QCD and EW results from HERA

Daniel Britzger for the H1 and ZEUS Collaborations

QCD@LHC 2016 Zürich, Switzerland 23.08.2016

Deep-inelastic scattering

Kinematic variables

- virtuality of exchanged boson

$$Q^2 = -q^2 = -(k-k')^2$$

- Bjorken scaling variable

$$x = \frac{Q^2}{2 p \cdot q}$$

- Inelasticity

$$y = \frac{p \cdot q}{p \cdot k}$$

Neutral current scattering $ep \rightarrow e'X$

Charged current scattering $ep \rightarrow \nu_{e}X$

NC and CC scattering at tree level expressed by structure functions

Neutral current

$$\left| \frac{d \sigma_{NC}^{\pm}}{dQ^2 dx} = \frac{2 \pi \alpha^2}{x} \left[\frac{1}{Q^2} \right]^2 (Y_+ \boldsymbol{F}_2 + Y_\perp x \boldsymbol{F}_3 + y^2 \boldsymbol{F}_L) \right|$$

Charged current

$$\frac{d \sigma_{NC}^{\pm}}{dQ^{2} dx} = \frac{2 \pi \alpha^{2}}{x} \left[\frac{1}{Q^{2}} \right]^{2} (Y_{+} \boldsymbol{F}_{2} + Y_{\perp} x \, \boldsymbol{F}_{3} + y^{2} \boldsymbol{F}_{L}) \qquad \frac{d \sigma_{CC}^{\pm}}{dQ^{2} dx} = \frac{1 \pm P}{2} \frac{G_{F}^{2}}{4 \pi x} \left[\frac{m_{W}^{2}}{m_{W}^{2} + Q^{2}} \right]^{2} (Y_{+} \boldsymbol{W}_{2}^{\pm} \pm Y_{\perp} x \, \boldsymbol{W}_{3}^{\pm} - y^{2} \boldsymbol{W}_{L}^{\pm})$$

Calculation of structure functions employ factorisation theorem

PDFs are largely determined from DIS data

H1 and ZEUS

H1 and ZEUS

- Two multi-purpose collider experiments:
 - Asymmetric design
 - Trackers
 - Calorimeters
 - Magnet field from solenoid
 - Muon System
 - Lumi system, taggers, forward stations, etc...
- High statistics
 - Luminosity: approx. 0.5 fb-1 per experiment

Excellent control over experimental uncertainties

- Overconstrained system in DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%
- Trigger and normalization uncertainties: 1-2 %
- Luminosity: 1.8 2.5%

HERA operation

HERA electron-proton collider

- Electrons and positrons: E_e = 27.6 GeV
- Nom. proton energy: E_p = 920 GeV
- Two multi-purpose experiments: H1 and ZEUS

HERA-I operation: 1993 – 2000

- Proton energies: 820 and 920 GeV
- int. Lumi. ~ 110 pb-1 per experiment

HERA-II operation: 2003 – 2007

- · Longitudinally polarised leptons
- Proton energy: 920 GeV
- $\sqrt{s} = 319 \text{ GeV}$
- int. Lumi. ~ 350 pb⁻¹ per experiment

Low-Energy Run 2007

- $\sqrt{s} = 225 \& 251 \text{ GeV}$
- Dedicated F₁ measurement

HERA kinematic plane and HERA legacy

HERA inclusive DIS data

- Large kinematic region in x, Q²
- NC and CC cross sections
- Inevitable basis for future PDFs

Reminder: Final HERA data published EPJ C75 (201

- 'HERA' = combined H1+ZEUS data
- 2927 data points combined into 1307 combined points
- Extracted PDF set: HERAPDF2.0

Fit of electroweak parameter to HERA data

Both, H1 and ZEUS, have performed fits of EW parameters

• Use polarised DIS data from HERA-II -> Increase sensitivity to EW parameters

Generalised structure functions for polarised NC DIS

$$F_{2} = F_{2}^{\gamma} + \kappa_{z} (-v_{e} \mp Pa_{e}) F_{2}^{\gamma z} + \kappa_{z}^{2} (v_{e}^{2} + a_{e}^{2} \pm Pv_{e} a_{e}) F_{2}^{z}$$

$$x F_{3} = +\kappa_{z} (\pm a_{e} + Pv_{e}) F_{3}^{\gamma z} + \kappa_{z}^{2} (\mp 2v_{e} a_{e} - P(v_{e}^{2} + a_{e}^{2})) x F_{3}^{z}$$

