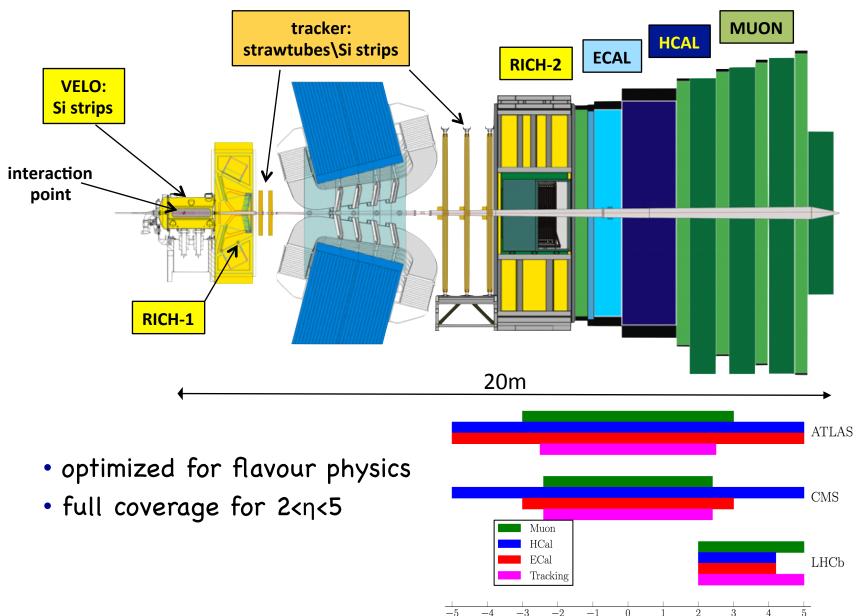
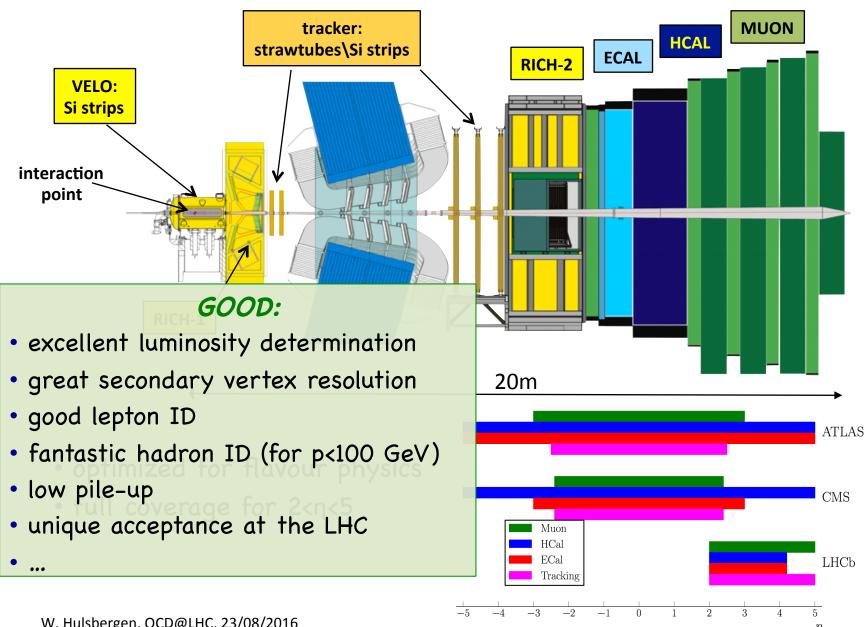
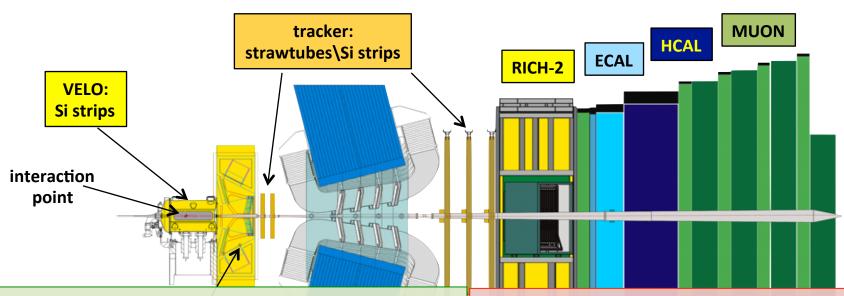

