MiNLO

Outline

- MiNLO
- MiNLO'
- Extending the MiNLO method

Nason, Zanderighi, KH

Nason, Oleari, Zanderighi, KH

Frederix, KH
Melia, Monni, Re, Zanderighi, KH

MiNLO introduction

- Fixed order for jet prodn procs fails if jets are close/low PT
- Example: Higgs pt from NLO H+jet calculation:

- Proper description at low рт requires resummation
- MiNLO matches fully differential NLO calcns to LL [nearly NLL σ] Sudakov resummation
- MiNLO finite in all ph.space: no need of generation cuts

Question: what's MiNLO accuracy for inclusive quantities?

NLO H+jet radiation spectrum

- NLO H+jet calc ${ }^{n}: \quad d \sigma=d \sigma_{\mathcal{S}}+d \sigma_{\mathcal{S R}}+d \sigma_{\mathcal{F}}$
- $\Phi=H$ Born kinematics [here $y H$], $L=\log \frac{Q^{2}}{p_{T}^{2}}$
- d $d \sigma_{\mathcal{S}}: \mathrm{p}_{\mathrm{T}} \rightarrow 0$ divergent terms

$$
\frac{d \sigma_{\mathcal{S}}}{d \Phi d L}=\left.\frac{d \sigma_{\mathrm{LO}}}{d \Phi}\left[1+\bar{\alpha}_{\mathrm{S}}\left(\mu_{R}^{2}\right) \mathcal{H}_{1}\left(\mu_{R}^{2}\right)\right] \frac{d}{d L}\left[\Delta\left(Q, p_{\mathrm{T}}\right) \mathcal{L}\left(\left\{x_{\ell}\right\}, \mu_{F}, p_{\mathrm{T}}\right)\right]\right|_{\mathrm{NLO}}
$$

- d $d \sigma_{\mathcal{S R}}: \mathrm{P}_{\mathrm{T}} \rightarrow 0$ divergent remainder as Sudakov only NLL ${ }_{\sigma}$

$$
\frac{d \sigma_{\mathcal{S R}}}{d \Phi d L}=\frac{d \sigma_{\mathrm{LO}}}{d \Phi} \bar{\alpha}_{\mathrm{S}}^{2}\left(\mu_{R}\right)\left[L \widetilde{R}_{21}+\widetilde{R}_{20}\right]
$$

- d $d \sigma_{\mathcal{F}}: \mathrm{p}_{\mathrm{T}} \rightarrow 0$ finite

MiNLO radiation spectrum

- $\mathrm{NLOH}+$ jet calcn $: \quad d \sigma=d \sigma_{\mathcal{S}}+d \sigma_{\mathcal{S R}}+d \sigma_{\mathcal{F}}$
- MiNLO H+jet calcn $: d \sigma_{\mathcal{M}}=d \sigma_{\mathcal{R}}+d \sigma_{\mathcal{M R}}+d \sigma_{\mathcal{F}}$
- $d \sigma_{\mathcal{R}}: \mathrm{p}_{\mathrm{T}} \rightarrow 0$ divergent terms, $d \sigma_{\mathcal{S}}$, after MiNLO

$$
\frac{d \sigma_{\mathcal{R}}}{d \Phi d L}=\frac{d \sigma_{\mathrm{LO}}}{d \Phi}\left[1+\bar{\alpha}_{\mathrm{S}}\left(\mu_{R}^{2}\right) \mathcal{H}_{1}\left(\mu_{R}^{2}\right)\right] \frac{d}{d L}\left[\Delta\left(Q, p_{\mathrm{T}}\right) \mathcal{L}\left(\{x\}, \mu_{F}, p_{\mathrm{T}}\right)\right]
$$