Structure functions in QPM

$$[F_{2}, F_{2}^{\gamma Z}, F_{2}^{Z}] = x \sum_{q} [e_{q}^{2}, 2e_{q}v_{q}, v_{q}^{2} + a_{q}^{2}] \{q + \bar{q}\}$$

$$[xF_{3}^{\gamma Z}, xF_{3}^{Z}] = x \sum_{q} [2e_{q}a_{q}, 2v_{q}a_{q}] \{q - \bar{q}\}$$

Weak couplings to Z-boson

axial coupling: $a_f = I_{f,L}^{(3)}$ (f = e, u, d, ...) vector-axial: $v_f = I_{f,L}^{(3)} - 2e_f \sin^2 \theta_w$

Zº-exchange

$$\kappa_{Z}(Q^{2}) = \frac{Q^{2}}{Q^{2} + m_{Z}^{2}} \frac{G_{F} m_{Z}^{2}}{2\sqrt{2}\pi\alpha}$$

Calculations in on-shell scheme

$$G_F = \frac{2\pi\alpha}{2\sqrt{2}m_W^2} \left(1 - \frac{m_W^2}{m_Z^2}\right)^{-1} (1 + \Delta r)$$

Corrections to G_F

$$\Delta r = \Delta r(\alpha, m_W, m_Z, m_t, m_H, ...)$$

Parameters to cross section calculation: α , m_Z , $m_{W'}$, $(m_t, m_H, ...)$ More general, also couplings are free: v_e, a_e , v_u, a_u and v_d, a_d

Input data to EW fits

Input data to ZEUS fit

HERA-I: NC and CC

- All H1 and ZEUS HERA-I datasets
 - e+ and e-
 - NC and CC; low and high-Q²
 - unpolarised

HERA-II: NC and CC

- ZEUS high-Q² polarised data
- H1 high-Q2 unpolarised data
- ZEUS Reduced-E_p (unpolarised)
- H1 Reduced-E_p (unpolarised)

Correlations as in HERAPDF2.0

• More than 2900 data points

ZEUS-Fitter as fitting framework

Input data to H1 fit

H1 Low-Q2 data

- NC and CC, e+ and e-
- All H1 HERA-I and HERA-II data are combined into one dataset

H1 High-Q2 data

- NC and CC, e+ and e-
- HERA-I
 - H1 unpolarised data
- HERA-II
 - H1 polarised data

Polarisation measurements

treated as measurement on its own

Alpos used as fitting framework

Fit of electroweak parameters

Determinations of light-quark couplings, mass of W-boson, Weinberg-angle

- Extract parameters through fitting theory to data
- Test of Standard model

PDFs have considerable uncertainties

- Unfortunate correlation!
- PDFs are essentially determined from HERA DIS data
- Consider PDF uncertainty by simultaneous fitting the PDFs and EW parameters

PDF-fit follows closely HERAPDF2.0 methodology

- DGLAP evolution of PDFs
 - H1: NNLO QCD with ZMVFNS
 - ZEUS: NLO QCD with RTop HF scheme
- PDFs are parameterised at starting scale Q₀² = 1.9GeV²

$$xg \qquad xg \qquad xg \qquad xg \qquad xg(x) = A_g x^{B_g} (1-x)^{C_g} - A_g' x^{B_g'} (1-x)^{C_g'},$$

$$xu_v \qquad xU = xu + xc \qquad xu_v(x) = A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right),$$

$$xd_v \qquad xD = xd + xs \qquad xd_v(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}},$$

$$x\bar{U} \qquad x\bar{U} = x\bar{u} + x\bar{c} \qquad x\bar{U}(x) = A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}}x),$$

$$x\bar{D} \qquad x\bar{D} = x\bar{d} + x\bar{s} \qquad x\bar{D}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \qquad \text{fixed or constrained by sum-rules parameters set equal but free}$$

Use only data with Q² >= 3.5 GeV² (ZEUS) or 12 GeV² (H1)

Result of *ZEUS-EW-Z NLO* compared to <u>HERAPDF2.0</u>

Couplings of light quarks to Z-boson

Results from H1 and ZEUS collaborations

- χ²/ndf typically around 1
 - ZEUS: 2946 datapoints
 - H1: 1388 datapoints
- *u*-type coupling better constrained than *d*-type coupling
 - -> sensitivity from valence quarks
- *d-type* coupling:
 - -> benefit from polarisation