Wouter Hulsbergen (Nikhef)
on behalf of the LHCb collaboration

Motivation


- electroweak and QCD measurements provide important tests of SM
- LHCb's forward acceptance gives access to previously unexplored kinematic regions of proton of PDFs
- this talk: measurements of Z+jets, W+jets and top production

see also at this conference:
 <u>Gauge Boson physics at LHCb</u> (A.Grecu)
 <u>Impact of LHCb on tuning of generators</u> (A.Grecu)
 <u>Recent LHC results with impact on parton density functions</u> (K.Mueller)
 <u>LHCb results on central exclusive production</u> (T.Szumlak)




The LHCb detector

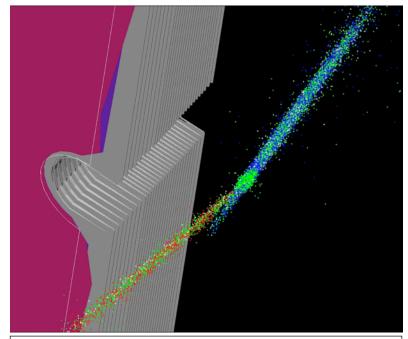
The LHCb detector

The LHCb detector

GOOD:

- excellent luminosity determination
- great secondary vertex resolution
- good lepton ID
- fantastic hadron ID (for p<100 GeV)
- · low pile-up
- unique acceptance at the LHC

•


LESS GOOD (for high-pT physics):

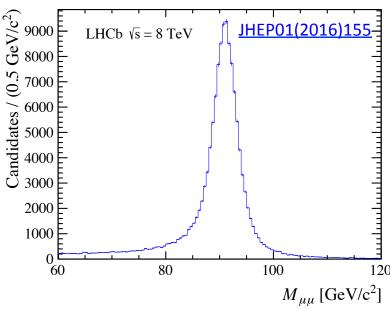
- (relatively) low instantaneous lumi
- ECAL saturates for pT > 10 GeV
- not 4pi →
 no E-miss, no transverse mass,
 small acceptance for heavy objects

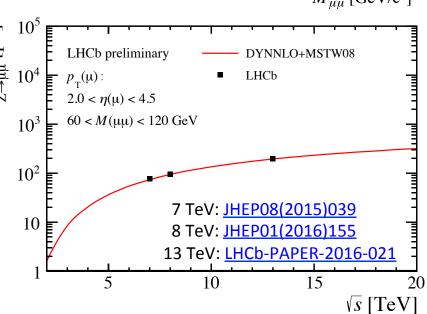
• ..

Luminosity determination

- essential ingredient: beam profile
- two methods:
 - Van der Meer: beams scanned across each order
 - 2. Beam-Gas Imaging: inject neon in beam-pipe
- combination gives %-level uncertainty
 → allows for precise absolute crosssection measurements
- luminosity for datasets reported here:
 - 7 TeV (2011): 1.0/fb +/- 1.7%
 - 8 TeV (2012): 2.0/fb +/- 1.2%
 - 13 TeV (2015): 0.3/fb +/- 3.9%

Distribution of vertices overlaid on detector display, z-axis is scaled by 1:100 compared to transverse dimensions to see the beam angle.

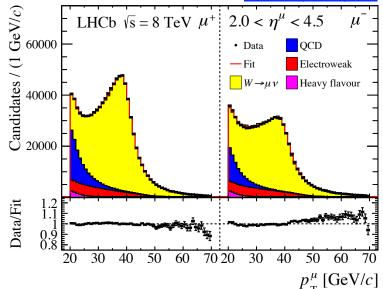

Beam I - Beam 2, Beam I - Gas, Beam 2 - Gas.

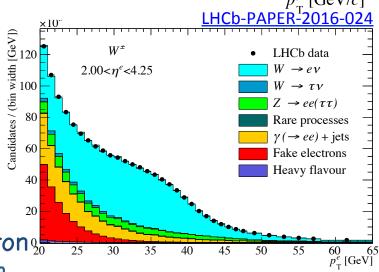

(uncertainty will improve in 2016)

$Z -> \mu^{+}\mu^{-}$

- Z -> μμ selection
 - trigger: 1 muon with $p_T > 10$ GeV
 - 2 muons: 2 < η < 4.5, p_T > 20 GeV
 - $60 < m(\mu\mu) < 120 GeV$
 - typical purity: 99%

 for Z and W cross-section results, see A. Grecu,
 Gauge Boson physics at LHCb in yesterday's session

