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Example: Higgs pT from NLO H+jet calculation:

Fixed order for jet prodn procs fails if jets are close/low pT 

Proper description at low pT requires resummation
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The observables for which we expect most advantges from the MINLO method are those
that can be constructed from the momenta of the pseudo-partons after a kT-clustering
procedure carried out until we have n jets, n being the number of radiated partons beyond
the primary process at the Born level (e.g. n = 1 for HJ and ZJ and n = 2 for HJJ and
ZJJ). Strictly speaking it should work for observables built up with the n-jet exclusive cross
section. This is obtained by applying the kT clustering algorithm, discarding or merging
the pseudoparton with the smallest transverse momentum until we are left with exactly n

pseudopartons. In practice, it should also work well for quantities built out of the hardest
n jets, as defined in the inclusive kT algorithm with a reasonable (i.e. not too small) choice
of the R parameter. We remark, however, that quantities that are sensitive to the radiation
in the real event (i.e. to the third parton in HJJ and to the second parton in HJ) the MINLO
method has no great advantage over the standard ones. In fact, no Sudakov suppression is
included for the radiated parton in the real cross section. On the other hand, the POWHEG
method provides specifically these Sudakov form factors, while maintaining NLO accuracy.
Therefore, the MINLO method combined with POWHEG yields the fully resummed results for
all quantities. We expect that in this framework the POWHEG results improved with the
MINLO method will ease the task of merging multijet samples, by providing associated jet
cross section that merge more smoothly with those with smaller multiplicity.

It is possible to conceive observables for which the MINLO method includes double
logarithms (at the NNLO level and beyond) that are actually not correct [32]. At the end
of Section 5.2.1 we will consider two such examples.

5.2 Higgs boson production

5.2.1 Higgs boson production in association with one jet

We begin by considering the MINLO improved HJ calculation. In fig. 2 we show the transverse
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Figure 2: Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX
ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = pH

T (HJ
RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the
NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the
central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.
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The observables for which we expect most advantges from the MINLO method are those
that can be constructed from the momenta of the pseudo-partons after a kT-clustering
procedure carried out until we have n jets, n being the number of radiated partons beyond
the primary process at the Born level (e.g. n = 1 for HJ and ZJ and n = 2 for HJJ and
ZJJ). Strictly speaking it should work for observables built up with the n-jet exclusive cross
section. This is obtained by applying the kT clustering algorithm, discarding or merging
the pseudoparton with the smallest transverse momentum until we are left with exactly n

pseudopartons. In practice, it should also work well for quantities built out of the hardest
n jets, as defined in the inclusive kT algorithm with a reasonable (i.e. not too small) choice
of the R parameter. We remark, however, that quantities that are sensitive to the radiation
in the real event (i.e. to the third parton in HJJ and to the second parton in HJ) the MINLO
method has no great advantage over the standard ones. In fact, no Sudakov suppression is
included for the radiated parton in the real cross section. On the other hand, the POWHEG
method provides specifically these Sudakov form factors, while maintaining NLO accuracy.
Therefore, the MINLO method combined with POWHEG yields the fully resummed results for
all quantities. We expect that in this framework the POWHEG results improved with the
MINLO method will ease the task of merging multijet samples, by providing associated jet
cross section that merge more smoothly with those with smaller multiplicity.

It is possible to conceive observables for which the MINLO method includes double
logarithms (at the NNLO level and beyond) that are actually not correct [32]. At the end
of Section 5.2.1 we will consider two such examples.

5.2 Higgs boson production

5.2.1 Higgs boson production in association with one jet

We begin by considering the MINLO improved HJ calculation. In fig. 2 we show the transverse
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Figure 2: Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX
ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = pH

T (HJ
RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the
NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the
central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.
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The observables for which we expect most advantges from the MINLO method are those
that can be constructed from the momenta of the pseudo-partons after a kT-clustering
procedure carried out until we have n jets, n being the number of radiated partons beyond
the primary process at the Born level (e.g. n = 1 for HJ and ZJ and n = 2 for HJJ and
ZJJ). Strictly speaking it should work for observables built up with the n-jet exclusive cross
section. This is obtained by applying the kT clustering algorithm, discarding or merging
the pseudoparton with the smallest transverse momentum until we are left with exactly n

pseudopartons. In practice, it should also work well for quantities built out of the hardest
n jets, as defined in the inclusive kT algorithm with a reasonable (i.e. not too small) choice
of the R parameter. We remark, however, that quantities that are sensitive to the radiation
in the real event (i.e. to the third parton in HJJ and to the second parton in HJ) the MINLO
method has no great advantage over the standard ones. In fact, no Sudakov suppression is
included for the radiated parton in the real cross section. On the other hand, the POWHEG
method provides specifically these Sudakov form factors, while maintaining NLO accuracy.
Therefore, the MINLO method combined with POWHEG yields the fully resummed results for
all quantities. We expect that in this framework the POWHEG results improved with the
MINLO method will ease the task of merging multijet samples, by providing associated jet
cross section that merge more smoothly with those with smaller multiplicity.

It is possible to conceive observables for which the MINLO method includes double
logarithms (at the NNLO level and beyond) that are actually not correct [32]. At the end
of Section 5.2.1 we will consider two such examples.