Results from H1 and ZEUS compatible

• Results compatible with SM expectation

Comparison to H1 HERA-I

Phys.Lett.B 632 (2006) 35

- Considerably improved sensitivity using polarised HERA-II data
- Polarisation in HERA-II important for axialvector couplings

Comparison to other data

Comparison to other processes

- Results competitive with other processes
- Dissolve LEP sign-ambiguity
- u-type coupling highly competitive

Further studies

- PDF uncertainties are small
- Large correlation between u- and dtype

Study of Standard Model parameters

Standard Model is now overconstrained

- Important to study consistency in many complementary processes
- HERA: Space-like momentum transfers
- Only purely virtual exchange of bosons

$(m_W - m_Z) + PDF$ fits

- Assume α is known
- on-shell masses $m_{\scriptscriptstyle W}$ and $m_{\scriptscriptstyle Z}$ are only free EW parameters
- Agreement within PDG14 SM values
- Large correlation between m_w and m_z

Mass of W-boson

Take other masses (m_z) as external input to calculations

$$m_{_{W}} = 80.407 \pm 0.118 \; (exp,pdf-fit) \pm 0.005 \; (m_{_{Z}},m_{_{t'}}m_{_{H}}) \; {\rm GeV}$$

Approx. half the exp. uncertainty may be attributed to PDFs Compare to H1 HERA-I: m_W = 80.786 ± 0.205 (exp) $^{+0.063}_{-0.098}$ (th) GeV

 $m_{W,PDG} = 80.385 \pm 0.015 \text{ GeV}$

Study of Standard Model parameters

Different view on SM parameters

Fermi coupling constant G_F

$$G_F = \frac{\pi \alpha}{\sqrt{2} m_W^2 \sin^2 \theta_W} (1 + \Delta r)$$

Weak mixing angle

$$\sin^2\theta_W = 1 - \frac{m_W^2}{m_Z^2}$$

Perform calculations consistently in on-shell scheme (α, m_z, m_w)

- Calculate m_z (iteratively) from G_F or $sin^2\theta_W$ Results from fits together with PDF and m_W
- H1 values consistent with precise values from PDG
- Correlation to m_W are different for m_Z , $sin^2\theta_W$ and G_F

Study of Standard Model parameters

Simultaneous extraction of $\sin^2\theta_w$ and m_w

Identify parameters in cross section predictions

• quantities agree with world average values Fit of $\sin^2\theta_w$ with m_w as external input

$$\left[\sin^2\theta_W = 0.2252 \pm 0.0011_{(\exp/fit)} \right]_{-0.0001(mod)}^{+0.0003} \left[0.0007_{-0.0001(par)} = 0.2252_{-0.0011(tot)}^{+0.0003}\right]$$

Extraction of W-boson mass

Fix all other parameters in the fit

$$M_W = 80.68 \pm 0.28_{(exp/fit)} + 0.12_{-0.01(mod)} + 0.23_{-0.01(par)} GeV = 80.68_{-0.28(tot)}^{+0.38} GeV$$

- Value compatible with world average
- Unique test of SM in space-like processes

Probe scale dependence of weak mixing angle

- Unique measurement taking advantage of space-like momentum transfer
- Extract weak mixing angle at different scales $\mu = \sqrt{Q^2}$
- HERA EW-fits studies kinematic region of approx. $20 < \mu < 120 \text{ GeV}^2$

Results

- Results are compatible with precise value from Z-pole measurements
- Unique measurement of weak mixing angle at different scales
- Comparison in different EW-schemes straight forward

Limit on effective quark radius

One of the possible parameterisations of deviations from SM

Spatial distribution or substructure of electrons and/or quarks.

Fit with form-factor approach to final combined HERA-II data

 semi-classical form-factor -> cross sections are expected to decrease at highest Q² values

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \left(1 - \frac{R_q^2}{6} Q^2 \right)^2$$

- R_q RMS-radius of EW-charge distributions of quarks
- QCD+BSM analysis of combined HERA data

Limit on quark radius

$$-[0.47 \cdot 10^{-16} \text{ cm}]^2 < R_q^2 < [0.43 \cdot 10^{-16} \text{ cm}]^2$$

- Improved limit compared to earlier H1 result
- Limit compatible with L3 result in complementary process
- Limit on quark radius ~2000 times smaller than proton

