

JGL

Challenges in M_W measurements with ATLAS and CMS

OCDOLHC

Jakub Cúth on behalf of ATLAS and CMS collaborations

Johannes Guttenberg Universität, Mainz

Monday 22nd August, 2016

Predictive power of SM

Radiative correction

- Tree level relations are not sufficient radiative corrections are needed
- The impact of corrections stored in EW form factors , helps to define effective coupling at Z-pole

$$\begin{split} M_W^{\text{meas}} &= (80.385 \pm 0.015) \text{ GeV} \\ M_W^2 &= M_Z^2 (1 - \sin^2 \theta_W) \\ M_W^{\text{tree}}^{\text{tevel}} &= 79.891 \text{ GeV} \\ \sin^2 \theta_{\text{eff}}^f &= \kappa_Z^f \sin^2 \theta_W \\ g_{V,f} &= \sqrt{\rho_Z^f} (I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f) \\ g_{A,f} &= \sqrt{\rho_Z^f} I_3^f \\ M_W^2 &= \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi \alpha (1 + \Delta r)}{G_F M_Z^2}} \right) \end{split}$$

• Quadratic dependence on m_t , logarithmic dependece M_H appears

$$M_W \propto \left(\ln(M_H), m_t^2, M_Z, \Delta \alpha_{\rm had}^{(5)}(M_Z^2), \alpha_S(M_Z^2)\right)$$
$$M_W^{\rm indirect} = 80.358 \pm 0.008 \text{ GeV}$$

Global electroweak fits

[Eur.Phys.J.C 74, 3046 (2014)]

- Input for global electroweak fit mostly from
 - LEP+SLD: Z boson observables
 - Tevatron: W boson, top quark mass
 - LHC: Higgs boson, top quark mass
- Further improvements on M_H precision would leave the fit unchanged
- Improvements on m_t will be limited by theoretical uncertainty on pole-mass definition
- Largest discrepancy $A_{\rm I}({\rm SLD})$ and $A_{\rm FB}^{0,b}$, both sensitive to s_W^2
- Full two loop EW prediction increased pull on M_{W}

4/24

Indirect estimation of \boldsymbol{W} mass

2X2

Current status from Tevatron

- Proton/anti-proton 1.96 TeV collisions:
 - No difference in W^+/W^-
 - Low pile-up environment
 - Reduce impact of heavy quarks

- Current measurements from:
 - CDF e + μ (2.2 fb⁻¹)
 - D0 CC-e (4.3 fb⁻¹)
- Still working on data from last years of run 2 (total of 10 fb⁻¹ per experiment)

D0	Pub'09	Pub'12	Proj	Proj
(fits combined)	$1{\rm fb}^{-1}$	$4.3{\rm fb^{-1}}$	$10{\rm fb^{-1}}$	$10{\rm fb^{-1}}$
$\sigma(m_W)$ MeV	(CC)	(CC)	(CC)	(CC+EC)
Electron Energy Scale	34	16	$\rightarrow 11$	10
Electron Energy Resolution	2	2	2	2
Electron Energy Nonlinearity	4	4	2	2
W and Z Electron Eloss diff	4	4	2	2
Recoil Model	6	5	3	2
Electron Efficiencies	5	1	1	1
Backgrounds	2	2	2	2
PDF	9	11	11	$\rightarrow 5$
QED	7	7	3	3
Boson p_T	2	2	2	2
Statistical	23	13 —	→ 9	8
Total	44	26	19	15
aday 22nd August 2016	[Phy	/s. Rev. I	_ett. 108	, 151804(20

CDF	Unc.
(channels combined)	(MeV)
Lepton scale and resolution	7
Recoil scale and resolution	6
Lepton tower removal	2
Backgrounds	3
PDF	10
p_{T}^{W} model	5
Photon radiation	4
Statistical	12
Total	19

Phys. Rev. Lett. 108, 151803(2012)] J.Cúth

Measurement principle

- transverse plane \Rightarrow boost invariant
- fitting separately in three distributions:

$$m_{\mathrm{T}}$$
 p_{T}^{e} E_{T}

- p_{T}^e affected by $p_{\mathrm{T}}(W)$
- m_{T} affected by tranverse recoil

From Tevatron to LHC

- Statistical precision:
 - 7 TeV data (\sim 4.5 fb $^{-1}$) : less than 10 MeV per e/μ channel
 - extrapolated to 8 TeV data (\sim 20 fb $^{-1}$) : less than 5 MeV per channel
 - each experiment can go below 5 MeV with Run 1
- Challenges at the LHC
 - Higher pileup environment affects hadronic recoil resolution and calibration
 - Different energy regime 1.96 TeV \to 7, 8, 13 TeV, $p\bar{p}$ \to pp: larger theoretical uncertainties
 - Non symmetric production of W^+ and W^- : Charge depended analysis
- Advantages :
 - Large calibration samples: $\sim 10^6~Z \rightarrow \mu \mu/ee$ events
 - Large pseudorapidity coverage
 - MC templates built with full detector simulation and with the newest theoretical tools

