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Motivation

•  electroweak and QCD measurements 

provide important tests of SM


•  LHCb’s forward acceptance gives 
access to previously unexplored 
kinematic regions of proton of PDFs
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•  this talk: measurements of�
Z+jets, W+jets and top production


Cross-sec(ons	vary	strongly	as	
func(on	of	rapidity		

x1,2 =
M

p
s

e

±y

•  see also at this conference: �
Gauge Boson physics at LHCb (A.Grecu)�
Impact of LHCb on tuning of generators (A.Grecu)�
Recent LHC results with impact on parton density 
functions (K.Mueller)�
LHCb results on central exclusive production �
(T.Szumlak)
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The LHCb detector
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point	

LHCb

Single arm spectrometer, fully instrumented in forward region
(2.0 < ⌘ < 4.5).

Designed for flavour physics.

Overlap with GPDs in 2.0 < ⌘ < 2.5,
LHCb unique precision coverage in 2.5 < ⌘ < 4.5.

W. Barter (CERN) Electroweak Production Physics at LHCb 27/10/2015 3 / 52

LHCb

Single arm spectrometer, fully instrumented in forward region
(2.0 < ⌘ < 4.5).

Designed for flavour physics.

Overlap with GPDs in 2.0 < ⌘ < 2.5,
LHCb unique precision coverage in 2.5 < ⌘ < 4.5.

W. Barter (CERN) Electroweak Production Physics at LHCb 27/10/2015 3 / 52

•  optimized for flavour physics

•  full coverage for 2<η<5
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GOOD:

•  excellent luminosity determination

•  great secondary vertex resolution

•  good lepton ID

•  fantastic hadron ID (for p<100 GeV)

•  low pile-up

•  unique acceptance at the LHC

•  …
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GOOD:

•  excellent luminosity determination

•  great secondary vertex resolution

•  good lepton ID

•  fantastic hadron ID (for p<100 GeV)

•  low pile-up

•  unique acceptance at the LHC

•  …


LESS GOOD (for high-pT physics):

•  (relatively) low instantaneous lumi

•  ECAL saturates for pT > 10 GeV

•  not 4pi à �
no E-miss, no transverse mass, �
small acceptance for heavy objects

•  …




Luminosity determination

•  essential ingredient: beam profile


•  two methods: 

1.  Van der Meer: beams scanned 

across each order 

2.  Beam-Gas Imaging: inject neon in 

beam-pipe


•  combination gives %-level uncertainty�
à allows for precise absolute cross-
section measurements





precision luminosity at LHCb

• VELO re-introduction

• Closing

• Beam monitoring

• Vertex resolution

• Luminosity measurement

Distribution of vertices overlaid on detector display. z-axis is scaled by 
1:100 compared to transverse dimensions to see the beam angle.

Beam 1 - Beam 2, Beam 1 - Gas, Beam 2 - Gas.
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Outline

· luminosity measured at LHCb using two methods:
Van der Meer Scan (VDM) and Beam-Gas Imaging
(BGI)

· beams scanned across each order in VDM scan to
trace beam profile

· in BGI method neon injected in beam-pipe to
reconstruct beams using collision vertices

· BGI and VDM methods combined to achieve precision of 1.7% in 2011 and 1.2% in 2012
· “the most precise luminosity measurement achieved so far at a bunched-beam hadron

collider”

S.Farry (Liverpool) EWK Physics in the Forward Region La Thuile, March 2016 4 / 23
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•  luminosity for datasets reported here:

•   7 TeV (2011): 1.0/fb +/- 1.7%

•   8 TeV (2012): 2.0/fb +/- 1.2%

•  13 TeV (2015): 0.3/fb +/- 3.9%    (uncertainty will improve in 2016)


W.	Hulsbergen,	QCD@LHC,	23/08/2016	



Z -> μ+μ-


•  Z -> μμ	selecPon	
•  trigger: 1 muon with pT > 10 GeV

•  2 muons: 2 < η < 4.5, pT > 20 GeV

•  60 < m(μμ) < 120 GeV

•  typical purity: 99%
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•  for Z and W cross-section results, 
see A. Grecu, 
Gauge Boson physics at LHCb �
in yesterday’s session


		7	TeV:	JHEP08(2015)039	
		8	TeV:	JHEP01(2016)155	
13	TeV:	LHCb-PAPER-2016-021	

JHEP01(2016)155	
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Figure 1: The inclusive fit to the pe

T distribution of the full dataset. The �2/ndf of the fit is 1.1
with 33 degrees of freedom.