Jet production in DIS

Jet measurements are performed in Breit reference frame

Exchanged virtual boson collides 'head-on' with parton from proton

Jet measurement sensitive to α_s already at leading-order

- Boson-gluon fusion -> Provides also direct sensitivity to gluon content of PDFs
- QCD compton

Trijet measurement

- More than three jets with significant transverse momenta
- Leading-order already at $O(\alpha_s^2)$

Jet production in DIS at low Q2

Simultaneous measurement/unfolding

- of: <u>inclusive jets</u>, <u>dijet</u> and <u>trijet</u>
- Int. Lumi: 184 pb⁻¹
- Similar strategy as it was done by H1 at high-Q2 in: EPJ C75(2015)65

'Normalised' jet cross sections

- Normalise jet cross sections w.r.t. inclusive NC DIS cross section
 - Full/partial cancellation of uncertainties

Phase space of cross sections	
NC DIS	$5.5 < Q^2 < 80 \text{ GeV}^2$
	0.2 < y < 0.6
(inclusive) Jets	$P_T^{jet} > 4.5 \text{ GeV}$
	$-1.0 < \eta^{lab} < 2.5$
Dijet and Trijet Measure average p _T	$_{2}>5.0 \text{ GeV}$
	$\langle P_T^{jet} \rangle_3 > 5.5 \text{ GeV}$

High-Q2

New cross sections for 5 < p_T < 7 GeV

Jet production in DIS at low Q2

Detailed ratio to NLO prediction

Data reasonably described by NLO theory, but NLO scale uncertainty large

New predictions: NNLO from NNLOJET

- NNLO predictions for inclusive jet and dijet production in NC DIS (PRL 117 (2016) 042001)
- Normalised with NC DIS predictions from APFEL using FONLL-C

NNLO

- Improved description of data by NNLO
- Significantly reduced scale uncertainty (particularly for higher scales)

aNNLO from JetViP

- Approximate NNLO using threshold resummation PR D 92 (2015) 074037
- Improved data description at high-pT

High-Q2 inclusive jets

• New datapoints for $5 < p_T < 7$ GeV plus *EPJ C75 (2015) 65*

Dijet production in DIS

Dijet production in NC DIS

- Low-Q 2 : 5.5 < Q 2 < 80 GeV 2
- $\langle P_T \rangle_2 = (P_T^{\text{jet1}} + P_T^{\text{jet2}})/2$ with: $P_T^{\text{jet}} > 4 \text{ GeV}$
- High experimental precision

Comparison to NLO

Reasonable description within large scale uncertainties

New NNLO predictions

- Significant reduced scale uncertainty for higher values of <P_T>₂
- Significant improvement of the shape
- Slightly higher in normalisation
 -> Partially due to the normalisation to
 NC DIS cross sections

Inclusive jet, dijet and trijets in DIS

Normalised <u>trijet</u> production in DIS

- Data well-described by NLO theory
- No NNLO predictions available yet

$\alpha_s(m_z)$ from normalised low-Q2 multijets w/ NLO

• Probe running of $\alpha_s(\mu)$ in range 6 < μ < 30 GeV

Use normalised <u>low-Q²</u> and <u>high-Q²</u> H1-multijets

Experimental precision about 0.4%

Prompt photons in DIS

Prompt photons with jets in DIS

- Photons emitted from quark or lepton
- Photons are radiated before hadronisation
- Direct test of ME
- Complements earlier result Phys. Lett. B 715 (2012) 88

Fine segmentation of calorimeter in z-direction

• Suppression of π^0 ->yy background

γ is emitted
from quark
as part of hard
process

→ hard process, similar to multi-jets

LL - photons

γ is radiated from incoming or outgoing lepton

→ theoretically well determined

Prompt photons in DIS

Cross section as function of

- x_y,x_p fraction of incoming photon (proton) energy taken by γ+jet (parton)
- $\Delta \phi, \Delta \eta$ separations of photon and e or jet

Weighted LO MC - Djangoh/Pythia

- Weighting of QQ by 1.6 provides good description
- k_T-factorisation fails to describe x_y
 - -> More investiagations needed

k_{T} -factorisation (BLZ)

QCD Instantons

QCD Instantons

- Solution to Yang-Mills equation of motion
 - · Non-perturbative fluctations of the gauge field
 - Physical interpretation: Pseudo-particle or tunneling process between topologicaly different vacuum states
- The discovery of instantons would be the first evidence for non perturbative QCD effect at high energies
- QCDINS MC generator by Ringwald/Schrempp
 - Sizeable cross section using Instanton-perturbation theory
 - Uncertainty coming from $\Lambda_{QCD}(MSbar)$