5.2 Higgs boson production

5.2.1 Higgs boson production in association with one jet

We begin by considering the MINLO improved HJ calculation. In fig. 2 we show the transverse
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Figure 2: Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX
ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = pH

T (HJ
RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the
NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the
central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.
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Figure 2: Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX
ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = pH

T (HJ
RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the
NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the
central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.
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central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.
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The observables for which we expect most advantges from the MINLO method are those
that can be constructed from the momenta of the pseudo-partons after a kT-clustering
procedure carried out until we have n jets, n being the number of radiated partons beyond
the primary process at the Born level (e.g. n = 1 for HJ and ZJ and n = 2 for HJJ and
ZJJ). Strictly speaking it should work for observables built up with the n-jet exclusive cross
section. This is obtained by applying the kT clustering algorithm, discarding or merging
the pseudoparton with the smallest transverse momentum until we are left with exactly n

pseudopartons. In practice, it should also work well for quantities built out of the hardest
n jets, as defined in the inclusive kT algorithm with a reasonable (i.e. not too small) choice
of the R parameter. We remark, however, that quantities that are sensitive to the radiation
in the real event (i.e. to the third parton in HJJ and to the second parton in HJ) the MINLO
method has no great advantage over the standard ones. In fact, no Sudakov suppression is
included for the radiated parton in the real cross section. On the other hand, the POWHEG
method provides specifically these Sudakov form factors, while maintaining NLO accuracy.
Therefore, the MINLO method combined with POWHEG yields the fully resummed results for
all quantities. We expect that in this framework the POWHEG results improved with the
MINLO method will ease the task of merging multijet samples, by providing associated jet
cross section that merge more smoothly with those with smaller multiplicity.

It is possible to conceive observables for which the MINLO method includes double
logarithms (at the NNLO level and beyond) that are actually not correct [32]. At the end
of Section 5.2.1 we will consider two such examples.

5.2 Higgs boson production

5.2.1 Higgs boson production in association with one jet

We begin by considering the MINLO improved HJ calculation. In fig. 2 we show the transverse
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Figure 2: Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX
ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = pH

T (HJ
RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the
NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the
central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.
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where the explicit Hnm coefficients are documented in the appendix A.2. Since the resum-

mation formula we used to derive this fixed order expansion was NNLLσ accurate, it only

predicts part of the full N3LLσ coefficient, ∼ ᾱ2
S, thus we have a singular remainder term,
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where R̃21 = 0 and we proceed under the assumption that the coefficient R̃20 is generally

unknown to us. We introduce the strange R̃21 = 0 term here in order to make the transition

to the discussion on merging by three units of multiplicity, in section 3, a little bit cleaner;

there our formulae are applied in regions where they lose NNLLσ accuracy. The dσSR term

can be considered as a valid parametrization of our ignorance of the v → 0 singular part

of the NLO cross section. Importantly, since dσS alone is invariant under µR/µF shifts, up

to NNLO terms, R̃21 and R̃20 have no µR or µF dependence.

In practice, the Minlo prescription consists of a series of clearly defined, straightfor-

ward, operations on the fully differential input NLO calculations. These can be summarized

as renormalization and factorization scale setting, together with matching to the Sudakov

form factor (exp [−R (v) ], eq. (2.4)). To ease readibility, we have deferred the precise

details of these steps to the appendix A.3. We suffice to say that if one carefully traces

the effects of the latter operations on the NLO cross section, in particular on the singular

parts, dσS and dσSR, neglecting O
(
N4LLσ

)
terms, one finds the resulting Minlo cross

section can be written as

dσM = dσR + dσMR + dσF , (2.22)

where dσR is the resummation cross section, eq. (2.1), a total derivative, and dσMR holds

all remaining large logs:
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In eq. (2.23) the KR/F ∈
[
1
2 , 2
]
denote rescaling factors applied to the renormalization and

factorization scales, µR/F , defined at the start of the Minlo procedure (see A.3 for details),

for the purposes of assessing scale uncertainties. The last term in eq. (2.22), dσF , is more

precisely dσMF , the replacement dσMF → dσF being made on the grounds that the Minlo

operations preserve the fixed order expansion up to and including NLO terms, as well as

the fact that dσF (and dσMF) is finite for v → 0.

Since R̃21 = 0, the Minlo jet resolution spectra in eqs. (2.22) are equal to the NNLLσ

jet resolution spectrum in section 2.2 (dσR) up to N3LLσ differences.
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where the explicit Hnm coefficients are documented in the appendix A.2. Since the resum-

mation formula we used to derive this fixed order expansion was NNLLσ accurate, it only

predicts part of the full N3LLσ coefficient, ∼ ᾱ2
S, thus we have a singular remainder term,
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where R̃21 = 0 and we proceed under the assumption that the coefficient R̃20 is generally

unknown to us. We introduce the strange R̃21 = 0 term here in order to make the transition

to the discussion on merging by three units of multiplicity, in section 3, a little bit cleaner;

there our formulae are applied in regions where they lose NNLLσ accuracy. The dσSR term

can be considered as a valid parametrization of our ignorance of the v → 0 singular part

of the NLO cross section. Importantly, since dσS alone is invariant under µR/µF shifts, up

to NNLO terms, R̃21 and R̃20 have no µR or µF dependence.

In practice, the Minlo prescription consists of a series of clearly defined, straightfor-

ward, operations on the fully differential input NLO calculations. These can be summarized

as renormalization and factorization scale setting, together with matching to the Sudakov

form factor (exp [−R (v) ], eq. (2.4)). To ease readibility, we have deferred the precise

details of these steps to the appendix A.3. We suffice to say that if one carefully traces

the effects of the latter operations on the NLO cross section, in particular on the singular

parts, dσS and dσSR, neglecting O
(
N4LLσ

)
terms, one finds the resulting Minlo cross

section can be written as

dσM = dσR + dσMR + dσF , (2.22)

where dσR is the resummation cross section, eq. (2.1), a total derivative, and dσMR holds

all remaining large logs:
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In eq. (2.23) the KR/F ∈
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1
2 , 2
]
denote rescaling factors applied to the renormalization and

factorization scales, µR/F , defined at the start of the Minlo procedure (see A.3 for details),

for the purposes of assessing scale uncertainties. The last term in eq. (2.22), dσF , is more

precisely dσMF , the replacement dσMF → dσF being made on the grounds that the Minlo

operations preserve the fixed order expansion up to and including NLO terms, as well as

the fact that dσF (and dσMF) is finite for v → 0.