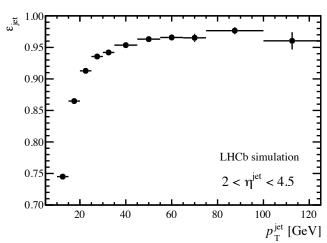


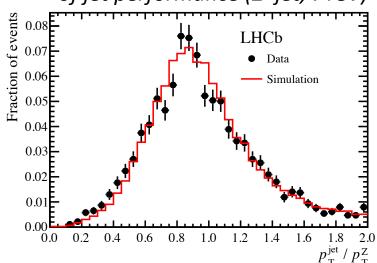


W->µv and W->ev selection

JHEP01(2016)155

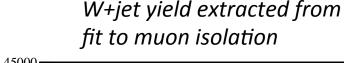
- muon selection for W->μν:
 - 2 < η < 4.5, pT > 20 GeV
 - isolated, prompt, small E(CALO)/p
 - typical purity: about 77%
- electron selection for W->ev
 - 2 < η < 4.25, pT > 20 GeV
 - isolated, prompt, E(ECAL)/p ≈ 1
 - only partial correction for bremsstrahlung loss
 - typical purity: about 60%
- LHCb is not 4pi
 - cannot use missing energy \rightarrow signature is just single high p_T lepton₂₀
 - veto on second lepton to remove Z->ll
 - estimate backgrounds from MC and IP/isolation sideband

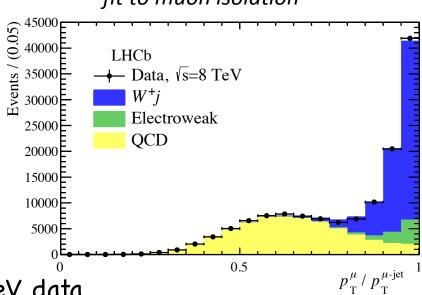



Jet reconstruction

- jets reconstruction:
 - particle flow (tracking+CALO)
 - FASTJET with anti-kT, R=0.5
 - additional jet quality criteria to increase fraction of hadronic jets (fake jet fraction ~1%)
 - well contained jets: 2.2< η <4.2
- energy resolution: ~10%
 - estimated from MC
 - validated by comparing p_T balance in Z+jet events
 - validated by comparing jet p_T with p_T of secondary vertex in heavy flavour jets
 - scale uncertainty: ~3% (p_T>20GeV)

hadronic jet efficiency

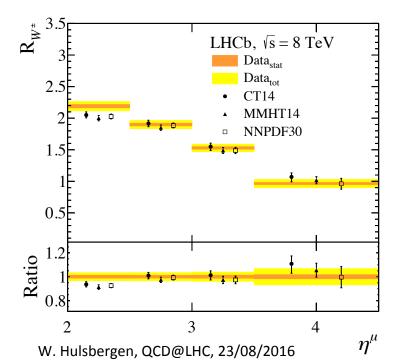


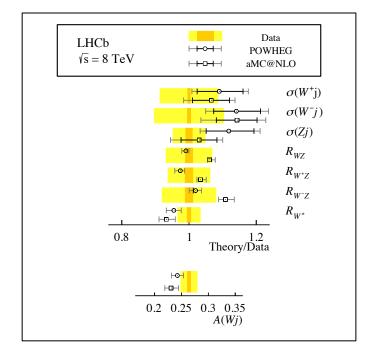

illustration of understanding of jet performance (Z+jet, 7TeV)

W+jet and Z+jet at 8 TeV

- W->μν, Z->μμ selection: as before
- jet selection:
 - p_T > 20 GeV, 2.2 < η < 4.2
 - W+jet: p_T(μ+jet)>20 GeV
 - consider only highest p_⊤ jet

- LHCb measurements in 2.0/fb of 8 TeV data
 - Z+jet: differential in $p_T(jet)$, $\eta(jet)$, $\gamma(Z)$, $|\phi_Z \phi_{jet}|$
 - W+jet: differential in $p_T(jet)$, $\eta(jet)$, $\eta(mu)$
- comparison to $O(\alpha_s^2)$ predictions
 - POWHEG and aMC@NLO with NNPDF3.0 and Pythia for showering
 - FEWZ with NNPDF3.0, CT14 and MMHT14

