition (III)

3) Expand in ϵ (simple case a=-1):

$$\int_0^1 \mathrm{d}x^{-1-b\epsilon} g(x) = \frac{g(0)}{-b\epsilon} + \int_0^1 \mathrm{d}x x^{-b\epsilon} \left[\frac{g(x) - g(0)}{x} \right] \longleftarrow \text{Finite}$$
Poles

Note: `subtraction' of $g(0)$

By Definition: $g(0) \neq 0, g(0)$ finite

4) Numerically integrate

SecDec supports: numerators, inverse propagators, "dots", physical kinematics, arbitrary loops & legs (within reason)

Soper 00; Nagy, Soper 06; Borowka 14

Key Point: Sector Decomposed integrals can be expanded in ϵ and numerically integrated

Rank 1 Shifted Lattices

 $\mathcal{O}(n^{-1})$ algorithm for numerical integration:

Review: Dick, Kuo, Sloan 13

$$I_s[f] \equiv \int_{[0,1]^s} d^s x f(\vec{x})$$

 $f: \mathbb{R}^s \to \mathbb{C}$

$$I_s[f] \approx \bar{Q}_{s,n,m}[f] \equiv \frac{1}{m} \sum_{k=1}^m \frac{1}{n} \sum_{i=0}^{m-1} f\left(\left\{\frac{i\vec{z}}{n} + \vec{\Delta}_k\right\}\right)$$

 \vec{z} - Generating vec.

 $\vec{\Delta_k}$ - Random shift vec.

{} - Fractional part

 $n \,$ - # Lattice points

m - # Random shifts

Generating vector \vec{z} precomputed for a **fixed** number of lattice points, chosen to minimise worst-case error Nuyens 07

Rank 1 Shifted Lattices (II)

Unbiased error estimate computed from random shifts:

$$\operatorname{Var}[\bar{Q}_{s,n,m}[f]] \approx \frac{1}{m(m-1)} \sum_{k=1}^{m} (Q_{s,n,k} - \bar{Q}_{s,n,m})^2$$

Typically 10-50 shifts, production run: 20 shifts

R1SL: Algorithm Performance

Example: Rel. Err. of one sector of sector decomposed loop integral

R1SL: Implementation Performance

Accuracy limited primarily by number of function evaluations

Implemented in OpenCL 1.1 for CPU & GPU, generate points on GPU/CPU core, sum blocks of points (reduce memory usage/transfers)

SecDec as a Library

Single program to compute **all** coefficients & integrals to obtain **amplitude** to given accuracy

```
desired precision
                                               list of GPUs & CPUs
                      Amplitude si(epsrel, devinds, crossings);
                                                                          name & reference to
                      // coeffs/coeff1.cpp
                      si.addTerm(
                                                                          integrand to integrate
                                string("ReduzeF1L2_230000010ord0"),
                                ReduzeF1L2 230000010ord0nfunc(),
                                crossing,
                                &ReduzeF1L2_230000010ord0Integrand,
                                &ReduzeF1L2 230000010ord0findoptlam,
       (\hat{s}, \hat{t}, m_t^2, m_h^2)
                                                                         vector of coefficients
                                ReduzeF1L2 230000010ord0ndim(),
                                params,
                                                                         C_{1,-2}, C_{1,-1}, \dots for all Form
                                termCoeff1
                                                                         Factors, evaluated at this
                      // coeffs/coeff204.cpp
                                                                         phase-space point
                      si.addTerm(
                                string("ReduzeF3L2diminc2_131010100ord1"),
Find contour
                                ReduzeF3L2diminc2_131010100ord1nfunc(),
                                crossing,
deformation
                                &ReduzeF3L2diminc2_131010100ord1Integrand,
                                &ReduzeF3L2diminc2_131010100ord1findoptlam,
                                ReduzeF3L2diminc2_131010100ord1ndim(),
(physical region) in
                                params,
                                termCoeff2
parallel for all
                                                  Computes integrals in parallel on GPUs
integrals in
                                                  & CPUs. Dynamically adjusts # points
                      si.optimizeLambda();
                      si.integrate();
amplitude
                                                  per sector to reduce amplitude error
```

Phase-space Sampling

Phase-space implemented by hand

limited to 2-3 w/ 2 massive particles Events for virtual:

- 1) VEGAS algorithm applied to LO matrix element $\mathcal{O}(100k)$ events computed
- 2) Using LO events unweighted events generated using accept/reject method $\mathcal{O}(30k)$ events remain
- 3) Randomly select 666 Events (woops), compute at NLO, exclude 1

Note: No grids used either for integrals or phase-space

Phase-space points

Importance sampling:

- LO calculation unweighted events sampling points virtual amplitude
- σ^V with 2.5% accuracy using

665 phase-space points

- Accuracy goal:
- 3% for form factor F₁
- 5-20% for form factor F₂ (depending on F₂/F₁)

Run time: (gpu time)

- 80 min 2 d (≙wall-clock limit)
- median: 2h
- one point at $s/m_t^2 = 4.01$ excluded (huge integration error) (stable results for points at $s/m_{\star}^2=3.98$ and $s/m_t^2=4.05$)