Hadron misidentification occurs when hadrons begin to shower early in the ECAL,
giving a shower profile similar to that of electrons. These hadrons, however, will tend to
deposit fractionally more energy in the HCAL than genuine electrons and will also be less
isolated on average. A template for the pT distribution of fake electrons is determined
using data, by modifying the isolation and HCAL energy requirements of the selection to
produce a sample dominated by hadrons.

The semileptonic decay of heavy flavour (HF) hadrons gives rise to genuine electrons.
This background is suppressed using the IP requirement to exploit the long lifetimes
of hadrons containing b and c quarks. The remaining HF component is described by a
data-driven template obtained by applying the standard selection but requiring the impact
parameter to be significantly di↵erent from zero. The normalisation of the remaining
contribution in the fit to p

e

T is determined from a separate template fit to the �

2
IP

distribution, where �

2
IP is the di↵erence between the �

2 of the PV fit when reconstructed
with and without the candidate electron. The fractional HF component in the signal
region is determined to be smaller than 0.8% at 68% confidence level.

The W ! (e, ⌧)⌫(e,⌧) and fake electron fractions are free to vary in the fits, while
the remaining components are constrained as described previously. The validity of the
SM is implicitly assumed in the constraints based on theoretical cross-sections obtained
from MCFM and in extracting template shapes from simulation. The W

+ ! e

+
⌫

e

and
W

� ! e

�
⌫

e

sample purities are determined to be (63.95 ± 0.19)% and (56.06 ± 0.21)%.
The p

e

T spectra in 16 bins of pseudorapidity with the results of the fits superimposed
are reported in Appendix C. The p

e

T spectrum of the full dataset with the result of the
fit overlaid is shown for illustration in Fig. 1 and is used in the estimation of systematic
uncertainties.

4

]c [GeV/µ

T
p

)c
Ca

nd
id

at
es

 / 
(1

 G
eV

/

20000

40000

60000
 = 8 TeVsLHCb +µ −µ < 4.5µη2.0 < 

Data QCD

Fit Electroweak

νµ→W Heavy flavour

]c [GeV/µ
T
p

D
at

a/
Fi

t

0.8
0.9

1
1.1
1.2

20 30 40 50 60 70 20 30 40 50 60 70

W->μν and W->eν selection

•  muon selection for W->μν:


•  2 < η	< 4.5, pT > 20 GeV

•  isolated, prompt, small E(CALO)/p

•  typical purity: about 77%
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•  LHCb is not 4pi

•  cannot use missing energy�

à signature is just single high pT lepton

•  veto on second lepton to remove Z->ℓℓ

•  estimate backgrounds from MC and IP/isolation sideband




•  electron selection for W->eν

•  2 < η	< 4.25, pT > 20 GeV

•  isolated, prompt, E(ECAL)/p ≈ 1

•  only partial correction for brems-

strahlung loss

•  typical purity: about 60%




Jet reconstruction

•  jets reconstruction:


•  particle flow (tracking+CALO)

•  FASTJET with anti-kT, R=0.5

•  additional jet quality criteria to 

increase fraction of hadronic jets �
(fake jet fraction ~1%)


•  well contained jets: 2.2< η	<4.2


•  energy resolution: ~10%

•  estimated from MC

•  validated by comparing pT balance 

in Z+jet events

•  validated by comparing jet pT with 

pT of secondary vertex in heavy 
flavour jets


•  scale uncertainty: ~3% (pT>20GeV)
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W+jet and Z+jet at 8 TeV