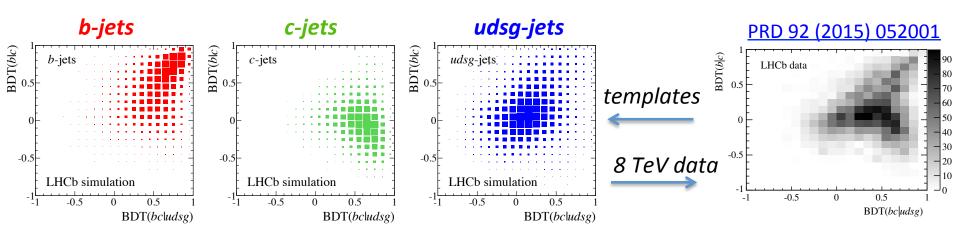

W+jet and Z+jet at 8 TeV


inclusive cross-section results:

$$egin{aligned} \sigma_{W^+j} &= 56.9 \pm 0.2 \pm 5.1 \pm 0.7 \; \mathrm{pb} \ \sigma_{W^-j} &= 33.1 \pm 0.2 \pm 3.5 \pm 0.4 \; \mathrm{pb} \ \sigma_{Zj} &= 5.71 \pm 0.06 \pm 0.27 \pm 0.07 \; \mathrm{pb} \end{aligned}$$

[errors: stat, syst, lumi]

 main uncertainties: jet energy scale (~10%) and W purity (~7%)



comparison of $\sigma(W+)/\sigma(W-)$ to FEWZ for different PDF sets. comparisons to POWHEG and aMC@NLO available as well

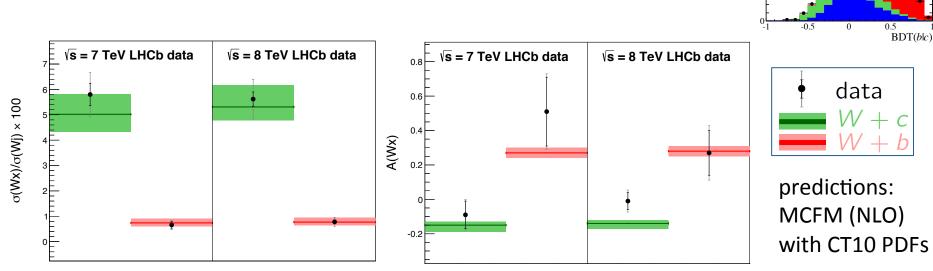
all results in good agreement with predictions

Jet flavour tagging

- b, c tagging with secondary vertex in jet cone
 - 2 BDTs to separate b/c and bc/light
 - input: #vertices, #tracks, SV mass
- performance
 - b (c) efficiency ~60% (20%) for 0.3% udsg contamination
 - tagging efficiency uncertainty ~10%, calibrated using data (e.g. samples with exclusively reco-ed B and D decays)

x-axis: BDT(bc | udsg)

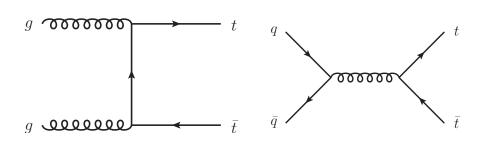
y-axis: BDT(b | c)

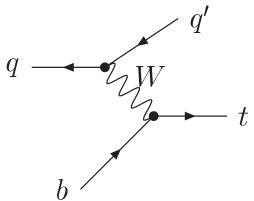

BDT(bc|udsg)

LHCb

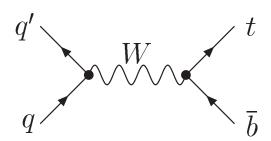
200

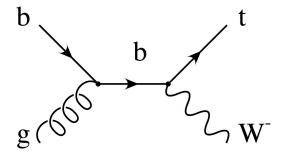
W+b,c jets at 7 and 8 TeV


- motivation
 - W+c: s-quark PDF
 - W+b: top quark production, beyond-SM
- b, c jet fractions extracted from fits to tagger
 BDT output
- measure ratios Wb/Wj, Wc/Wj and charge asymmetries, e.g.:

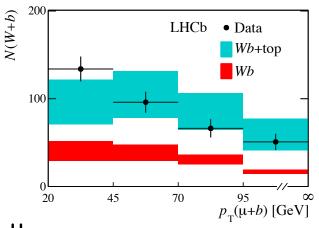

all consistent, but W+c looks more symmetric in data than expected
 → does this tell us something about strange quark PDFs?