Since R̃21 = 0, the Minlo jet resolution spectra in eqs. (2.22) are equal to the NNLLσ

jet resolution spectrum in section 2.2 (dσR) up to N3LLσ differences.
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Expanding the resummed differential cross section up to and including O
(
ᾱ2

S

)
terms, we

obtain
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where the explicit Hnm coefficients are documented in the appendix A.2. Since the resum-

mation formula we used to derive this fixed order expansion was NNLLσ accurate, it only

predicts part of the full N3LLσ coefficient, ∼ ᾱ2
S, thus we have a singular remainder term,
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where R̃21 = 0 and we proceed under the assumption that the coefficient R̃20 is generally

unknown to us. We introduce the strange R̃21 = 0 term here in order to make the transition

to the discussion on merging by three units of multiplicity, in section 3, a little bit cleaner;

there our formulae are applied in regions where they lose NNLLσ accuracy. The dσSR term

can be considered as a valid parametrization of our ignorance of the v → 0 singular part

of the NLO cross section. Importantly, since dσS alone is invariant under µR/µF shifts, up

to NNLO terms, R̃21 and R̃20 have no µR or µF dependence.

In practice, the Minlo prescription consists of a series of clearly defined, straightfor-

ward, operations on the fully differential input NLO calculations. These can be summarized

as renormalization and factorization scale setting, together with matching to the Sudakov

form factor (exp [−R (v) ], eq. (2.4)). To ease readibility, we have deferred the precise

details of these steps to the appendix A.3. We suffice to say that if one carefully traces

the effects of the latter operations on the NLO cross section, in particular on the singular

parts, dσS and dσSR, neglecting O
(
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terms, one finds the resulting Minlo cross

section can be written as

dσM = dσR + dσMR + dσF , (2.22)

where dσR is the resummation cross section, eq. (2.1), a total derivative, and dσMR holds
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. (2.23)

In eq. (2.23) the KR/F ∈
[
1
2 , 2
]
denote rescaling factors applied to the renormalization and

factorization scales, µR/F , defined at the start of the Minlo procedure (see A.3 for details),

for the purposes of assessing scale uncertainties. The last term in eq. (2.22), dσF , is more

precisely dσMF , the replacement dσMF → dσF being made on the grounds that the Minlo

operations preserve the fixed order expansion up to and including NLO terms, as well as

the fact that dσF (and dσMF) is finite for v → 0.

Since R̃21 = 0, the Minlo jet resolution spectra in eqs. (2.22) are equal to the NNLLσ

jet resolution spectrum in section 2.2 (dσR) up to N3LLσ differences.
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But H+1-jet spectrum known analytically to high accuracy

Analytic control allows to formulate Sudakov s.t.
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Conventional NLO H prodn: red

MiNLO′  H+1-jet+parton shower: green

Agree with each other ~ to within the line thickness′

′MiNLO  H+1-jet
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MiNLO′  needed radn spectrum at N3LLσ to NLO

For MiNLO ➝ MiNLO′  H+1-jet we put in N3LLσ term ~`B2’

Known for pT of Boson/y01 jet rate in W/Z/H/HW/HZ prodn

Generally we don’t know `pT’ ➝ 0 divergent terms to NLO

Then what?

Extending the MiNLO method



Can manipulate this to get approx Sudakov coefficients: 

Earlier we computed the difference w.r.t. conventional 
inclusive NLO that unknown/uncontrolled terms give rise to:

Extending the MiNLO method
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If MiNLO Sudakov had all NLLσ terms, neglecting N3LLσ, 
can write MiNLO′  Sudakov equivalently as

Extending the MiNLO method

We implement this as a reweighting of the MiNLO xsecn
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Traded problem of computing N2/3LLσ MiNLO′ 
   Sudakov terms for that of computing NLO′xsecn for
   the process with one less jet [differential in Born vars]

We arrived at a numerical recipe for MiNLO ➝  MiNLO′ 

Extending the MiNLO method

Minimal requirement for Sudakov in initial MiNLO is NLLσ



MiNLO′  H+2-jets: red, formally NNLO

HNNLOPS: green, formally NNLO

MiNLO H+2-jets: blue, formally not quite LO

We do not claim that variation of ⇢, together with the renormalization and factorization scales,
gives a realistic estimate of theoretical uncertainties in regions where large Sudakov logarithms
occur. We content ourselves to say that ⇢ is an unphysical technical parameter introduced in our
procedure, with systematics associated to it. We believe our variation of ⇢, as described above, is
a conservative estimate of these systematics, and we find them to be very much negligible.

Finally, statistical uncertainties are shown as vertical lines, however, for the most part these
are negligible to the point of being invisible.

Inclusive quantities

In figure 1 we plot the rapidity of the Higgs boson; no cuts have been applied to the final state. The
Hjj? and Nnlops central predictions agree with one another to within 2%, with their uncertainty
bands exhibiting a similar level of agreement. This indicates that the method and its implementation
are performing as expected (eqs. 2.40-3.1). The uncorrected Hjj-Minlo prediction in blue is 10%
away from the central Nnlops results, but this is fortuitous given that the scale uncertainty on
the former is ⇠ 30%. Moreover, given our theoretical analysis in the preceding sections of this
paper, neglecting the sub-leading NLL

�

�S
1

terms, we expect the Hjj-Minlo prediction here is
only LO accurate, so the ⇠ 30% uncertainty assigned to it is arguably too small. The uncertainty
band associated to varying the ⇢ parameter as described at the beginning of this subsection 4.2 is
so small that it is concealed within thickness of the black reference line in the upper right plot;
indeed since this quantity is fully inclusive in L

12

, by construction of the procedure (sect. 2.6), the
only way any such uncertainty could manifest here is as a result of technical problems and/or some
statistical issues.
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Figure 1. Rapidity of the Higgs boson as predicted by the Hjj-Minlo (Hjj, blue), Nnlops (dark green)
and improved Hjj-Minlo (Hjj?, red) generators.

