CD@LHC 2016

Rick Field

University of Florida

Outline of Wednesday Talk

uantum

22ND-26TH AUGUST INTERNATIONAL CONFERENCE ZURICH

- MB-UE-DPS: Relationships between Min-Bias (MB), the underlying event (UE), and double parton scattering (DPS).
- ATLAS Tune A3: New ATLAS PYTHIA 8 MB tune.
- **ATLAS Z-UE:** The UE in Z-Boson production at 7 TeV.
- **CMS UE Tunes:** Two PYTHIA 6 tunes, three PYTHIA 8 tunes, and one HERWIG++ tune from the CMS "Physics Comparisons & Generator Tunes" subgroup.
- **→ HERWIG 7 Tunes:** Tune CUETHS1-CTEQ6L (the same as the CMS HW++ tune CUETHS1-CTEQ6L except using HW7. HW7 Default Tune using the MMHT2014 PDF.
- **▶** MB&UE@13TeV: Some UE and MB measurements from the LHC and MC comparisons.
- **➡ Simultaneous UE-MB-DPS Tunes:** Can we fit UE data, MB data, and DPS sensitive data with one universal tune?

Proton Proton **CMS**

ATLAS

Page 1

QCD@LHC 2016 Zurich August 22, 2016

Rick Field - Florida/CMS

Monte Carlo Models

Monte Carlo Models

Pythia8 4C	(Author) MB+UE tune with CTEQ6L1	
Pythia8 Monash	(Author) MB+UE tune with NNPDF2.3LO	
Pythia8 CUETP8S1	(CMS) UE tune based on 4C	
Pythia8 CUETP8M1	(CMS) UE tune based on 4C (CMS) UE tune based on Monash	
Pythia8 A2	(ATLAS) Minbias/Central ET flow tune based on 4C	
Herwig++ UE-EE-5C	(Author) UE tune with energy scaling using CTEQ6L1	
Epos LHC	A Cail and Daniel Carlo	
QGSJET-II	ased on Gribov's Pomeron exchange/collective flow approach, use LHC and fixed target experiment data	
epos LHC QGSJET-II Sibyll	to describe hadron and nuclear collisions.	
	944	

ATLAS A3 Tune

Pythia8 A3 Tune

Tom Sykora's Talk

ATL-PHYS-PUB-2016-017

	ATLAS data (mb)	SS (mb)	A3 (mb)
At $\sqrt{s} = 13 \text{TeV}$	68.1 ± 1.4	74.4	69.9
At $\sqrt{s} = 7 \text{ TeV}$	60.3 ± 2.1	66.1	62.3

Using Donnachie-Landshoff diffractive model and NNPDF2.3LO

Much improved total inelastic cross section prediction

Mostly similar level of agreement with Minbias observables 16

- **▶ PYTHIA 6.4 Tune CUETP6S1-CTEQ6L:** Start with Tune Z2*-lep and tune to the CDF PTmax "transMAX" and "transMIN" UE data at 300 GeV, 900 GeV, and 1.96 TeV and the CMS PTmax "transMAX" and "transMIN" UE data at 7 TeV.
- **▶ PYTHIA 6.4 Tune CUETP6S1-HERAPDF1.5LO:** Start with Tune Z2*-lep and tune to the CDF PTmax "transMAX" and "transMIN" UE data at 300 GeV, 900 GeV, and 1.96 TeV and the CMS PTmax "transMAX" and "transMIN" UE data at 7 TeV.

- → PYTHIA 8 Tune CUETP8S1-CTEQ6L: Start with Corke & Sjöstrand Tune 4C and tune to the CDF PTmax "transMAX" and "transMIN" UE data at 900 GeV, and 1.96 TeV and the CMS PTmax "transMAX" and "transMIN" UE data at 7 TeV. Exclude 300 GeV data.
- **▶ PYTHIA 8 Tune CUETP8S1-HERAPDF1.5LO:** Start with Corke & Sjöstrand Tune 4C and tune to the CDF PTmax "transMAX" and "transMIN" UE data at 900 GeV, and 1.96 TeV and the CMS PTmax "transMAX" and "transMIN" UE data at 7 TeV. Exclude 300 GeV data.
- **▶ PYTHIA 8 Tune CUETP8M1-NNPDF2.3LO:** Start with the Skands Monash-NNPDF2.3LO tune and tune to the CDF PTmax "transMAX" and "transMIN" UE data at 900 GeV, and 1.96 TeV and the CMS PTmax "transMAX" and "transMIN" UE data at 7 TeV. Exclude 300 GeV data.
- **→ HERWIG++ Tune CUETHS1-CTEQ6L:** Start with the Seymour & Siódmok UE-EE-5C tune and tune to the CDF PTmax "transMAX" and "transMIN" UE data at 900 GeV, and 1.96 TeV and the CMS PTmax "transMAX" and "transMIN" UE data at 7 TeV. Bug in HW++!

