Measurement of underlying events and double parton scattering processes at CMS

FROM WINSTE

Ankita Mehta

(on behalf of the CMS Collaboration) Panjab University India QCD@LHC 2016, Zurich

August 22, 2016

CMS.

OCDOLLAC 22ND-261TH AUGUST 2016

Outline

Underlying Events (UE) and Multi Parton Interactions (MPI)

Why to study UE and Sensitive Observables

UE measurements at 13 $\,{\rm TeV}$

- Energy density vs Leading Track
- Particle density vs Leading Track
- Particle density vs Leading Jet
- Energy density vs Leading Jet

4 Looking for DPS via same sign WW channel in dimuon final state

- Motivation
- Analysis Strategy
- Multi-Variate Analysis
- Systematics, Event yields and BDT observable
- Observed Limits
- Conclusions

Underlying Events and Multi Parton Interactions

Hadron-hadron collision: Hard scattering between partons in association with underlying event (UE) activities $\label{eq:constraint}$

UE gets contribution from:

- Beam-Beam Remnants (BBR)
- Multiple Parton Interactions (MPI)
- Soft Initial and final state radiation (ISR & FSR)

Generally UE is a softer contribution, but some MPI can be hard \rightarrow Double Parton Scattering (DPS)

Why to study UE

- Important in the study of soft interactions during high luminosity pp collisions
- UE consists of semi-hard and low momentum processes
- UE: Cannot be completely described with pQCD methods
- Any Higgs, SUSY event will contain underlying event
 - VBF Higgs searches with $H \rightarrow WW$
 - No hard jets expected in central region
 - Suppression of QCD radiation in the event: Background Reduction
 - Jet veto efficiency is highly sensitive to the model of UE
 - E_T^{Miss} + lepton + Jets: Common signature of BSM searches and top searches
 - Extra jets can be produced by QCD radiation, MPI, BBR and pileup
- Experimental study of UE : Probe to understand interplay of pQCD methods describing the hard processes and phenomenological models of the soft interactions

 $\bullet~$ Understanding UE \rightarrow Better tuning of MC \rightarrow Precise measurements of SM and BSM processes

UE Sensitive Observables

Hadronic activity as a function of $\Delta\phi$ between the leading object and any charged track

Variables

- $|\Delta \phi| < 60^{\circ}$: Towards
- $|\Delta \phi| > 120^{\circ}$: Away
- $60^{\circ} < |\Delta \phi| < 120^{\circ}$: Transverse
- Away & towards regions : Dominated by 2-to-2 hard scatter
- Transverse regions : Most sensitive to UE activity

Transverse Toward

- Average charged particle and $\sum p_T$ density
- \bullet TransMAX : density with highest particle/ $\sum p_T$ density in transverse region
- \bullet TransMIN : density with lowest particle/ $\sum p_T$ density in transverse region
- TransDIF : difference of TransMAX and TransMIN
- TransAVE : average density of transverse regions

Ankita	Mehta
--------	-------

Awa

Protor

QCD@LHC 2016

Event selection: 13 TeV UE analysis (CMS-PAS-FSQ-15-007)

- Analyzed Early LHC Run-II Collision data ($\sqrt{s} = 13$ TeV)
- Corresponds to an Integrated Luminosity of 281 nb⁻¹
- Zero-bias, low pile-up data (pile-up = 1.3) triggered using ZeroBias triggers
- Events with exactly one good primary vertex
- High quality tracks $(\sigma_{p_T}/p_T < 0.05)$ with $p_T \geqslant 0.5$ GeV/c and $|\eta| < 2.0$
- Cuts on longitudinal and transverse impact parameter significance to remove tracks from secondary decays
- Jets reconstructed with SISCone jet clustering algorithm with cone size of 0.5 built using high purity tracks within $|\eta| < 2.5$
- Jets with $p_T \ge 1.0$ GeV/c and $|\eta| < 2.0$
- Leading track/jet: Highest $p_T \ge 0.5 \ (p_T^{jet} \ge 1.0) \ \text{GeV/c}$ and $|\eta| < 2.0$
- Compared predictions from different Monte Carlo event generators and tunes with data