In figure 2 we plot the Higgs boson transverse momentum spectrum. As with the Higgs boson
rapidity distribution no cuts have been applied to the final state. Exceptionally, in this figure we
compare Hjj? and Hjj to the NNLL+NNLO predictions of the Hqt program [66–70], instead
of Nnlops. Comparing Nnlops (not shown) and Hjj? we find the two generators agree with
one another to within 3% throughout the spectrum, except for the region pT . 5GeV, where the
difference rises up to 15% in the pT < 2GeV region. The latter differences owe to the finite size of the
bins in our interpolation grids, coupled with the fact that the distribution is changing very rapidly for
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MiNLO′  H+2-jets: red, formally NLO

HNNLOPS: green, formally NLO

MiNLO H+2-jets: blue, formally not quite LO 
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Figure 5. Leading jet transverse momentum spectrum, for anti-kt-jets with radius parameter R = 0.4.

predictions agree very well throughout the spectrum, with the procedure correcting well for sub-
stantial (±15%) shape differences between the unimproved Hjj-Minlo result and the more accurate
Nnlops prediction. Regarding differences between the Nnlops and Hjj? results in the pT . 5GeV

region, the explanation here is the same as for the case of the Higgs boson pT spectrum, namely, that
the granularity in our discretized implementation of the �BJ phase space is not sufficiently fine to
cope with the rapidly changing distribution for pT . 5GeV. We reiterate that this region is under
limited theoretical control anyway. Indeed, rather than seek improved agreement of Nnlops and
Hjj? in the latter murky region, we might prefer to lessen the 3-5% deviation in the neighbourhood
60  pT  80 GeV. This region, where the Hjj-Minlo and Nnlops lines intersect, appears to
be where the pT derivative of the difference between the two predictions is changing most rapidly,
i.e. the numerator of � (�BJ) in eq. 2.35/3.11. It should therefore be possible to improve agreement
between the Nnlops and Hjj? results in this region by, for example, making use of (irregular)
optimized grids and interpolation methods which can work on them. Overall, notwithstanding our
unsophisticated implementation, agreement between the Nnlops and Hjj? predictions is very sat-
isfactory, providing significant improvement across the whole pT spectrum relative to the original
Hjj-Minlo generator.

In fig. 6 we plot Hjj, Hjj? and NNLL+NNLO JetVHeto [37, 47] predictions for the jet
veto efficiency, "(pT,veto), defined as the cross section for Higgs boson production events containing
no jets with transverse momentum greater than pT,veto, divided by the respective total inclusive
cross section. In the left-hand column, in the red shaded area, we show the scale uncertainty
band predicted by the Hjj? simulation, with the central NNLL+NNLO resummed prediction of
JetVHeto superimposed in green (matching scheme-(a), µR = µF = µQ = mH, µQ being the
resummation scale). The lower panel shows the ratio with respect to the Hjj? prediction obtained
with its central scale choice. On the right we have made the same plots as on the left but with
the JetVHeto predictions replacing those of the Hjj? and vice-versa. The uncertainty band in
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here is considerably smaller than that shown in ref. [37]. We restricted the JetVHeto uncertainty
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Additionally, for the case of jet rapidity distributions, in figures 12 and 13, the jets are required to
pass a transverse momentum threshold of 25 GeV.
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Figure 10. Transverse momentum spectrum of the second jet.

The transverse momentum spectrum of the second hardest jet is plotted in fig. 10. In all
simulations, before (not shown) and after showering, the distribution peaks in the bin at 3GeV 
pJ2

T  6GeV. Moving upwards from the first bin at pJ2
T = 0 GeV the Hjj? (red) and Hjj-Minlo

(blue) predictions start off with a 20% difference, which smoothly and monotonically diminishes,
with the two distributions coalescing at pJ2

T ⇡ 20 GeV. For higher transverse momenta, the Hjj?

and Hjj-Minlo histograms become indistinguishable from one another. Meanwhile, in the same
region, the Nnlops result starts off with a 15% discrepancy between it and the latter simulations,
which rises with the transverse momentum. Nevertheless, the Nnlops prediction is within the
margins set by all renormalization and factorization scale uncertainty bands.

The behaviour of the Hjj? and Hjj-Minlo predictions relative to one another is as intended.
In general, the Hjj-Minlo prediction is NLO accurate in the description of pJ2

T , and so it is of
course desirable that the Hjj? tends to that result in regions where Sudakov logarithms at higher
orders are not large, i.e. away from the Sudakov peak.18 In the vicinity of the peak, large logarithms
enter at every order in perturbation theory. In this feasibility study we claim to control these large
logarithms nominally at just LL/NLL

�

accuracy. The improved Hjj? prediction works so as to
implement unitarity for the 0- and 1-jet inclusive cross sections by ascribing the mismatch there to
missing NNLL

�

Sudakov logarithms beyond NLO. The increasing difference of Hjj? with respect
to Hjj-Minlo in the region pJ2

T  20 GeV, up onto the Sudakov peak, roughly reflects this NNLL

�

‘profiling’ of the ⇠10-12% excess in the Nnlops total inclusive cross section over that of Hjj-Minlo
(see e.g. figs. 1-3).

In figure 11 we plot the transverse momentum of the third jet. In this case there is, coinci-
dentally, good agreement of all predictions in the moderate to high pT domain. This is somewhat
fortuitous in the context of the Nnlops simulation, since the third jet in that simulation is gen-
erated exclusively in the parton shower approximation, whereas in Hjj? and Hjj-Minlo it has a
matched matrix element-parton shower description. With a view to validating our ideas, what is
more relevant is the observation of the relative behaviour of Hjj? and Hjj-Minlo. Here we see,

18In such regions where it is meaningful to quantify accuracy in the context of just fixed order perturbation theory,
we remind that the Nnlops prediction for p

J2
T is, by contrast, only LO accurate.
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MiNLO

MiNLO transitions to the resummed calcn at low pT 

MiNLO finite in all ph.space: no need of generation cuts

The observables for which we expect most advantges from the MINLO method are those
that can be constructed from the momenta of the pseudo-partons after a kT-clustering
procedure carried out until we have n jets, n being the number of radiated partons beyond
the primary process at the Born level (e.g. n = 1 for HJ and ZJ and n = 2 for HJJ and
ZJJ). Strictly speaking it should work for observables built up with the n-jet exclusive cross
section. This is obtained by applying the kT clustering algorithm, discarding or merging
the pseudoparton with the smallest transverse momentum until we are left with exactly n

pseudopartons. In practice, it should also work well for quantities built out of the hardest
n jets, as defined in the inclusive kT algorithm with a reasonable (i.e. not too small) choice
of the R parameter. We remark, however, that quantities that are sensitive to the radiation
in the real event (i.e. to the third parton in HJJ and to the second parton in HJ) the MINLO
method has no great advantage over the standard ones. In fact, no Sudakov suppression is
included for the radiated parton in the real cross section. On the other hand, the POWHEG
method provides specifically these Sudakov form factors, while maintaining NLO accuracy.
Therefore, the MINLO method combined with POWHEG yields the fully resummed results for
all quantities. We expect that in this framework the POWHEG results improved with the
MINLO method will ease the task of merging multijet samples, by providing associated jet
cross section that merge more smoothly with those with smaller multiplicity.