- $d \sigma_{\mathcal{M R}}: \mathrm{P}_{\mathrm{T}} \rightarrow 0$ divergent remainder, $d \sigma_{\mathcal{S R}}$, after MiNLO

$$
\frac{d \sigma_{\mathcal{M R}}}{d \Phi d L}=\frac{d \sigma_{\mathrm{LO}}}{d \Phi} \Delta\left(Q, p_{\mathrm{T}}\right) \prod_{\ell=1}^{n_{i}} \frac{q^{(\ell)}\left(x_{\ell}, p_{\mathrm{T}}\right)}{q^{(\ell)}\left(x_{\ell}, \mu_{F}\right)}\left[\bar{\alpha}_{\mathrm{S}}^{2}\left(p_{\mathrm{T}}\right)\left[\widetilde{R}_{21} L+\widetilde{R}_{20}\right]-\bar{\alpha}_{\mathrm{S}}^{3}\left(p_{\mathrm{T}}\right) L^{2} \Sigma_{\ell} C_{\ell} \bar{\beta}_{0} \mathcal{H}_{1}\right]
$$

- $d \sigma_{\mathcal{F}}: \mathrm{p}_{\mathrm{T}} \rightarrow 0$ finite

MiNLO integrated

- Integrate out all the radiation [including jet in the Born]:

$$
\begin{aligned}
\frac{d \sigma_{\mathcal{M}}}{d \Phi} & =\int_{L} \frac{d \sigma_{\mathcal{R}}}{d \Phi d L}+\int_{L} \frac{d \sigma_{\mathcal{F}}}{d \Phi d L}+\int_{L} \frac{d \sigma_{\mathcal{M R}}}{d \Phi d L} \\
& =\frac{d \sigma_{\mathrm{NLO}}}{d \Phi}+\int_{L} \frac{d \sigma_{\mathcal{M R}}}{d \Phi d L}
\end{aligned}
$$

- d $d \sigma_{\mathcal{M R}}: \mathrm{P}_{\mathrm{T}} \rightarrow 0$ divergent remainder, $d \sigma_{\mathcal{S R}}$, after MiNLO
- $\widetilde{R}_{21} \neq 0: \int_{L} \frac{d \sigma_{\mathcal{M R}}}{d \Phi d L}=-\frac{d \sigma_{\mathrm{LO}}}{d \Phi} \bar{\alpha}_{\mathrm{s}} \frac{\widetilde{R}_{21}}{\Sigma_{\ell} C_{\ell}}$
- $\widetilde{R}_{21}=0: \int_{L} \frac{d \sigma_{\mathcal{M R}}}{d \Phi d L}=-\frac{d \sigma_{\mathrm{LO}}}{d \Phi} \bar{\alpha}_{\mathrm{S}}^{3 / 2} \sqrt{\frac{\pi}{2}} \frac{\widetilde{R}_{20}-\bar{\beta}_{0} \mathcal{H}_{1}}{\sqrt{\Sigma_{\ell} C_{\ell}}}$

MiNLO'

- But $\mathrm{H}+\mathrm{l}$-jet spectrum known analytically to high accuracy
- Analytic control allows to formulate Sudakov s.t. $d \sigma_{\mathcal{M} \mathcal{R}}^{\prime}=0$

$\mathrm{MiNLO} \rightarrow \mathrm{MiNLO}{ }^{\prime}$

$$
\begin{gathered}
\Delta\left(Q, p_{\mathrm{T}}\right) \rightarrow \Delta^{\prime}\left(Q, p_{\mathrm{T}}\right)=\Delta\left(Q, p_{\mathrm{T}}\right) \delta \Delta\left(Q, p_{\mathrm{T}}\right) \\
\delta \Delta\left(Q, p_{\mathrm{T}}\right)=\exp \left[\int_{0}^{L} d L^{\prime} \bar{\alpha}_{\mathrm{S}}^{2}\left(p_{\mathrm{T}}^{\prime}\right)\left[\widetilde{R}_{21} L^{\prime}+\widetilde{R}_{20}-\bar{\beta}_{0} \mathcal{H}_{1}\right]\right]
\end{gathered}
$$

$$
\frac{d \sigma_{\mathcal{M}}^{\prime}}{d \Phi}=\int_{L} \frac{d \sigma_{\mathcal{R}}^{\prime}}{d \Phi d L}+\int_{L} \frac{d \sigma_{\mathcal{F}}}{d \Phi d L}=\frac{d \sigma_{\mathrm{NLO}}}{d \Phi}
$$