Outline:

- Motivation and current measurements
- W-like measurement
- Challenges in M_W measurement

[taken from Luca's ICHEP16 talk and CMS-PAS-SMP-14-007]

From Z to W-like

- M_Z measurement in "W like" $Z \rightarrow \mu \mu$ events
 - central "tag muon" $|\eta|<0.9,$ second muon removed, $\not\!\!\!E_{\rm T}$ and $m_{\rm T}$ recomputed
 - low background
 - use dilepton system to constrain the theory part
- Proof of principle intermediate step
 - Validate tools and techniques to be used in $M_{W}\xspace$ measurement
 - Stimulate improvements in the modeling of *W* production
 - Statistical uncertainty \sim Tevatron level
- Split the sample: half for calibration, half for the measurement
- Caveat: additional systematics need to be accounted for the ${\cal M}_W$ measurements
 - PDFs in \boldsymbol{W} production
 - $Z \to W$ extrapolation
- J.Cúth Background

CMS PAS SMP-14-007

Systematic source	W-like	w
PDF	skip	✓ YES
Boson PT	skip	✓ YES
Boson PT W/Z extrapolation	NO	✓ YES
EWK correction	skip	✓ YES
Polarization	skip	✓ YES
μ momentum scale	✓ YES	✓ YES
$\boldsymbol{\mu}$ tr-iso-id efficiency	✓ YES	✓ YES
Missing et scale/resolution DATA/MC agreement	✓ YES	✓ YES
MET W/Z extrapolation	NO	✓ YES
Background to 1 lepton	NO	✓ YES

Lepton momentum calibration

- Bottom line: use resonances $(J/\psi,Y,Z)$
- For low boson $p_{\rm T}^W\!\!:\,m_t\sim 2p_{\rm T}^\mu+p_{\rm T}^W$
 - To get 10 MeV on $M_W{:}~10^{-4}$ precision required on $p_{\rm T}^{\mu}$ scale (40 GeV)
 - Resolution less crucial

Lepton momentum calibration

• Calibrate muon curvature (1/ $p_{
m T}$) using J/ψ , Y at 7 TeV

$$k^{c} = (A - 1)k + (qM) + (k + k\epsilon \sin \theta)$$

mag. field misalign material

- Use a physically motivated calibration model to cover the whole $p_{\rm T}$ spectrum
- Scale corrections are derived for both data and simulation
- Resolution corrections included, accounting for multiple scattering and single hit resolution

Main Uncertainties:

- High mass extrapolation
- Statistics of calibration sample

Hadronic recoil – reconstruction

- Hadronic activity balancing boson $p_{\rm T}$ +UE, MPI, pileup
- ATLAS: dedicated recoil algorithm for W, Z
 - Sum over calorimeter cells excluding the cells associated to the lepton.

hadronic

recoil

- CMS: Particle flow algorithm (pfMET)
 - reconstruction and identification of each particle with an optimized combination of all subdetector information
- Similar resolution between ATLAS and CMS
- CMS improvement: tkMET
 - vectorial sum of the pf charged hadron with $dz < 0.1\,{\rm cm}$
 - + 80% efficiency for charged tracks $p_{\rm T}>$ 300 MeV, $|\eta|<2.4$
 - Suppress in-time pileup at reconstruction level not considering pf hadrons/clusters associated to vertices other than the PV
 - Also for high pileup 8 TeV sample
- Better sensitivity (resolution) wrt pfMET in W(-like) events

Hadronic recoil – calibration

- Useful projections: u_{\perp} , u_{\parallel} : projections of u on axis hadronic perpendicular/parallel recoil to boson $p_{\rm T}$
- Use to compare recoil resolution and response in data and MC
- CMS calibration example in the W-like measurement
 - 2D model with sum of 3 Gaussians vs boson $p_{\rm T}$
 - Derive corrections, apply them to simulation
 - Correction derived in boson rapidity bins to accoun for data/simulation discrepancies
- Main uncertainties:
 - Limited statistics of the calibration samples
 - Calibration model (alternative based on adaptive kernel)

|v(Z)| <

s=7 TeV (4.7 ft

00/1000 008/00

400

200

CMS Prelimina

Inc.