•  W->μν, Z->μμ selection: as before


•  jet selection:

•  pT > 20 GeV, 2.2 < η < 4.2

•  W+jet: pT(μ+jet)>20 GeV

•  consider only highest pT jet







•  LHCb measurements in 2.0/fb of 8 TeV data

•  Z+jet: differential in pT(jet), η(jet), y(Z), |φZ	-	φjet|

•  W+jet: differential in pT(jet), η(jet), η(mu)


•  comparison to O(αs
2) predictions


•  POWHEG and aMC@NLO with NNPDF3.0 and Pythia for showering

•  FEWZ with NNPDF3.0, CT14 and MMHT14
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W+jet	yield	extracted	from	
fit	to	muon	isola(on	

JHEP05(2016)131	
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W+jet and Z+jet at 8 TeV

JHEP05(2016)131	

•  inclusive cross-section results:
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comparison	of	σ(W+)/σ(W-)		
to	FEWZ	for	different	PDF	sets.	
comparisons	to	POWHEG	and	
aMC@NLO	available	as	well	

•  main uncertainties: jet energy scale 
(~10%) and W purity (~7%)


�W+j = 56.9 ± 0.2 ± 5.1 ± 0.7 pb

�W�j = 33.1 ± 0.2 ± 3.5 ± 0.4 pb

�Zj = 5.71 ± 0.06 ± 0.27 ± 0.07 pb

[errors:	stat,	syst,	lumi]	

•  all results in good agreement with 
predictions
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Figure 1. SV-tagger algorithm BDT(b|c) versus BDT(bc|udsg) distributions obtained from simulation for
(left) b, (middle) c and (right) light-parton jets.

(b,c) jets and the total number of (b,c) jets must be determined. The tagged (b,c) yields are ob-
tained by fitting the SV-tagger or TOPO BDT distributions in the subsample of jets that are tagged
by an SV. The total number of (b,c) jets is determined by fitting the c2

IP distribution of the highest-
pT track in the jet. The (b,c)-tagging efficiency is the ratio of the tagged over total (b,c)-jet yields.

An alternative approach employed by other experiments (see, e.g. ref. [25]) is to measure the
efficiency using the subsample of jets that contain a muon. This approach has the advantage that
the (b,c)-jet content is enhanced due to the presence of muons from the semileptonic decays of
(b,c) hadrons; however, the disadvantage is that this method assumes that mismodeling of the
tagging performance is the same for semileptonic and inclusive decays. Both the highest-pT track
and muon-jet methods are used in this analysis to study the jet-tagging performance.

Combined fits of several data samples enriched in (b,c) jets are performed to obtain the tagging
efficiencies. It is important to include the systematic uncertainties on both the tagged and total
(b,c)-jet yields for each data sample in the combined fits.

This section is arranged as follows: the data samples used are described in section 4.1; the
BDT fits used to obtain the tagged (b,c)-jet yields are given in section 4.2; the highest-pT-track
c2

IP fits used to obtain the total (b,c)-jet yields are described in section 4.3; the muon-jet subsample
method is discussed in section 4.4; the systematic uncertainties on the tagged and total (b,c)-jet
yields are presented in section 4.5; and the (b,c)-tagging efficiency results are given in section 4.6.

4.1 Data samples

Events that contain either a high-pT muon or a fully reconstructed (b,c) hadron, referred to here as
an event-tag, are used to measure the jet-tagging efficiencies in data. The highest-pT jet in the event
that does not have any overlap with the event-tag is chosen as the test jet. Each event-tag is required
to have satisfied specific trigger requirements and to have Df > 2.5 relative to the test-jet axis to
reduce the possibility of contamination of the jet from the event-tag.2 Therefore, all events used
to measure the (b,c)-tagging efficiency have passed the trigger independently of the presence of

2The event-tag samples are highly pure; however, when the event-tag is not properly reconstructed the non-overlap
requirements are not guaranteed to hold. Requiring that the event-tag and test jet are back-to-back in the transverse plane
greatly reduces the probability that a particle originating from the event-tag decay but not reconstructed in the event-tag
is reconstructed as part of the test jet.