It is possible to conceive observables for which the MINLO method includes double
logarithms (at the NNLO level and beyond) that are actually not correct [32]. At the end
of Section 5.2.1 we will consider two such examples.

5.2 Higgs boson production

5.2.1 Higgs boson production in association with one jet

We begin by considering the MINLO improved HJ calculation. In fig. 2 we show the transverse
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Figure 2: Transverse momentum spectrum of the Higgs boson, computed with the POWHEG BOX
ggH generator (H PWG), the HJ-MINLO result (HJ MINLO), the HJ default µF = µR = pH

T (HJ
RUN), and HJ with µF = µR = MH (HJ FXD). The right panel shows the ratio of each of the
NLO HJ results with respect to the NLO ggH POWHEG simulation with the band either side of the
central values indicating the combined renormalization and factorization scale uncertainty. Results
are shown for LHC collisions at 7 TeV and a Higgs mass of 120 GeV. No cuts are applied.
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Question: what’s MiNLO accuracy for inclusive quantities?



MiNLO′ simultaneously NLO for H & H+1-jet prodn 

MiNLO′ also NLO when Born jet in H+1-jet integrated out!

Integrate out all the radiation [including jet in the Born]:

This is NLO merging but without actually merging anything

Relies on analytic control of pT ➝ 0 divergent terms to NLO
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NLO+parton shower H prodn: red

MiNLO′  H+1-jet+parton shower: green

NLO+parton shower H prodn LO here, MiNLO′ NLO here
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By construction the method makes MiNLO′  H+2-jets 
identical to the target when 2nd jet integrated out [y12]

Can MiNLO′  H+2-jets return NLO accuracy for H 
inclusive as well as H+1-jet?

Extending the MiNLO method
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➝

So if you `target’ HNNLOPS instead of conventional NLO 
H+1-jet you’ll get NNLO H inclusive and NLO H+1-jet

Additional y01 Sudakov keeps coeff O(1) also for y01 ➝ 0

target

coefficient



correlate closely with similar ones in the transverse momentum spectra of the individual W bosons
themselves, for obvious reasons. We observe that the scale-uncertainty band of the WW code is
once again smaller than the corresponding uncertainty for the WWj-Minlo code. As discussed
above, the latter code gives a more reliable estimate of the size of higher-order corrections which
are not accounted for in our prediction. Remarkably similar trends to those shown here can be seen
in the comparisons of the Powheg W and Z codes to Wj-Minlo and Zj-Minlo respectively, for
the W and Z pT spectra, in ref. [53].

In fig. 3 we show the rapidity of the W+W� pair. As in the case of the W+ mass distribution
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Figure 3. Rapidity of the W+W� system as predicted by the WW (red) and WWj-Minlo (dark green)
generators.

(fig. 1), the WW central prediction lies within the uncertainty of the WWj-Minlo generator. On
the other hand, at high rapidities the WWj-Minlo predictions are lower than the WW ones.
Here again, the pattern of differences is quantitatively similar to that found in comparing Z and
Zj-Minlo predictions, for the Z rapidity spectrum in the Minlo0 implementations of ref. [53]. We
add that the high-rapidity regions here, proportionally, contain more low pT,W+W� events than the
central domain. Thus, we suggest that the deviations seen at high rapidities, between the WW and
WWj-Minlo predictions, are strongly correlated with the comparable deviations in the pT,W+W�

spectrum of fig. 2. Similar behaviour is found for the rapidity distributions of the individual W±

bosons, as well as their decay products.

The missing transverse momentum (pT,miss) distribution is shown in fig. 4. Not surprisingly,

Figure 4. Missing transverse momentum as predicted by the WW (red) and WWj-Minlo (dark green)
generators.
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observable. This is explained as follows: in this region the scale variation for the WW predictions
is due to the scale dependence of the B̄ function, which is a NLO-accurate quantity. At larger pT

values, where bornzerodamp is active, the band slowly thickens, giving an uncertainty of ±10%.
Another interesting observable to consider is the transverse momentum spectrum of the second

0.5

1.0

Figure 8. Second jet transverse momentum as predicted by the WW (red) and WWj-Minlo (dark
green) generators.

hardest jet, which we show in fig. 8. Not surprisingly, here we observe huge differences among the
two generators. In the WW code only the hardest radiation is generated by Powheg. Hence the
particles that constitute the second jet are only produced via parton showering: when large pT,j2

regions are probed, the WW code is bound to predict an unreliable cross section (too small in this
case). The WWj-Minlo prediction is instead more accurate, since the matrix elements describing
the production of two separated outgoing partons are included exactly, although only at LO. The
LO nature of this result is reflected in the relatively large uncertainty band.

After having shown how the WWj-Minlo generator compares against the WW one for jet
observables, we find it useful to compare, for the same observables, WWj-Minlo against a NLO
computation (without any Minlo improvement) for the process pp ! W+W�j.12 These compar-
isons are shown in fig. 9. In the left panel we observe that the WWj-Minlo prediction for the

Figure 9. First and second jet transverse momentum as predicted by the WWj-Minlo (dark green)
generators compared against a fixed-order NLO computation for the same process (WWj [NLO], blue).