Energy density vs Leading Track

- Detector level distributions are corrected to stable particle level using Bayesian unfolding method
- Response matrix constructed using simulated events from PYTHIA8 CUETP8M1 tune
- Corrected distributions are compared with different theory predictions
- Major systematics involve model dependency, pile-up effects, tracking efficiency, impact parameter significance and vertex degree of freedom

• Densities increase sharply with p_T up to 5 GeV and slow rise afterwards

• transDIF : Gives the evolution of radiation with p_T of reference object

Ankita Mehta

QCD@LHC 2016

August 22, 2016

Energy density vs Leading Track

- Detector level distributions are corrected to stable particle level using Bayesian unfolding method
- Response matrix constructed using simulated events from PYTHIA8 CUETP8M1 tune
- Corrected distributions are compared with different theory predictions
- Major systematics involve model dependency, pile-up effects, tracking efficiency, impact parameter significance and vertex degree of freedom

 Densities increase sharply with p_T up to 5 GeV and slow rise afterwards

• transDIF : Gives the evolution of radiation with p_T of reference object

Ankita Mehta

QCD@LHC 2016

August 22, 2016

Particle density vs Leading Track

- Best agreement between data and PYTHIA8 Monash and CUETP8M1 tune
- Predictions from other simulations deviate from data within 10-30%

transMAX : Larger rise in plateau region

- transMIN : Captures activity mainly from MPI
- Simulations describe the sharp rise and the flattening of the UE activity nicely
- Systematics uncertainties vary between densities in the different regions with p_T

Particle density vs Leading Track

- Best agreement between data and PYTHIA8 Monash and CUETP8M1 tune
- Predictions from other simulations deviate from data within 10-30%

• transMAX : Larger rise in plateau region

- transMIN : Captures activity mainly from MPI
- Simulations describe the sharp rise and the flattening of the UE activity nicely
- Systematics uncertainties vary between densities in the different regions with p_T

Particle density vs Leading Jet

- Densities increase sharply with p_T^{jet} up to 12-15 GeV and slow rise afterwards
- Sharp rise with p_T is due to an increase in MPI contribution which reaches a plateau in high p_T region

- Slow rise in high p_T region: Increase in ISR and FSR contribution
- HERWIG has problems in the rising region

Particle density vs Leading Jet

- Densities increase sharply with p_T^{jet} up to 12-15 GeV and slow rise afterwards
- Sharp rise with p_T is due to an increase in MPI contribution which reaches a plateau in high p_T region

- Slow rise in high p_T region: Increase in ISR and FSR contribution
- HERWIG has problems in the rising region

Energy density vs Leading Jet

• Best agreement between data and PYTHIA8 with Monash tune

- transMIN densities are flatter as compared to transMAX and transDIF densities
- transMAX and transDIF densities show similar trend in plateau region (larger rise)

Energy density vs Leading Jet

- Best agreement between data and PYTHIA8 with Monash tune
- EPOS has problems in the plateau region

transMIN densities are flatter as compared to transMAX and transDIF densities
transMAX and transDIF densities show similar trend in plateau region (larger rise)

DPS searches at CMS

Cross section for a DPS process can be written as:

$$\sigma(X+Y) = \frac{m.\sigma(X).\sigma(Y)}{\sigma_{eff}}$$

where $\sigma(X)$ and $\sigma(Y)$ are SPS cross sections for processes X and Y, "*m*" is the symmetry factor $m' = \frac{1}{2}$, if processes "X" and "Y" are identical otherwise one.