– 6 –

Jet flavour tagging
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•  b, c tagging with secondary vertex in jet cone

•  2 BDTs to separate b/c and bc/light

•  input: #vertices, #tracks, SV mass


•  performance


•  b (c) efficiency ~60% (20%) for 0.3% udsg contamination

•  tagging efficiency uncertainty ~10%, calibrated using data�

(e.g. samples with exclusively reco-ed B and D decays)


where M and ~p are the invariant mass and momentum of
the particles that form the SV, and θ is the angle between ~p
and the flight direction. The corrected mass, which is the
minimum mass for a long-lived hadron whose trajectory is
consistent with the flight direction, peaks near theDmeson
mass for c jets and consequently provides excellent
discrimination against other jet types. The SV track
multiplicity identifies b jets well, since b-hadron decays
typically produce many displaced tracks. In Fig. 4, the
distributions of Mcor and SV track multiplicity for a
subsample of SV-tagged events with BDTðbcjudsgÞ >
0.2 (see Fig. 2) are fitted simultaneously. The templates
used in these fits are obtained from data in the same manner

as the SV-tagger BDT templates. After correcting for the
efficiency of requiring BDTðbcjudsgÞ > 0.2, the b and c
yields determined from the fits to Mcor and SV track
multiplicity and from the two-dimensional BDT fits are
consistent. The mistag probability for W þ light-parton
events in this sample is found to be approximately 0.3%,
which agrees with the value obtained from simulation.
From the SV-tagger BDT fits, the b and c yields are

obtained in bins of
ffiffiffi
s

p
, muon charge, and pTðμÞ=pTðjμÞ.

The pTðμÞ=pTðjμÞ distributions for muons associated with
b-tagged and c-tagged jets are shown in Figs. 5 and 6.
These distributions are fitted to determine the W þ b and
W þ c final-state yields as in the inclusiveW þ jet sample.
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FIG. 2 (color online). Two-dimensional SV-tag BDT distribution (top left) and fit (top right) for events in the subsample with
pTðμÞ=pTðjμÞ > 0.9, projected onto the BDTðbcjudsgÞ (bottom left) and BDTðbjcÞ (bottom right) axes. Combined data for

ffiffiffi
s

p
¼ 7 and

8 TeV for both muon charges are shown.

STUDY OF W BOSON PRODUCTION IN ASSOCIATION … PHYSICAL REVIEW D 92, 052001 (2015)

052001-5

templates	

8	TeV	data	
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b-jets	 c-jets	 udsg-jets	

x-axis:	BDT(	bc	|	udsg	)	
y-axis:	BDT(	b	|	c	)	
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•  motivation


•  W+c: s-quark PDF

•  W+b: top quark production, beyond-SM


•  b, c jet fractions extracted from fits to tagger 
BDT output


•  measure ratios Wb/Wj, Wc/Wj and charge 
asymmetries, e.g.:
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•  all consistent, but W+c looks more symmetric in data than expected 
à does this tell us something about strange quark PDFs?
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predicPons:	
MCFM	(NLO)	
with	CT10	PDFs	
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Top production in LHCb acceptance
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associated	producPon:	~%	

December 3, 2012 1:10 WSPC/INSTRUCTION FILE top˙review

The Single Top Quark Physics 3

Fig. 1. The representative diagrams for the single top production at the Tevatron and LHC colliders

contribute to the single top quark production. QCD NLO corrections to various single top production processes
have been calculated in several papers 33–69. In particular, NLO corrections to kinematic distributions were
presented40. The influence of NLO corrections not only to the production but also to the subsequent top quark
decay has been studied in Ref. 42, 65. Potentially important corrections at the threshold region have been
resummed up to NNLL accuracy59,60,68. Monte-Carlo (MC) analyses of the production processes of the single
top quark allowing to extract it from main backgrounds were performed in Ref. 32, 37.