Slide: Matthias Kerner

Timings

Bottleneck: Integral reduction, tried Fire, Litered, Reduze 2

Smirnov, Smirnov 13; Lee 13; von Manteuffel, Studerus 12

Note: Not a criticism, we are not using these tools smartly or on ideal hardware, this problem is **HARD** for these tools

Hardware (numerics): ~16 Dual Nvidia Tesla K20X GPGPU Nodes

Thanks: MPCDF

Median GPU time per PS point: 2 hours

Total compute time used: 4680 GPU Hours

Wall time: 6 days

Key Point: Even after the advances discussed here numerical integration is slow but our setup can scale to use the available compute resources

Slide:

Approximate top-mass effects at NLO

Tom Zirke

$$\sigma^{NLO}(p) = \int d\phi_3 \left[\left(d\sigma^R(p) \right)_{\epsilon=0} - \left(\sum_{\text{dipoles}} d\sigma^{LO}(p) \otimes dV_{\text{dipole}} \right)_{\epsilon=0} \right]$$

$$+ \int d\phi_2 \left[d\sigma^V(p) + d\sigma^{LO}(p) \otimes \mathbf{I} \right]_{\epsilon=0}$$

$$+ \int_0^1 dx \int d\phi_2 \left[d\sigma^{LO}(xp) \otimes (\mathbf{P} + \mathbf{K}) (x) \right]_{\epsilon=0}$$

$$d\sigma^{V} + d\sigma^{LO}(\epsilon) \otimes \mathbf{I} \approx d\sigma_{\exp,N}^{V} \frac{d\sigma^{LO}(\epsilon)}{d\sigma_{\exp,N}^{LO}(\epsilon)} + d\sigma^{LO}(\epsilon) \otimes \mathbf{I}$$

$$= \left(d\sigma_{\exp,N}^{V} + d\sigma_{\exp,N}^{LO}(\epsilon) \otimes \mathbf{I}\right) \frac{d\sigma^{LO}(\epsilon)}{d\sigma_{\exp,N}^{LO}(\epsilon)}$$

$$= \left(d\sigma_{\exp,N}^{V} + d\sigma_{\exp,N}^{LO}(\epsilon) \otimes \mathbf{I}\right) \frac{d\sigma^{LO}(\epsilon = 0)}{d\sigma_{\exp,N}^{LO}(\epsilon = 0)} + \mathcal{O}(\epsilon)$$

$$d\sigma_{\exp,N} = \sum_{k=0}^{N} d\sigma^{(k)} \left(\frac{\Lambda}{m_t}\right)^{2k}$$

$$\Lambda \in \left\{ \sqrt{s}, \sqrt{t}, \sqrt{u}, m_h \right\}$$

- full real-emission matrix elements and dipoles
- virtual corrections as asymptotic expansion in $1/m_t^2$ with q2e/exp [Harlander, Seidensticker, Seidensticker] + Reduze [von Manteuffel, Studerus] + matad [Steinhauser]
- not directly comparable with [Grigo, Hoff, Steinhauser], (real radiation treated differently, expansion parameter (m_H/m_t)²)

HEFT NNLO + NNLL

de Florian, Mazzitelli 15

$\boxed{\mu_0 = Q}$	NNLO (fb)	scale unc. (%)	NNLL (fb)	scale unc. (%)	PDF unc. (%)	$\overline{\text{PDF}+\alpha_{\text{S}} \text{ unc. } (\%)}$
8 TeV	9.92	+9.3 - 10	10.8	+5.4 - 5.9	+5.6 - 6.0	+9.3 - 9.2
13 TeV	34.3	+8.3 - 8.9	36.8	+5.1 - 6.0	+4.0 - 4.3	+7.7 - 7.5
14 TeV	40.9	+8.2 - 8.8	43.7	+5.1 - 6.0	+3.8 - 4.0	+7.5 - 7.3
33 TeV	247	+7.1 - 7.4	259	+5.0 - 6.1	+2.2 - 2.8	+6.1 - 6.1
100 TeV	1660	+6.8 - 7.1	1723	+5.2 - 6.1	+2.1 - 3.0	+5.7 - 5.8
$\mu_0 = Q/2$	NNLO (fb)	scale unc. (%)	NNLL (fb)	scale unc. (%)	PDF unc. (%)	$PDF + \alpha_S \text{ unc. } (\%)$
8 TeV	10.8	+5.7 - 8.5	11.0	+4.0 - 5.6	+5.8 - 6.1	+9.6 - 9.3
13 TeV	37.2	+5.5 - 7.6	37.4	+4.2 - 5.8	+4.1 - 4.3	+7.8 - 7.6
14 TeV	44.2	+5.5 - 7.6	44.5	+4.2 - 5.9	+3.9 - 4.1	+7.6 - 7.4
33 TeV	264	+5.3 - 6.6	265	+4.6 - 6.1	+2.4 - 2.7	+6.3 - 6.1
100 TeV	1760	+5.3 - 6.7	1762	+4.9 - 6.4	+2.2 - 3.1	+6.2 - 7.0

G.H.S Top Mass Expansion

Grigo, Hoff, Steinhauser 15