Measurement of "Effective area parameter for Double Parton Scattering" (σ_{eff}) provides access to information about hadron structure in transverse plane

DPS and SPS processes for same-sign WW channel

Single Parton Scattering (SPS)

A single pair of partons from colliding hadrons, produce a single hard scattering $pp \rightarrow W^{\pm}W^{\pm}jj + X$ $q\bar{q} \rightarrow W^{\pm}W^{\pm}jj \rightarrow l_1 + l_2 + \nu_1 + \nu_2$

Double Parton Scattering (DPS)

Two independent hard scatterings between two pairs of partons from colliding hadrons

$$pp \to W^{\pm}W^{\pm} + X$$

$$q\bar{q} \to W^{\pm} \to l_1 + \nu_1$$

$$q\bar{q} \to W^{\pm} \to l_2 + \nu_2$$

Ankita Mehta

Motivation for Using DPS in Same-Sign WW channel

- W boson production: benchmark process at LHC
- "σ" for same sign WW production is almost same for DPS and SPS processes
- Previous measurements had lower scale of second hard interaction (~ 40 GeV for W + 2jets, photon + 3jets etc.)
- Current studies involve harder scale for second hard interaction (80 GeV)
- \bullet Could be used to check dependency of σ_{eff} on the scale of second hard interaction
- DPS contributes as a background for new Physics searches (SUSY in same-sign lepton final state) and Higgs sector etc.
- Jonathan. R. Gaunt et al. arXiv: 1003.3953v1
- Stirling et al. arXiv: 1003.3953v1

DPS with same-sign WW analysis in dimuon final state: Signal and Background Processes

Signal

- Consists of two same sign leptons with MET produced from decay of W boson pair
- Three final states possible: ee, $e\mu$ or $\mu\mu$
- Analysis focused on $\mu\mu$ in the final state (charge misidentification : very small (~ 10⁻⁷) for muons)

Diboson processes

- Main Processes: WZ, ZZ, W γ
- Leptons produced from decay of bosons
- One of the leptons escapes detector acceptance

$\mathrm{t}\bar{t}\mathrm{+jets}$

• Leptons coming from leptonic decay of top in association with jets

QCD and W+Jets

- Originating from jets faking as leptons
- Not described properly by MC simulated samples

SPS

• Two leptons and jets in the final state but originating from single hard scattering

Ankita Mehta

QCD@LHC 2016

Event selection and Analysis Strategy

Event Selection

- Two same sign muons with leading and sub-leading $\mu(p_T) > 20$ and 10 GeV/c resp.
- MET > 20 GeV, Third muon veto
- Di-lepton invariant mass $> 20 \text{ GeV}/c^2$, Z veto
- $|p_T(\mu_1) + p_T(\mu_2)| > 45 \text{ GeV/c}$
- $\bullet\,$ Data driven estimate of QCD, W+jets and semi-leptonic decays of top background events
- Prompt muons: From W or Z decay
- Fake muons: From charged hadrons or semi-leptonic heavy-flavor decays
- Categories of backgrounds to be estimated: Fake-Fake and Prompt-Fake

Fakeable Object Method

- Method has been extensively used in Higgs to WW and SUSY searches analyses
- Main idea is to select a control sample of events enriched in the background being estimated
- Extract fake and prompt ratios
- Use an extrapolation factor to relate these events to the background in the signal region

Multi-Variate Analysis (MVA) using Boosted Decision Trees (BDT)

- Unable to extract signal using cut and count method
- MVA based BDT technique has been used to enhance the signal sensitivity

Training and Testing samples

- Signal: DPS OS events for training and SS events from MC simulated sample for testing
- Background: Three major backgrounds (Fake-Fake, Fake-Prompt and WZ

Input Variables

- $\mu_1(p_T), \, \mu_2(p_T)$
- E_T^{Miss}
- $M_T(\mu_1, \mu_2)$
- $\Delta \phi(\mu_1,\mu_2)$
- $\Delta \phi(\mu_1, E_T^{Miss})$
- $\Delta \phi(\mu_2, E_T^{Miss})$
- $\Delta \phi(\mu_1 \mu_2, E_T^{Miss})$
- $M_T(W_{1/2})$