The NLO cross sections including NNLL soft gluon threshold correction resummation for the main single
top production processes at hadron colliders are collected in the Table 1:
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The processes of the single top-quark production were simulated using MC event generators such as
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cross section. However, the direct application of the subtraction procedure for MC event generation for
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2.2. The Top Quark

Bosons (integer spin)

Particle Mass [GeV] Charge Spin

(γ) Electromagnetic force 0 0 1

(g) Strong force 0 0 1

(W−)

Weak force

80.403± 0.029 −1 1

(W+) 80.403± 0.029 +1 1

(Z0) 91.188± 0.003 0 1

(H) Mass (hypoth.) 116− 127 (95% C.L.) [24, 25] 0 0

Table 2.3.: Gauge bosons and their properties and quantum numbers [23].

2.2. The Top Quark

In the following, the production and decay of top quark pairs and singly produced top quarks
(single tops) within the Standard Model will be discussed in detail. Furthermore, an overview
of important properties of the top quark and their measurement will be given. In particular,
the charge asymmetry in the production of top quarks pairs within the Standard Model and in
theories beyond will be covered.

2.2.1. Top Quark Production at Hadron Colliders

At hadron colliders, tt̄ pairs are mainly produced through strong interactions described by per-
turbative QCD. Interactions between the quark and gluon constituents of the colliding hadrons
(either protons or antiprotons) participate in a hard scattering process and produce a top quark
and an antitop quark in the final state. At Born level approximation, top quark pairs can be
produced via gluon-gluon fusion (gg) or via the annihilation of quark-antiquark pairs (qq̄). The
relevant leading order Feynman diagrams for the contributing processes are shown in Figure 2.3.
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Figure 2.3.: Lowest order diagrams contributing to top quark pair production at hadron col-
liders. Top quarks are produced via strong interaction, either in quark-antiquark
annihilation (top) or gluon-gluon fusion (bottom).

Due to the fact that hadrons are composite particles, consisting of partons with unknown
fractions x of the initial hadron momenta, the initial state of the parton interaction is not
precisely known. However, hadron interactions in pp and pp̄ collisions can be described by
separating the partonic reactions into a short distance and a long distance contribution.
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Top at 7 and 8 TeV

•  motivation:


•  step towards n-asymmetry [e.g. Kagan et al., PRL107(2013)082003]

•  tests of gluon PDFs at high x / high Q2 [e.g. Gauld, JHEP02(2014)126]





PRL115(2015)112001


•  strategy

•  tighten Wb selection: pT(μ) > 25 GeV; 50 < pT(b-jet) < 100 GeV

•  get t->Wb from fit to yields and charge asymmetry in pT(μ+b) bins
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•  fit result:

�(top)[7TeV] = 239± 53 (stat)± 33 (syst)± 24 (theory) fb ,

�(top)[8TeV] = 289± 43 (stat)± 40 (syst)± 29 (theory) fb .

SM	(MCFM,	NLO):	

à first observation of top in forward region, consistent with SM prediction
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180+51
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�68 fb



lepton + 2 b/c jets


•  events with one lepton (mu or e) and 2 heavy flavour tagged jets

•  sensitive to tt, W+bb and W+cc production

•  backgrounds include Z+b/c, single top, QCD


•  selection

•  leptons: isolated, pt>20 GeV, 2 < eta <4.5 (4.25) for mu (e) 

•  jets: pT>12.5 GeV (softer than for previous analyses), 

2.2<eta<4.2

•  ΔR > 0.5 between lepton and jets and between jets

•  jet tagging: BDT(bc|light)>0.2 �

               à 1% mistag for 48%(18%) b(c) efficiency
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lepton + 2 b/c jets


•  strategy: simultaneous fit of μ+, μ-, e+, e- samples at 8 TeV to

1.  di-jet mass

2.  BDT to separate b from c jets (for both jets)

3.  BDT to separate W+bb and tt (uGB, JINST 10(2015)T03002)
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Figure 2: Projection of the simultaneous data 4D-fit result on the µ+ sample: a) the dijet mass;
b) the uGB response; c) the BDT

b|c of the first jet; and d) the BDT
b|c of the second jet.