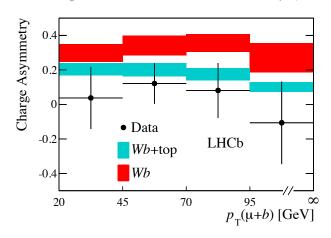
Top production in LHCb acceptance


pair-production: ~75%


t-channel: ~25%

s-channel: ~%




associated production: ~%

Top at 7 and 8 TeV

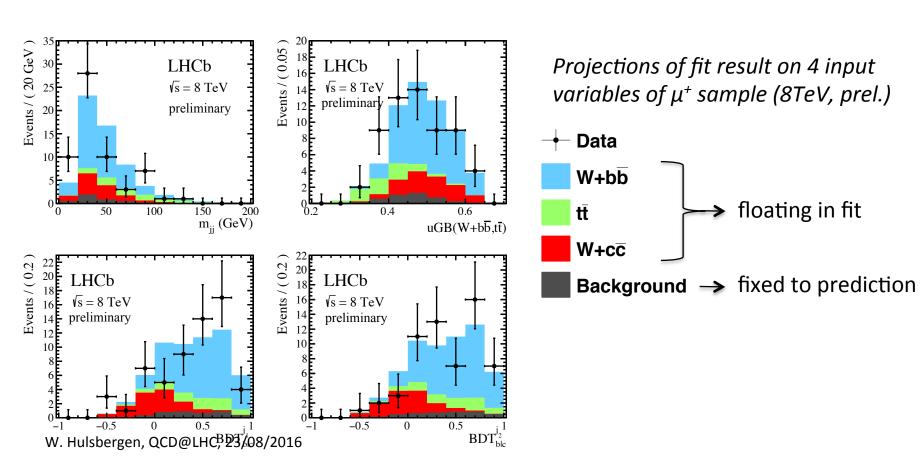
- motivation:
 - step towards tt̄-asymmetry [e.g. Kagan et al., PRL107(2013)082003]
 - tests of gluon PDFs at high x / high Q2 [e.g. Gauld, JHEP02(2014)126]
- strategy
 - tighten Wb selection: $p_T(\mu) > 25$ GeV; $50 < p_T(b-jet) < 100$ GeV
 - get t->Wb from fit to yields and charge asymmetry in $p_T(\mu+b)$ bins

fit result:

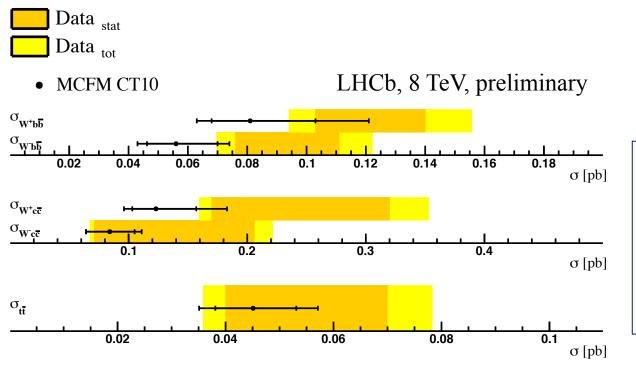
$$\sigma(\text{top})[7 \,\text{TeV}] = 239 \pm 53 \,(\text{stat}) \pm 33 \,(\text{syst}) \pm 24 \,(\text{theory}) \,\text{fb}$$

 $\sigma(\text{top})[8 \,\text{TeV}] = 289 \pm 43 \,(\text{stat}) \pm 40 \,(\text{syst}) \pm 29 \,(\text{theory}) \,\text{fb}$

SM (MCFM, NLO):


$$180^{+51}_{-41} \text{ fb}$$
 $312^{+83}_{-68} \text{ fb}$

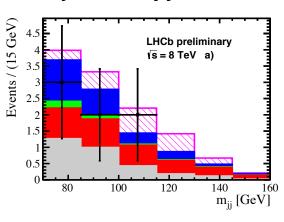
→ first observation of top in forward region, consistent with SM prediction

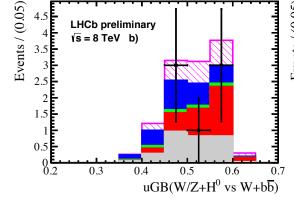

- MEN@ICHEP, 16
 - events with one lepton (mu or e) and 2 heavy flavour tagged jets
 - sensitive to $t\overline{t}$, W+b \overline{b} and W+c \overline{c} production
 - backgrounds include Z+b/c, single top, QCD