- MiNLO' simultaneously NLO for H \& H+l-jet prodn

MiNLO' $\mathrm{H}+\mathrm{l}$-jet

- Higgs rapidity

- Conventional NLO H prodn: red
- MiNLO' H+l-jet+parton shower: green
- Agree with each other ~ to within the line thickness

Extending the MiNLO method

- MiNLO' needed radn spectrum at $\mathrm{N}^{3} \mathrm{LL} \mathrm{L}_{\sigma}$ to NLO
- For MiNLO \rightarrow MiNLO' $\mathrm{H}+1$ - jet we put in $\mathrm{N}^{3} \mathrm{LL} \sigma$ term $\sim^{`} \mathrm{~B}_{2}{ }^{\prime}$
- Known for pt of Boson/you jet rate in W/Z/H/HW/HZ prodn
- Generally we don't know ' P_{T} ' $\rightarrow 0$ divergent terms to NLO
- Then what?

Extending the MiNLO method

- Earlier we computed the difference w.r.t. conventional inclusive NLO that unknown/uncontrolled terms give rise to:

$$
\frac{d \sigma_{\mathrm{NLO}}}{d \Phi}-\frac{d \sigma_{\mathcal{M}}}{d \Phi}=\frac{d \sigma_{\mathrm{LO}}}{d \Phi} \bar{\alpha}_{\mathrm{S}} \frac{\widetilde{R}_{21}}{\Sigma_{\ell} C_{\ell}}\left(1+\mathcal{O}\left(\sqrt{\bar{\alpha}_{\mathrm{S}}}\right)\right)
$$

- Can manipulate this to get approx Sudakov coefficients:

$$
\frac{\frac{d \sigma_{\mathrm{NLO}}}{d \Phi}-\frac{d \sigma_{\mathcal{M}}}{d \Phi}}{\int_{L} \bar{\alpha}_{\mathrm{S}}^{2} L^{2} \frac{d \sigma_{\mathcal{M}}}{d L d \Phi}}=\frac{1}{2} \widetilde{R}_{21}\left(1+\mathcal{O}\left(\sqrt{\bar{\alpha}_{\mathrm{S}}}\right)\right)
$$

Extending the MiNLO method

- If MiNLO Sudakov had all NLL σ terms, neglecting $N^{3} L L_{\sigma}$, can write MiNLO' Sudakov equivalently as

$$
\begin{aligned}
\Delta^{\prime}\left(Q, p_{\mathrm{T}}\right) & =\Delta\left(Q, p_{\mathrm{T}}\right) \exp \left[\int_{0}^{L} d L^{\prime} \bar{\alpha}_{\mathrm{S}}\left(p_{\mathrm{T}}^{\prime}\right)\left[\widetilde{R}_{21} L^{\prime}+\widetilde{R}_{20}-\bar{\beta}_{0} \mathcal{H}_{1}\right]\right] \\
& \rightarrow \Delta\left(Q, p_{\mathrm{T}}\right)\left[1+\bar{\alpha}_{\mathrm{s}}^{2} L^{2} \frac{\frac{d \sigma_{\mathrm{NLO}}}{d \Phi}-\frac{d \sigma_{\mathcal{M}}}{d \Phi}}{\int_{L} \bar{\alpha}_{\mathrm{S}}^{2} L^{\frac{d}{M}} \frac{d \sigma_{\mathcal{M}}}{d L d \Phi}}\right]
\end{aligned}
$$

- We implement this as a reweighting of the MiNLO \times sec n

$$
d \sigma_{\mathcal{M}}^{\prime}=d \sigma_{\mathcal{M}}\left[1+\bar{\alpha}_{\mathrm{S}}^{2} L^{2} \frac{\frac{d \sigma_{\mathrm{NLO}}}{d \Phi}-\frac{d \sigma_{\mathcal{M}}}{d \Phi}}{\int_{L} \bar{\alpha}_{\mathrm{S}}^{2} L^{2} \frac{d \sigma_{\mathcal{M}}}{d L d \Phi}}\right] \rightarrow \frac{d \sigma_{\mathcal{M}}^{\prime}}{d \Phi} \equiv \frac{d \sigma_{\mathrm{NLO}}}{d \Phi}
$$