"transMIN" NchgDen

"TransMIN" density more sensitive to MPI & BBR.

- CMS corrected data at 13 TeV on the "transMIN" charged particle density with p_T > 0.5 GeV/c and |η| < 2.0 as defined by the leading charged particle, as a function of the transverse momentum of the leading charged particle, PTmax. The data are compared with the PYTHIA 8 tune CUETP8S1-CTEQ6L, tune CUETP8M1-NNPDF2.3LO, and tune Monash at the generator level.</p>
- → CMS corrected data at 13 TeV on the "transMIN" charged particle density with p_T > 0.5 GeV/c and |η| < 2.0 as defined by the leading charged particle, as a function of the transverse momentum of the leading charged particle, PTmax. The data are compared with the HW++ tune CUETHppS1-CTEQ6L, and the HW7 tune CUETHppS1-CTEQ6L, and the HW7 default tune (MMHT2014) at the generator level.

"transMIN" NchgDen

→ CMS corrected data at 13 TeV on the "transMIN" charged particle density with p_T > 0.5 GeV/c and |η| < 2.0 as defined by the leading charged particle, as a function of the transverse momentum of the leading charged particle, PTmax. The data are compared with the HW++ tune CUETHppS1-CTEQ6L, and the HW7 tune CUETHppS1-CTEQ6L, and the HW7 default tune (MMHT2014) at the generator level.

Fixed in HW7!

"transMIN" NchgDen

"TransMIN" density more sensitive to MPI & BBR.

- CMS corrected data at 13 TeV on the "transMIN" charged particle density with p_T > 0.5 GeV/c and |η| < 2.0 as defined by the leading charged particle, as a function of the transverse momentum of the leading charged particle, PTmax. The data are compared with the PYTHIA 8 tune CUETP8S1-CTEQ6L, tune CUETP8M1-NNPDF2.3LO, and tune Monash at the generator level.
- → CMS corrected data at 13 TeV on the "transMIN" charged particle density with p_T > 0.5 GeV/c and |η| < 2.0 as defined by the leading charged particle, as a function of the transverse momentum of the leading charged particle, PTmax. The data are compared with the PYTHIA 8 tune CUETP8S1-CTEQ6L, tune ATLAS-A3-NNPDF2.3LO, and tune Monash at the generator level

Summary & Conclusions

- **▶** No one QCD Monte-Carlo model describes everything perfectly.
- → The PYTHIA 8 tunes such as CUETP8S1, CUETP8M1, and Monash, describe fairly well both the underlying event and the non-diffractive contribution to MB observables. We need to work on tuning the diffractive models! The ATLAS MB tune A3 does fairly well on the UE, but could do better!
- The CMS HW++ Tune CUETHS1-CTEQ6L fits the UE "plateau" region very well, but cannot use it because of the HW++ "bug". Big change in going from HW++ to HW7! Must re-tune. The HW7 Default Tune is not bad! But could do better!
- **→** Tunes that use NPDF2.3LO PDF (including the new ATLAS Tune A3) do a better job in the forward region due to the low-x gluon distribution.
- ightharpoonup Hard multi-jet production in Z-Boson events at large $P_T(Z)$ is not modeled very well by the QCD Monte-Carlo models (SHERPA is doing the best). Must tune the hard ISR!
- **▶** I do not understand why we cannot simultaneously fit both the UE and the DPS sensitive observables with the same tune. We will continue to work on this.
- **→** The CMS PC> group is actively working of improved PYTHIA 8, HERWIG 7, and SHARPA tunes!

No model describes all the features of the LHC UE, MB, and DPS data!

- → Where do we go from here??
- **→** What do the experimenters need??

What is next?

MB

Central

Do we want universal tunes or separate MB. UE, DPS, Z+Jets, Top, ... tunes??

- What should we tune??
 - **MPI & Color Connections/Reconnections**
 - ISR & FSR
 - Alpha-Strong
 - **Fragmentation & Flavor**
 - The small-x gluon distribution (i.e. the PDF's)

Diffraction

MB

Forward