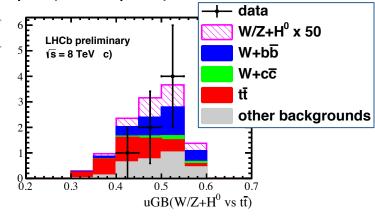
- selection
 - leptons: isolated, pt>20 GeV, 2 < eta <4.5 (4.25) for mu (e)
 - jets: p_T>12.5 GeV (softer than for previous analyses), 2.2<eta<4.2
 - $\Delta R > 0.5$ between lepton and jets and between jets
 - jet tagging: BDT(bc|light)>0.2 \rightarrow 1% mistag for 48%(18%) b(c) efficiency

- strategy: simultaneous fit of μ^+ , μ^- , e^+ , e^- samples at 8 TeV to
 - 1. di-jet mass
 - BDT to separate b from c jets (for both jets)
 - 3. BDT to separate W+b \overline{b} and $t\overline{t}$ (uGB, JINST 10(2015)T03002)

- results: cross-sections in LHCb fiducial region at 8 TeV
 - theory (also needed for efficiency) NLO prediction:
 MCFM [PRD62(2000)114012] + CT10 [PRD(2010)074024]
 - + Pythia for parton-showering corrections
 - results in good agreement with MCFM




Significance
4.9σ
7.1σ
5.6σ
4.7σ
2.5σ


constraints on H⁰(125)->bb, cc

- MEN@ICHEP, JO same final state also sensitive to associated production of Ho(125)
 - strategy: H->bb extracted from fit of mu and e samples to:
 - di-jet invariant mass
 - uGB BDT to separate [H->bb + W] from [W + bb]
 - uGB BDT to separate [$H->\overline{bb}+W$] from [tt]
 - to isolate H->cc, add cut on BDT(b|c) for jets ($\epsilon(c\bar{c})=62\%$, $\epsilon(bb)=10\%$)

Projections of fit result on 3 input variables of electron sample (8TeV, prel.)

result (8 TeV, preliminary):

$$\sigma(pp \to W/Z + H^0) \times \mathcal{B}(H \to b\bar{b}) < 1.6 \text{ pb at } 95\% \text{ CL},$$

 $\sigma(pp \to W/Z + H^0) \times \mathcal{B}(H \to c\bar{c}) < 9.4 \text{ pb at } 95\% \text{ CL}.$

 $50 \times \sigma(SM)$

6400 x σ (SM)

Summary and outlook

- LHCb's acceptance complementary to ATLAS and CMS
 - sensitive to high and low Bjorken-x (down to 10⁻⁵)
- extensive set of W/Z+jets measurements at 7, 8 TeV
 - Z+jet, W+jet untagged
 - W + b, c
 - W + b b-bar, W + c c-bar
 - all in good agreement with SM
- first observation of top in the forward region
 - both in W+b and W+bb-bar
 - expect ~10x higher cross-section in acceptance at 13 TeV
- expectations for run-II
 - collect about 2/fb per year
 - new jet triggers will also allow for inclusive jet measurements

Your wishlist?

- •
- •
- •

overview of W/Z (+jets) measurements at LHCb

- Z->μμ: 7 TeV: <u>JHEP08(2015)039</u>, 8 TeV: <u>JHEP01(2016)155</u>,
 13 TeV: <u>LHCb-CONF-2016-002</u>
- Z->ee: 7 TeV: <u>JHEP02(2013)106</u>, 8 TeV: <u>JHEP05(2015)109</u>
- Z->ττ: 7 TeV: <u>JHEP01(2013)111</u>
- Z A_{FB}: 7 and 8 TeV: <u>JHEP11(2015)190</u>
- W->μν: 7 TeV: <u>JHEP12(2014)079</u>, 8 TeV: <u>JHEP01(2016)155</u>
- low mass Drell-Yan: 7 TeV: <u>LHCb-CONF-2012-013</u>
- Z+j: 7 TeV: <u>JHEP01(2014)033</u>, 8 TeV: <u>LHCB-PAPER-2016-011</u>
- W+j: 8 TeV: <u>LHCB-PAPER-2016-011</u>
- Z+b: 7 TeV: <u>JHEP01(2015)064</u>
- W+b,c: 7 and 8 TeV: PRD 92 (2015) 052001
- top: 7 and 8 TeV: <u>PRL115(2015)112001</u>