Extending the MiNLO method

- We arrived at a numerical recipe for MiNLO \rightarrow MiNLO'
- Traded problem of computing $\mathrm{N}^{2 / 3} \mathrm{LL}$ 。 MiNLO'

Sudakov terms for that of computing NLO xsec ${ }^{n}$ for the process with one less jet [differential in Born vars]

- Minimal requirement for Sudakov in initial MiNLO is NLL σ

Extending the MiNLO method applied to $\mathrm{H}+2$-jets
Higgs rapidity

- MiNLO' H+2-jets: red, formally NNLO
- HNNLOPS: green, formally NNLO
- MiNLO H+2-jets: blue, formally not quite LO

Extending the MiNLO method applied to $\mathrm{H}+2$-jets
Leading jet transverse momentum

- MiNLO' H+2-jets: red, formally NLO
- HNNLOPS: green, formally NLO
- MiNLO H+2-jets: blue, formally not quite LO

Extending the MiNLO method applied to $\mathrm{H}+2$-jets
Second jet transverse momentum

- MiNLO' H+2-jets: red, formally NLO
- HNNLOPS: green, formally
- MiNLO H+2-jets: blue, formally

Summary

- MiNLO
- MiNLO'
- Extending the MiNLO method

Nason, Zanderighi, KH

Nason, Oleari, Zanderighi, KH

Frederix, KH
Melia, Monni, Re, Zanderighi, KH

- MiNLO matches fully differential B+n-jets NLO calcns to LL [nearly NLL σ] Sudakov resummation
- Example: NLO H+jet calculation:

$$
\begin{aligned}
& \frac{d \sigma_{\mathcal{M}}}{d p_{\mathrm{T}} d \Phi}=\Delta\left(Q, p_{\mathrm{T}}\right) \frac{\alpha_{\mathrm{S}}\left(p_{\mathrm{T}}\right)}{\alpha_{\mathrm{S}}(Q)}\left[\frac{d \sigma}{d p_{\mathrm{T}} d \Phi}-\left.\frac{d \sigma}{d p_{\mathrm{T}} d \Phi}\right|_{\mathrm{LO}}\left[\Delta\left(Q, p_{\mathrm{T}}\right) \frac{\alpha_{\mathrm{S}}\left(p_{\mathrm{T}}\right)}{\alpha_{\mathrm{S}}(Q)}\right]_{\alpha_{\mathrm{S}}}\right] \\
& \Delta\left(Q, p_{\mathrm{T}}\right)=\exp \left[-\int_{p_{\mathrm{T}}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}}\left[A\left(\alpha_{\mathrm{S}}(\mu)\right) \log \frac{Q^{2}}{\mu^{2}}+B\left(\alpha_{\mathrm{S}}(\mu)\right)\right]\right]
\end{aligned}
$$

MiNLO introduction

- MiNLO transitions to the resummed calcn at low PT
- MiNLO finite in all ph.space: no need of generation cuts

Question: what's MiNLO accuracy for inclusive quantities?

MiNLO' integrated

- Integrate out all the radiation [including jet in the Born]:

$$
\frac{d \sigma_{\mathcal{M}}^{\prime}}{d \Phi}=\int_{L} \frac{d \sigma_{\mathcal{R}}^{\prime}}{d \Phi d L}+\int_{L} \frac{d \sigma_{\mathcal{F}}}{d \Phi d L}=\frac{d \sigma_{\mathrm{NLO}}}{d \Phi}
$$

- MiNLO' also NLO when Born jet in $\mathrm{H}+\mathrm{l}$-jet integrated out!
- MiNLO' simultaneously NLO for H \& H+l-jet prodn
- This is NLO merging but without actually merging anything
- Relies on analytic control of $\mathrm{p}_{T} \rightarrow 0$ divergent terms to NLO
- Trivially replicated for H/W/Z/HW/HZ prodn ${ }^{\text {[successfully] }}$

MiNLO' $\mathrm{H}+\mathrm{l}$-jet

- Higgs pt

- NLO+parton shower H prodn: red
- MiNLO' H+l-jet+parton shower: green
- NLO+parton shower H prodn LO here, MiNLO' NLO here