Table 1: Simultaneous 4D-fit results for each of the four signal categories (e and µ, negative
and positive). The normalisation factor K and the fitted yields per sample are shown. The
uncertainties quoted are statistical only.

Signal K µ sample yields e sample yields

W

++bb 1.49+0.23

�0.22

45.5+6.9

�6.4

20.5+3.1

�2.9
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�2.2

(µ�) 3.7+1.1
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�1.1

(e�)
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lepton + 2 b/c jets


•  results: cross-sections in LHCb fiducial region at 8 TeV

•  theory (also needed for efficiency) NLO prediction: �

MCFM [PRD62(2000)114012] + CT10 [PRD(2010)074024] �
+ Pythia for parton-showering corrections


•  results in good agreement with MCFM
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Figure 6: Observed cross-sections in pb for all channels compared to the theoretical predictions.
The outer bar (light yellow) corresponds to the total uncertainty of the measured cross-sections
and the inner bar (dark yellow) corresponds to the statistical uncertainty. Theoretical prediction
is represented by the black dots and error bars, where inner and outer uncertainties represent
the scale and the total errors respectively.
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Figure 6: Observed cross-sections in pb for all channels compared to the theoretical predictions.
The outter bar (yellow) corresponds to the total uncertainty of the measured cross sections and
the inner bar (dark yellow) corresponds to the statistical uncertainty. The theoretical prediction
is represented by the black dots. The inner uncertainty is the scale uncertainty and the total
uncertainty is represented by the outter uncertainty.
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LHCb preliminary Table 30: Fit significances for 2012 data. Note that the results do not include the e↵ect of the
MC statistics template variations.

Sample Significance
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W� + cc̄ 2.5�
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constraints on H0(125)->bb, cc

•  same final state also sensitive to associated production of H0(125)

•  strategy: H->bb extracted from fit of mu and e samples to:


•  di-jet invariant mass

•  uGB BDT to separate [ H->bb + W ] from [ W + bb ]

•  uGB BDT to separate [ H->bb + W ] from [ tt ]


•  to isolate H->cc, add cut on BDT(b|c) for jets (ε(cc)=62%, ε(bb)=10%)
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Figure 7: Observed and expected CLs and 95% Confidence Level upper limit for the H0 ! bb̄.
The 0.05 CLs level is indicated by the red horizontal line.

SM expectation. In terms of production cross section, the observed limit is206

�(pp! W/Z + H0)B(H0 ! cc̄) < 9.4 (7.2) pb, at 95 (90)% CL and at 8 TeV.

7 Prospects and conclusions207

This paper presents the LHCb search for a Higgs boson with a mass of 125 GeV/c2,208

produced in association with a Z or W boson and decaying to a bb or cc pair. For this,209

the LHCb proton–proton collision data taken at
p

s = 8 TeV is used, corresponding to an210

integrated luminosity of 1.98± 0.2 fb�1.211

No evidence is found and upper limits are set on both �(pp! W/Z+H0)⇥B(H0 ! bb̄)212

and �(pp! W/Z+H0)⇥B(H0 ! cc̄) using the CL
s

method. For the former, the expected213

upper limit on the product of cross section times branching fraction at 95% CL is 84214

times the SM prediction, while the observed limit is 50 times the SM prediction. For the215

latter, the expected (observed) limit is 7900 (6400) times the SM prediction. In terms of216

production cross section in the LHCb acceptance, with two heavy quarks from H0 and217

one lepton from W/Z in range 2 < ⌘ < 5, this becomes218

�(pp! W/Z + H0)⇥ B(H ! bb̄) < 1.6 pb at 95% CL,

219

�(pp! W/Z + H0)⇥ B(H ! cc̄) < 9.4 pb at 95% CL.