Sec

1200

800

200

Ę

W-like result

√s=7 TeV (4.7 fb

		$M_Z^{W_{\rm H}}$	ke +		$M_Z^{W_{\rm H}}$	ke -	CMS Preliminary
Sources of uncertainty	p_{T}	$m_{\rm T}$	ÉT	p_{T}	m_{T}	ÉT	CING Premiminary
Lepton efficiencies	1	1	1	1	1	1	
Lepton calibration	14	13	14	12	15	14	
Recoil calibration	0	9	13	0	9	14	9 m
Total experimental syst. uncertainties	14	17	19	12	18	19	
Alternative data reweightings	5	4	5	14	11	11	₩ ₁
PDF uncertainties	6	5	5	6	5	5	0 Pr
QED radiation	22	23	24	23	23	24	ativ
Simulated sample size	7	6	8	7	6	8	Ê m,
Total other syst. uncertainties	24	25	27	28	27	28	
Total systematic uncertainties	28	30	32	30	32	34	¯ ≥ ∉ _i
Statistics of the data sample	40	36	46	- 39	35	45	150 100 50 0
Total stat.+syst.	49	47	56	50	48	57	130 -100 -30 0

Stat. unc Exp. unc M, PDG unc 50 100 150 ^{W-like} - M^{PDG}₇ (MeV)

- Experimental uncertainty $\sim 20 \text{ MeV}$ (μ channel)
 - Included statistical and systematic components of calibration
 - Competitive to Tevatron
- "Theoretical" uncertainty ~30 MeV
 - Don't translate directly to M_W , also $Z \to W$ extrapolation (eg recoil calibration) not accounted for
 - PDF likely to be larger for W (for Z constrained by $p_{\rm T}$ and rapidity meas.)
 - QED systematics: on/off NLO EW correction in Powheg-EW (very conservative)
- Statistical uncertainty expected to decrease to few MeV level

PYTHIA DYNNLO, FEWZ, **Challenges in** M_W **measurement** POWHEG, DYNNLOPS, SHERPA NNLO+PS, RADY, SANC, PHOTOS, HORACE, WINHAC, WZGRAD, POWHEG BMNNP, POWHEG BMNNPV, POWHEG BW RESBOS, DYRES **Outline:** • Motivation and current measurements • W-like measurement • Challenges in M_W

• Challenges in M_W measurement

Challenges of M_W measurement: PDF effects

- PDF uncertainty coming from uncertainty of *W* polarization
- On M_W LHCPDF uncertainties are dominated by valence/sea ratio and 2ndgeneration partons
- Dominant theoretical uncertainty for M_W Tevatron we put special effort into this
- PDF related measurements (e.g. differential x-section of Z,W) from LHC experiments are ongoing and would constrain PDF.

Monday 22nd August, 2016

Constraints on p_{T}^W from p_{T}^Z measurement

- Modeling of $p_{\rm T}^W$ impacts the lepton distribution and so M_W fit
- Strategy is to use $p_{\rm T}^Z$, ϕ_η^* measurement to constrain $p_{\rm T}^W$ prediction.
- Fit $p_{\rm T}^Z$ and model $p_{\rm T}^W$ can be used for all models
- But models can predict differently transfer from $Z \to W$
- Example: different treatment of heavy parton distributions among fixed and resummed calculations.

Challenges of M_W measurement: Angular effects

- Final state described by two angles θ, ϕ in Collins-Soper frame
- Angular dependence of Drell-Yan can be described by second order spherical polynomials.

$$\begin{aligned} \frac{d\sigma}{dp_T^2 dy d\cos\theta d\varphi} &= \frac{3}{16\pi} \frac{d\sigma^u}{dp_T^2 dy} \big[(1 + \cos^2 \theta) \\ &+ \frac{1}{2} A_0 (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \varphi \\ &+ \frac{1}{2} A_2 \sin^2 \theta \cos 2\varphi + A_3 \sin \theta \cos \varphi \\ &+ A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\varphi \\ &+ A_6 \sin 2\theta \sin \varphi + A_7 \sin \theta \sin \varphi \big] \end{aligned}$$

• Measurements from ATLAS and CMS agree to each other but don't follow predictions

Challenges M_W measurement: Electroweak effects

- Most of tools are focused on QCD higher order correction and photon radiation is treated by PHOTOS on top of generator
- However there is non-negligible contribution from NLO EW and cross terms with $\mathsf{QED}/\mathsf{QCD}$
- There tools on market:
 - POWHEG-BMNNP: adding EW term on QCD matrix element, but effects are overestimated
 - WINHAC: Matches final state YFS resummation with final-state NLO-EW, ISR is subtracted (need to add back with PS)
- Effort to have tool which covers all terms and interference from start

Summary

- Long term effort to M_W measurement from many teams and experiments.
- Theoretical predictions more precise then measurement.
- With CMS we showed proof of concept for detector performance and fit methodology.
- Very close cooperation between theoretical and experimental groups

Thank you for your attention and brace yourself, M_W is coming.

Backup slides

Collins-Soper frame

Monday 22nd August, 2016

M_W topical meetings

- Novemer 2014 at Firenze: [https://indico.cern.ch/event/340393/]
- February 2015 at CERN: [https://indico.cern.ch/event/367442/]
- June 2016 at CERN: [https://indico.cern.ch/event/533804/]
- Next meeting: November 2016 Mainz