Characteristic signature of Instanton

- One hard jet (not originating from instanton)
- Densily populated narrow band; flat in φ
- Large particle multiplicities

Strategy

- Find jets in hadronic center of mass frame
- Remove hardest jets from HFS
- Define topological input-variables in 'instanton rest-frame' which are input to TMVA
 - Train MVA with QCDINS Monte Carlo

Variables of the instanton subprocess

QCD Instantons

Exclusion limits for QCDINS

- In Q'2_{min} and x'_{min} plane
 - Outside QCDINS predictions are zero
- Validity of I.-perturbation theory indicated
- Significant part excluded:

Observed limit: 2 pb @ 95% C.L.

Predicted CS: 10 ± 3 pb

Exclusion limits on I.-production cross section

- Using QCDINS signal shape, but without uncertainty on the normalisation
- Upper limit at 95% C.L.

$$\sigma_{lim} \sim 1.5 - 6 \text{ pb}$$

Depending on kinematic domain

• Most stringent exclusion limits observed for large Q'_{min} and small x'_{min}

Pentaquarks

Pentaquarks

- Early 2000's: reported exotic objects consisting with 5 quarks.
- ZEUS: evidence for a peak in pK₀ (pK₀) corresponding to <u>uudds</u> state at 1.52 GeV (HERA I)
- In 2015 LHCb: possible discovery of two pentaquark states at 4.38 and 4.45 GeV corresponding to uudcc
- Narrow resonance close to 1.52 GeV predicted in chiral soliton model: named Θ

History

- ZEUS Phys.Lett.B 591 (2004) 7:
 Peak at 1.52 GeV consistent with Θ state
- H1 Phys.Lett B 639 (2006) 202: No signal seen

Pentaquarks

The pK_{S} invariant-mass distribution

- Benefit from improved dE/dX for protonidentification using MVD
- The dashed line represents the expected signal corresponding to the ZEUS HERA I result:
 - 286 events expected
- Clear Λ_c (2286) peak observed in photoproduction and DIS sample

Results

- Upper limits on production cross section as a function of the pKo mass set
- A peak at 1.52 GeV observed in a previous ZEUS analysis, based on HERA-I data is not confirmed

1.5

M(pK⁰) (GeV)

D* in diffractive DIS

Open charm production cross sections in diffr.-DIS

- Larger dataset than previous analysis
- Large rapidity gap selection for diffr. final state

NLO QCD predictions (NLO ⊕ DPDFs ⊕ FF)

- Good description within uncertainties
- Tests assumptions of collinear and proton-vertex factorisation
- · Tests assumptions of universality of fragmentation

DPDFs from H1 inclusive diffr.-DIS fragmentation func. from non-diffr. analysis

Conclusions

After finalisation of HERA inclusive NC and CC DIS cross sections...

EPJ C75 (2015) 12

- Determination of electroweak parameters
 - High sensitivity to light-quark couplings
 - Important complementary tests of SM
- Improved limits on <u>effective quark radius</u>

H1prelim-16-041

H1prelim-16-062

H1prelim-16-061

Phys. Rev. D 93 (2016) 092002

Phys. Lett. B 757 (2016) 468

Hard QCD

- (Normalised) inclusive jet, dijet and trijet cross sections in DIS
 - New NNLO predictions will allow precision tests of the strong coupling and suggest to use HERA jet data for PDF determinations
- New observables for prompt photon production in DIS studied -> direct tests of hard process ZEUS-prel-16-001

Soft QCD

- Search for QCD instantons
 - -> excludes significant part of phase space predicted by Instanton model
- Improved limit on <u>Pentaguark</u> production cross section (pK₀) -> Previous hint disappeared
- Open charm production (D*)
 - -> probes: DPDFs, NLO theory & factorisation properties in diffr. DIS

H1prelim-16-011

EPJ C76 (2016) 7

Phys. Lett. B 759 (2016) 446

Not covered recent HERA results

- ZEUS Exclusive electroproduction of vector meson: Ratio of ψ(2s) over J/ψ(1s) Nucl. Phys. B 909 (2016) 934
- H1 Exclusive photoproduction of po meson with leading neutron EPJ C76 (2016) 1

Backup

The ZEUS result is the best for a single measurement for a_u , v_u It is not yet included in the PDG average and will have impact.

Stat. correlations of H1 low-Q² multijets