12This result was obtained running at fixed-order the WWj-Minlo code, switching off the Minlo machinery but
including a 10 GeV generation cut for the hardest parton transverse momentum. Renormalization and factorization
scales have been set equal to 2mW .
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isons are shown in fig. 9. In the left panel we observe that the WWj-Minlo prediction for the

Figure 9. First and second jet transverse momentum as predicted by the WWj-Minlo (dark green)
generators compared against a fixed-order NLO computation for the same process (WWj [NLO], blue).

12This result was obtained running at fixed-order the WWj-Minlo code, switching off the Minlo machinery but
including a 10 GeV generation cut for the hardest parton transverse momentum. Renormalization and factorization
scales have been set equal to 2mW .
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MiNLO′ recently extended to procs w. non-trivial virtuals



H+1-jet MiNLO′
0-jet:    NLO

1-jet:    NLO

2-jet:    LO

All else: no predictions

NNLOPS

H+1-jet NLO

0-jet:    unphysical

1-jet:    NLO

2-jet:    LO

All else: no predictions

H+1-jet MiNLO′ w. PS
0-jet:    NLO

1-jet:    NLO

2-jet:    LO

All else: PS

NNLOPS

0-jet:    NNLO

1-jet:    NLO

2-jet:    LO

All else: PS



Bottleneck for NNLOPS is making a NLO x NLO MiNLO′

             to NLO       W(Φ) = 1+O(α )dσMiNLO
dΦ

dσNNLO
dΦ = 

In its most basic form:
dσNNLOPS = dσMiNLO x W(Φ)   with    

dσNNLO
dΦ
dσMiNLO
dΦ

W(Φ) = 

Multiplying dσMiNLO  by W(Φ) to get NNLO accuracy 

doesn’t spoil NLO already in dσMiNLO for ≥ 1 jet obs 

If              W(Φ) spoils NLO dσMiNLO for ≥ 1 jetdσMiNLO
dΦ

dσNNLO
dΦ ≠ 

NNLOPS very quickly [vanilla]

Of course, the NNLO calcn is the really hard part! We fully depend on NNLO friends for this.

2
S



two calculations are in full agreement, both for their central values and scale uncertainty
envelopes; the latter being approximately ±10% in size.
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Figure 1. Comparison of the Nnlops and Hnnlo results for the Higgs fully inclusive rapidity
distribution. The Hnnlo central scale is µF = µR = mH/2, and its error band is the 7-point scale
variation envelope. On the left (right) plot only the Nnlops (Hnnlo) uncertainty is displayed. The
lower left (right) panel shows the ratio with respect to the Nnlops (Hnnlo) prediction obtained
with its central scale choice.

4.2 Higgs boson transverse momentum

Here, to begin with, we wish to discuss the evolution of the Nnlops program’s prediction,
at each of the main stages of the simulation process, as part of its validation and in order to
provide relevant background, before comparing it to state-of-the-art resummed calculations.
In figure 2 we show how the Higgs boson transverse momentum spectrum is affected at the

Figure 2. Predictions for the Higgs boson transverse momentum spectrum: the conventional NLO
QCD prediction from Hnnlo with µR = µF = mH (black), the Hj-Minlo enhanced fixed order
prediction (red), the Hj-Minlo result at the Les Houches event level (blue), and the Hj-Minlo
result after showering (green). The lower panel shows the ratio relative to the latter.
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Conventional NNLO H prodn: red [Catani, Grazzini, Sargsyan]

HNNLOPS: green

HNNLOPS = Conventional NNLO H prodn
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Higgs rapidity
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Figure 7. The jet veto efficiency, " (pT,veto), is defined as the cross section for Higgs boson pro-
duction events containing no jets with transverse momentum greater than pT,veto, divided by the
respective total inclusive cross section. In both plots shown above we display the jet veto efficiency
as a function of the cut pT,veto. In the green shaded area, one can see the scale uncertainty band
obtained from the Nnlops simulation (see Sect. 3 for details regarding this uncertainty estimate),
with the NNLL+NNLO uncertainty band from the JetVHeto program [57, 58] superimposed in
red. The lower pane displays the same quantities as a ratio with respect to the central Nnlops
prediction. The Nnlops predictions here were obtained with the default profile function (� = 1

2 )
used in determining the NNLO reweighting W (y, pT).

1.0. In the left-hand column, in the red shaded area, we show the scale uncertainty band
predicted by the Nnlops simulation, with the central NNLL+NNLO resummed prediction
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Figure 7. The jet veto efficiency, " (pT,veto), is defined as the cross section for Higgs boson pro-
duction events containing no jets with transverse momentum greater than pT,veto, divided by the
respective total inclusive cross section. In both plots shown above we display the jet veto efficiency
as a function of the cut pT,veto. In the green shaded area, one can see the scale uncertainty band
obtained from the Nnlops simulation (see Sect. 3 for details regarding this uncertainty estimate),
with the NNLL+NNLO uncertainty band from the JetVHeto program [57, 58] superimposed in
red. The lower pane displays the same quantities as a ratio with respect to the central Nnlops
prediction. The Nnlops predictions here were obtained with the default profile function (� = 1

2 )
used in determining the NNLO reweighting W (y, pT).

1.0. In the left-hand column, in the red shaded area, we show the scale uncertainty band
predicted by the Nnlops simulation, with the central NNLL+NNLO resummed prediction
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Extending MiNLO ➝  MiNLO′  must also respect this, i.e. 
can only affect MiNLO by relative α  terms2

S

In the beginning we saw the MiNLO matching is 
constructed s.t. NLO accuracy is preserved 

Extending the MiNLO method 
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Since denominator is guaranteed to be O(α) numerator 
must therefore be as well:  
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Demands MiNLO Sudakov in         be already NLLσ correct
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d�M

d�dL
=

d�LO

d�
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3/2
S

r
⇡

2

1p
⌃`C`

eR21 6= 0 :

ˆ
L

d�MR

d�dL
= �d�LO

d�
↵̄S
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⌃`C`
(1 +O(

p
↵̄S))

eR21 6= 0 :

d�NLO

d�
� d�M

d�
=

d�LO

d�
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eR21

⌃`C`
(1 +O(

p
↵̄S))