Extending the MiNLO method

- Can MiNLO' H+2-jets return NLO accuracy for H inclusive as well as $\mathrm{H}+1$-jet?
- By construction the method makes MiNLO' $\mathrm{H}+2$-jets identical to the target when 2 nd jet integrated out [y/2]

$$
\begin{aligned}
d \sigma_{\mathcal{M}}^{\prime} & =d \sigma_{\mathcal{M}}\left[1+\bar{\alpha}_{\mathrm{S}}^{2} L^{2} \frac{\int_{L} d \sigma_{\mathrm{NLO}}^{\prime}-\int_{L} d \sigma_{\mathcal{M}}}{\int_{L} \bar{\alpha}_{\mathrm{S}}^{2} L^{2} d \sigma_{\mathcal{M}}}\right] \\
& \rightarrow \int_{L} d \sigma_{\mathcal{M}}^{\prime} \equiv d \sigma_{\mathrm{NLO}} \quad
\end{aligned}
$$

- So if you 'target' HNNLOPS instead of conventional NLO H+l-jet you'll get NNLO H inclusive and NLO H+l-jet
- Additional yoı Sudakov keeps coeff $\mathrm{O}(1)$ also for yoı $\rightarrow 0$
- MiNLO' recently extended to procs w. non-trivial virtuals

- Conventional NLO: red
- MiNLO' $\mathrm{W}^{+} \mathrm{W}^{-}+1$-jet+parton shower: green
- MiNLO' $W+W^{-}+l-j e t$

MiNLO' ${ }^{\prime}+W^{-}+1-j e t$

- MiNLO' recently extended to procs w. non-trivial virtuals

- NLO+parton shower W+W-: red
- MiNLO' $\mathrm{W}^{\prime} \mathrm{W}^{-}+1$-jet+parton shower: green
- MiNLO' $W+W^{-}+l-j e t$

NNLOPS

H+l-jet NLO
- 0-jet: unphysical
- l-jet: NLO
- 2-jet: LO
- All else: no predictions

H+l-jet MiNLO' w. PS

- 0-jet: NLO
- l-jet: NLO
- 2-jet: LO
- All else: PS

NNLOPS

- 0-jet: NNLO
- l-jet: NLO
- 2-jet:
- All else: PS

NNLOPS very quickly [vanilla]

- In its most basic form:
n its most basic form:
$d \sigma_{\text {NNLOPS }}=d \sigma_{\text {MiNLO }} \times W(\Phi)$ with $\quad W(\Phi)=\frac{\frac{d \sigma}{d \Phi} \text { NNLO }}{\frac{d \sigma \text { MiNLO }}{d \Phi}}$
- $\frac{\mathrm{d} \sigma}{\mathrm{d} \Phi}{ }^{\text {MinLo }}=\frac{\mathrm{d} \sigma \text { NNLO }}{\mathrm{d} \Phi}$ to $\mathrm{NLO} \cdots \cdots \cdots(\Phi)=1+O\left(\alpha_{\mathrm{S}}^{2}\right)$
- Multiplying $d \sigma_{\text {minlo }}$ by $W(\Phi)$ to get NNLO accuracy doesn't spoil NLO already in d σ minlo for ≥ 1 jet obs
- If $\frac{d \sigma}{d \Phi}$ Minlo $\neq \frac{d \sigma}{d \Phi}{ }^{\text {NNLO }} W(\Phi)$ spoils NLO $d \sigma$ minLo for ≥ 1 jet
- Bottleneck for NNLOPS is making a NLO \times NLO MiNLO' Of course, the NNLO calcn is the really hard part! We fully depend on NNLO friends for this.