Systematics, Event yields and BDT observable

Source (Effect on Event Yields %)	DPS	SPS	WZ	ZZ	$W\gamma^*$	Fake-Fake	Prompt-Fake
Luminosity	2.5	2.5	2.5	2.5	2.5		-
Pile-up	0.5	0.3	0.5	0.1	0.7		
Trigger & Muon id	0.1	0.1	0.1	0.1	0.1		
MET	0.8	1.4	0.4	4.0	2.2		
Fake-Fake normalization						60	
Prompt-Fake normalization							30
MC normalization	4.0	10.0	10.0	4.0	10.0		

Samle Name	Events \pm stat. \pm syst.
DPS	$15.0 \pm 0.5 \pm 0.7$
SPS	$30 \pm 1 \pm 3$
WZ	$263 \pm 3 \pm 30$
ZZ	$40 \pm 1 \pm 2$
$W\gamma^*$	$86 \pm 3 \pm 9$
Fake-Fake	$381 \pm 4 \pm 229$
Prompt-Fake	$709 \pm 7 \pm 213$
Total	$1523 \pm 9 \pm 314$
Data	1539

Limit on DPS Cross section and Effective cross section

- Expected and observed upper limits on the ratio of measured DPS yield w.r.t the yield expected from MC (signal strength, r) at 95% C.L. have been extracted
- CLs method based on the **modified frequentist** approach is used
- Shape of the BDT variable is used to extract the limit
- All systematics have been added in the datacards used for limit extraction

	$95~\%~\mathrm{CLs}$	
BDT : CMS-PAS-FSQ-13-001		
Expected	r < 2.0	
$Expected \pm 1\sigma$	[1.4, 2.8]	
$Expected \pm 2\sigma$	[1.1, 3.7]	
Observed	r < 1.9	

- Signal strength (ratio of observed to expected signal events), r < 1.9
- Observed value of r, corresponds to $\sigma_{DPS} < 1.12$ pb.
- Considering the two scatterings to be independent and no correlation between interacting partons, σ_{DPS} can be used to put a limit on σ_{eff}
- Limit on σ_{DPS} gives $\sigma_{eff} > 5.91$ mb

Ankita Mehta

Conclusions

- Rich forward physics programme in CMS
- Measurement of UE activity has been done at $\sqrt{s}=0.9,\,2.76,\,7$ and 13 TeV using CMS data
- Results are presented in terms of energy ad particle densities as a function of leading track/jet, fully corrected for detector effects and selection efficiencies
- Measurements are reasonably well described by recent tunes derived from UE activities in fully hadronic final states
- Study of DPS processes has been performed using same sign WW events in dimuon final state
- Shape of the BDT observable is used to set an upper limit on DPS cross section, $\sigma_{WW}^{DPS} < 1.12$ pb at 95 % of confidence level
- Limit on σ_{WW}^{DPS} has been translated to a limit on σ_{eff} using the factorization formula
- $\sigma_{eff} > 5.91 \text{ mb}$

Thank you

Kinematic Distributions-I

• Nice data-MC agreement observed

August 22, 2016

Kinematic Distributions-II

• Nice data-MC agreement observed

Tight muon id

- Normalized $\chi^2 > 10$
- Particle-Flow muon id and Global Muon
- Number of pixel hits > 0
- Muon segments in at least two muon stations
- At least one muon chamber hit included in the global-muon track fit
- $d_{xy} < 2 \text{ mm} \text{ and } d_z < 5 \text{ mm}$
- Cut on number of tracker layers with hits > 5

Energy dependence-I

• PYTHIA8 (Monash, CUETP8M1, CUETP8S1), HERWIG++ (CUETHS1) Monash predicts a better centre-of-mass energy dependence

QCD@LHC 2016

Energy dependence-II

• PYTHIA8 (Monash, CUETP8M1, CUETP8S1), HERWIG++ (CUETHS1) Monash predicts a better centre-of-mass energy dependence

QCD@LHC 2016