5

I.E. coeff of α L  must be O(1) and not e.g. O(1/√α) here:2
S

2
S



Test: MiNLO ➝ MiNLO′ for H/W/Z+2-jets

Derived CAESAR N2LLσ resummation of y01 and y12 kT jet 
rates in H+jets production

Extending the MiNLO method

This reqd analytic N2LLσ multiple emission correction in 
Sudakov form factor [ `F2 ’ ] for kT jet rates

J
H
E
P
0
5
(
2
0
1
6
)
0
4
2

kinematics of the underlying hard scattering (Φ) [57]. To NLL/NNLLσ accuracy F (R′) = 1

for the v01 resummation (B-production). The combination of factors F2 (2G12)
2 ᾱ2

SL
2 is

the next-to-leading term4 in the fixed order expansion of the F (R′) function and as such

defines F2. From refs. [38, 57, 58] we derive the following process-independent expression

for F2, for jet rates in the exclusive kt algorithm

F2 = −π2

16

∑n
ℓ=1C

2
ℓ −

∑ni
ℓ=1C

2
ℓ

(
∑n

ℓ=1Cℓ)
2 , (2.10)

We have tested this expression using the numerical implementation of the Caesar for-

malism for resummation of y23 in hadronic jet production and y12 in hadronic Z boson

production. With the exception of the qg and gq channels in Z production, for which only

3% differences were found, our F2 expression yielded agreement with the Caesar program

at the per mille level in all tested processes and channels.

In the resummation formula, eqs. (2.2)–(2.1), for the PDF dependent pieces we have

adopted the notation

q
(
x, µ2

F

)
=

⎛

⎜⎜⎜⎜⎝

qu
(
x, µ2

F

)

qū
(
x, µ2

F

)

...

g
(
x, µ2

F

)

⎞

⎟⎟⎟⎟⎠
, P (x) =

⎛

⎜⎜⎜⎜⎝

P (0)
qq (x) 0 · · · P (0)

qg (x)

0 P (0)
qq (x)

...
. . .

P (0)
gq (x) P (0)

gg (x)

⎞

⎟⎟⎟⎟⎠
, (2.11)

where P (0)
ij (x) are the regularized leading order Altarelli-Parisi splitting functions (see

e.g. appendix A.3 of ref. [55]). We also identify q(ℓ)
(
xℓ, µ2

)
= q(ℓ)

i

(
xℓ, µ2

)
, with i the

flavour of the hard parton with momentum pℓ, and we employ the following notation to

denote matrix multiplication and convolution in x-space

[P⊗ q ]i
(
x, µ2

)
=

∫ 1

x

dz

z
Pij

(x
z

)
qj

(
z, µ2

)
=

∫ 1

x

dz

z
Pij (z)qj

(x
z
, µ2
)
. (2.12)

The last things we need to introduce in our resummation formula, eq. (2.1)–(2.2),

are the H1 and C1 terms. To this end we first define the cumulant, ΣR, of the NNLLσ

resummed spectrum as
dΣR (L)

dΦ
=

∫ L

∞
dL′ dσR

dΦdL′ . (2.13)

Since dσR is expressed as a total derivative we quickly find the following approximation to

the NLO B/Bj production cross section:

dΣR,1 (L)

dΦ

∣∣∣∣
H1,C1→0

=
dσ0
dΦ

[
1 + ᾱS G12 L

2 + ᾱS

[
G11 + 2S1 −

ni∑

ℓ=1

[
P⊗ q(ℓ)

]
i

q(ℓ)

]
L

]
.

(2.14)

The cross section dΣR,1/dΦ|H1,C1→0
, essentially by definition, contains all of the loga-

rithmically enhanced contributions to the exact NLO B/Bj production cross section.

4The leading term in the expansion is just 1. By only including the leading and next-to-leading terms

for F (R′) we break the NLL/NNLLσ accuracy down to LL/NNLLσ.
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Following CAESAR formalism we derived general expression

Checked it numerically agrees with automatized CAESAR 
program to 4 s.f. for all channels in jet prodn and Z+jets 



If H+2-jets MiNLO′ has no joint y01 resummation the 
coefficient is out of control in the small y01 region 

Is coefficient O(1) ?

Extending the MiNLO method

We implement a y01 Sudakov together with the y12 
Sudakov according to the coherent parton branching 
formalism [as in the first MiNLO paper] 

In moderate-high y01 region there’s no issue HNNLOPS 
equals NLO H+1-jet up to unenhanced H.O. terms

At low y01 you need to worry about large y01 logs



We argue coefficient is then O(1) throughout ph. space 

Extending the MiNLO method

Except in the region where α L2 >> 1 , but control in this 
region is generally limited anyway for all kinds of calcns

S

The conjecture is largely based on detailed comparison 
of `nested’ CAESAR jet rate resummations vs. CKKW 

They are identical, up to a subleading soft wide angle 
term missing in CKKW [beyond CKKW’s remit]

Even if it’s wrong and MiNLO is only LLσ for y01 ➝ 0, that’s 
enough to have HJJ stay LO [in F.O. domain], which is enough 
to have NNLO 0-jet & NLO 1-jet [coeff goes like ~ 1/√α ]!S



MiNLO′  H+2-jets: red, NLO at low pT, NLO at high pT

HNNLOPS: green, LO at low pT, NLO at high pT

MiNLO H+2-jets: blue, NLO at low pT, LO at high pT

Turning to the Higgs transverse momentum in the 1-jet events, we see the results we naively
expect in the region pH

T > 100 GeV, with Nnlops and Hjj? in very good agreement. In the
region surrounding the peak of the distribution at pH