The limit on H0 ! bb is significantly higher to those of ATLAS and CMS, but the220

best Higgs limit so far at LHCb. As for H0 ! cc, this is the first experimental direct221

bound to date for this decay mode.222
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50	x	σ(SM)	

6400	x	σ(SM)	

•  result (8 TeV, preliminary) :


Projec(ons	of	fit	result	on	3	input	variables	of	electron	sample	(8TeV,	prel.)	

_	 _	
_	_	

_	
_	 _	
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Figure 3: a) Dijet mass, b) uGB (W/Z + H0 vs W + bb̄) and c) uGB (W/Z + H0 vs tt̄)
distributions of selected data events with dijet mass greater than 70 GeV for the electron sample
used in the H0 ! bb̄ limit. The SM signal and background prediction is also shown. The
H0 ! bb̄ yield (in magenta) is multiplied by a factor 50. The other backgrounds component
includes Z + bb, Z + cc, ZZ, WZ, Z and W+jets and several QCD processes. Data points with
a yield of 0 are not displayed. The data is compatible with the background expectation.

W/Z + H0(! cc̄) cross section hypotheses and upper limits are set at 95% CL.171

5 Systematic uncertainties172

Several sources of systematic uncertainty that can a↵ect the normalisation of signal and173

background processes and/or the shape of their distributions are considered. The individual174

sources of systematic uncertainty are assumed to be uncorrelated and correlations of a175

given systematic uncertainty are considered across all processes when applicable. The176

dominant sources of systematic uncertainties are summarised in Table 1. The impact of177

each systematic source is estimated by a weighted average of the uncertainties variation178

in each interval used in the limit computation. This weight is computed as S/
p

S + B,179

where S and B are the expected signal and background yield in the interval, respectively.180

The main systematic uncertainties are:181

• the uncertainty on the theoretical cross sections, which is estimated by varying the182
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H0 ! bb̄ yield (in magenta) is multiplied by a factor 50. The other backgrounds component
includes Z + bb, Z + cc, ZZ, WZ, Z and W+jets and several QCD processes. Data points with
a yield of 0 are not displayed. The data is compatible with the background expectation.

W/Z + H0(! cc̄) cross section hypotheses and upper limits are set at 95% CL.171
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a yield of 0 are not displayed. The data is compatible with the background expectation.

W/Z + H0(! cc̄) cross section hypotheses and upper limits are set at 95% CL.171
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Summary and outlook

•  LHCb’s acceptance complementary to ATLAS and CMS


•  sensitive to high and low Bjorken-x (down to 10-5)


•  extensive set of W/Z+jets measurements at 7, 8 TeV

•  Z+jet, W+jet untagged

•  W + b, c

•  W + b b-bar, W + c c-bar

•  all in good agreement with SM


•  first observation of top in the forward region

•  both in W+b and W+bb-bar

•  expect ~10x higher cross-section in acceptance at 13 TeV


•  expectations for run-II

•  collect about 2/fb per year

•  new jet triggers will also allow for inclusive jet measurements
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Your wishlist?


•  …

•  ...

•  ...
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overview of W/Z (+jets) measurements at LHCb 


•  Z->μμ: 7 TeV: JHEP08(2015)039, 8 TeV: JHEP01(2016)155, �
         13 TeV: LHCb-CONF-2016-002


•  Z->ee: 7 TeV: JHEP02(2013)106, 8 TeV: JHEP05(2015)109

•  Z->ττ: 7 TeV: JHEP01(2013)111


•  Z AFB: 7 and 8 TeV: JHEP11(2015)190



•  W->μν: 7 TeV: JHEP12(2014)079, 8 TeV: JHEP01(2016)155



•  low mass Drell-Yan: 7 TeV: LHCb-CONF-2012-013


•  Z+j: 7 TeV: JHEP01(2014)033, 8 TeV: LHCB-PAPER-2016-011

•  W+j: 8 TeV: LHCB-PAPER-2016-011

•  Z+b: 7 TeV: JHEP01(2015)064

•  W+b,c: 7 and 8 TeV: PRD 92 (2015) 052001

•  top: 7 and 8 TeV: PRL115(2015)112001
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