T ⇠ 50 GeV, Hjj? continues to agree well with
Hjj-Minlo, but not quite as nicely as before. The slight excess of the Hjj? prediction over the
Nnlops around this peak follows the same explanation as for the similarly sized enhancement of
the exclusive 1-jet cross section of the former over the latter, in the discussion surrounding fig. 4.
There we explained that our correction procedure led to an enhanced 1-jet exclusive cross section,
by acting to recover the inclusive 1-jet cross section of the Nnlops, while maintaining the 2-jet
inclusive cross section of Hjj-Minlo; since the 2-jet inclusive cross section of Hjj-Minlo was low
with respect to that of the Nnlops, the Hjj? 1-jet exclusive cross section therefore had to be high.
Remarkably, on the other hand, we note that for the lowest bin in the N

jets

= 1 pH
T plot, it is

in fact natural and correct that the Hjj? distribution is found to be in complete agreement with
Hjj-Minlo, for in that region the recoil of the leading jet can no longer be balanced by the Higgs
boson, and instead extra radiation must be present to this end.
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Figure 22. In the upper plot we show the transverse momentum distribution of the Higgs boson in 2-jet
events. Jets are here constructed according to the anti-kt clustering algorithm, for a radius parameter
R = 0.4. Jets are required to have transverse momentum pT � 30 GeV and rapidity |y|  4.4. The
corresponding distribution in the case of � 3-jet events is shown underneath.

Lastly, we look to the Higgs boson transverse momentum distributions in the exclusive 2-jet
events and inclusive 3-jet events, in the upper and lower plots of fig. 22. For both the exclusive 2-jet
and inclusive 3-jet pH

T spectra, we see that Hjj? agrees perfectly with the Hjj-Minlo generator
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Extending the MiNLO method applied to H+2-jets

Higgs transverse momentum exclusively in 2-jet events

MiNLO’

MiNLO_ 

NNLOPS
′



MiNLO′  H+2-jets: red

HNNLOPS: green

MiNLO H+2-jets: blue
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Figure 14. In the upper plots we display the log10
p
y01 differential jet rate on the left, while on the right

we show the various predictions relative to the central improved Hjj-Minlo (Hjj?), Nnlops and original
Hjj-Minlo (Hjj) ones, respectively, in the top, middle and bottom panels. In the lower plots we display
the corresponding set of distributions for the log10

p
y12 differential jet rate. In the making of these plots

jets have been clustered according to the kt-jet algorithm, with radius parameter R = 1.

Lastly, this log

10

p
y
12

distribution shows the first real evidence, so far, of some sensitivity in
the Hjj? results to the technical ⇢ parameter. The conservatively estimated systematic uncertainty
owing to ⇢ is depicted by the dark-red band, seen superimposed on the light-red band, in the
uppermost ratio plot. This sensitivity to ⇢ is, however, rather contained at the level of ±10� 15%,
moreover, it is basically negligible above p

y
12

= 3GeV.
Moving on, in the upper half of fig. 15 we have the log

10

p
y
23

distribution. The correspondence
of py

12

with pJ2
T , which helped to quickly understand the log

10

p
y
12

results above, has an analogon
here, namely, that neglecting final-state clusterings by the jet algorithm, p

y
23

becomes equal to
pJ3

T . This analogy continues to appear to hold remarkably well, for describing the features of
log

10

p
y
23

in terms of those found in the pJ3
T distribution of fig. 11. The arrangement of the

three predictions relative to one another, throughout the log

10

p
y
23

distribution, is very much
in direct correspondence with what one can see in the pJ3

T distribution. For example, all three
predictions even cross at the same point in the log

10

p
y
23

and pJ3
T distributions: p

y
23

⇡ 50GeV

in fig. 15 and, correspondingly, pJ3
T ⇡ 50GeV in fig. 11. As was noted in comparing the pJ2

T and
pJ3

T distributions beforehand (figs. 10-11), the effect of our corrective procedure in lifting the Hjj?

distribution above that of its ‘parent’ Hjj-Minlo simulation, in the region log

10

p
y
12

< 1.25,
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Extending the MiNLO method applied to H+2-jets

jet rate log10 √y12

MiNLO’

MiNLO_ 

NNLOPS
′



MiNLO′  H+2-jets: red

HNNLOPS: green

MiNLO H+2-jets: blue
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Figure 16. The log10
p
y12 differential jet rates, defined according to the kT-jet algorithm with jet radius

parameter R = 1, and with cuts of 10, 50 and 200 GeV imposed on p
y01.

examine the key jet rate of interest to our studies, given its role in the proposed correction procedure,
log

10

p
y
12

, but now subject to additional cuts in the py
01

jet rate variable. These cuts are intended
to bring to the fore events for which there is a hierarchy y

12

⌧ y
01

and associated large logarithm
L
12

. This aspect is indeed manifested in both log

10

p
y
12

distributions in fig. 16 through the Sudakov
peak shifting to higher y

12

values. The Sudakov peak in the inclusive distribution of fig. 14 is
centred around log

10

p
y
12

= 1 (py
12

= 10 GeV), moving up to log

10

p
y
12

⇡ 1.5 (py
12

⇡ 30 GeV)
on imposing the p

y
01

> 50 GeV cut, as shown in the uppermost plot in fig. 16, and further to
log

10

p
y
12

⇡ 1.75 (py
12

⇡ 55 GeV) on imposing the p
y
01

> 200 GeV cut. The shifting of the peak
to higher y

12

values is a manifestation of the fact that the cuts imply a proportionate increase in
the available phase space for high pT emission of the second pseudoparton.

One of the easiest features to make sense of in fig. 16, is the excess of the Nnlops results
over Hjj? and Hjj-Minlo predictions in the high p

y
12

region, with the latter pair of results
being indistinguishable there. This attribute is consistent with the enhancement of the Nnlops
cross section over the corresponding Hjj-Minlo and Hjj? results, in both the inclusive 2-jet cross
section, with high jet pT thresholds (fig. 3), and the transverse momentum spectrum of the second
hardest jet (fig. 10). In the latter distribution the discrepancy increases with radiation hardness,
as it does in fig. 16. Technically, the agreement of Hjj? and Hjj-Minlo in this limit is also easy to
understand, since in these regions L

12

is not large and the Minlo correction procedure ‘switches
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Extending the MiNLO method applied to H+2-jets

jet rate log10 √y12 in events with √y01 > 200 GeV
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