NNLOPS results

- Higgs rapidity

- Conventional NNLO H prodn: red [Catani, Grazzini, Sargsyan]
- HNNLOPS: green
- HNNLOPS = Conventional NNLO H prodn

NNLOPS results

- $\varepsilon=\sigma(0$-jet $) / \sigma($ total $) \times$ sec n as f^{n} of jet pt threshold

- JETVHETO NNLO+NNLL: green [Banfi, Monni, Salam, Zanderighi]
- HNNLOPS tuned to NNLO+NNLL Higgs pt spectrum: red

Extending the MiNLO method

- In the beginning we saw the MiNLO matching is constructed s.t. NLO accuracy is preserved
- Extending MiNLO \rightarrow MiNLO' must also respect this, i.e. can only affect MiNLO by relative α_{s}^{2} terms
- I.E. coeff of $\alpha_{S}^{2} L^{2}$ must be $O(1)$ and not e.g. $O\left(1 / \sqrt{ } \alpha_{S}\right)$ here:

$$
d \sigma_{\mathcal{M}}^{\prime}=d \sigma_{\mathcal{M}}\left[1+\bar{\alpha}_{\mathrm{S}}^{2} L^{2} \frac{\int_{L} d \sigma_{\mathrm{NLO}}-\int_{L} d \sigma_{\mathcal{M}}}{\int_{L} \bar{\alpha}_{\mathrm{S}}^{2} L^{2} d \sigma_{\mathcal{M}}}\right]
$$

- Since denominator is guaranteed to be $\mathrm{O}(\alpha)$ numerator must therefore be as well: $\int_{L} d \sigma_{\text {NLO }}-\int_{L} d \sigma_{\mathcal{M}} \sim \mathcal{O}\left(\bar{\alpha}_{\mathrm{S}}\right)$
- Demands MiNLO Sudakov in $d \sigma_{\mathcal{M}}$ be already NLL σ correct

Extending the MiNLO method

- Test: MiNLO \rightarrow MiNLO' for H/W/Z+2-jets
- Derived CAESAR N2LL σ resummation of yol and yıl2 kt jet rates in $\mathrm{H}+$ jets production
- This req ${ }^{d}$ analytic $N^{2} L L_{\sigma}$ multiple emission correction in Sudakov form factor [' F_{2} '] for k jet rates
- Following CAESAR formalism we derived general expression

$$
\mathcal{F}_{2}=-\frac{\pi^{2}}{16} \frac{\sum_{\ell=1}^{n} C_{\ell}^{2}-\sum_{\ell=1}^{n_{i}} C_{\ell}^{2}}{\left(\sum_{\ell=1}^{n} C_{\ell}\right)^{2}}
$$

- Checked it numerically agrees with automatized CAESAR program to 4 s.f. for all channels in jet prodn and $Z+j e t s$

Extending the MiNLO method

- Is coefficient $\mathrm{O}(1)$?
- In moderate-high you region there's no issue HNNLOPS equals NLO H+l-jet up to unenhanced H.O. terms
- At low yol you need to worry about large you logs
- If H+2-jets MiNLO' has no joint yol resummation the coefficient is out of control in the small you region
- We implement a you Sudakov together with the yır Sudakov according to the coherent parton branching formalism [as in the first MiNLO paper]

Extending the MiNLO method

- We argue coefficient is then $\mathrm{O}(1)$ throughout ph. space
- Except in the region where $\alpha_{S} L^{2} \gg 1$, but control in this region is generally limited anyway for all kinds of calcns
- The conjecture is largely based on detailed comparison of 'nested' CAESAR jet rate resummations vs. CKKW
- They are identical, up to a subleading soft wide angle term missing in CKKW [beyond CKKW's remit]
- Even if it's wrong and MiNLO is only LL σ for you $\rightarrow 0$, that's enough to have HJJ stay LO [in F.O. domain], which is enough to have NNLO 0-jet \& NLO 1-jet [coeff goes like $\sim 1 / \sqrt{ } \alpha_{S}$]!

Extending the MiNLO method applied to $\mathrm{H}+2$-jets
Higgs transverse momentum exclusively in 2-jet events

- MiNLO' H+2-jets: red, NLO at low pt, NLO at high pt
- HNNLOPS: green, LO at low pt, NLO at high pt
- MiNLO H+2-jets: blue, NLO at low рт, LO at high рт

Extending the MiNLO method applied to $\mathrm{H}+2$-jets
jet rate $\log _{10} \sqrt{ }{ }^{\prime} 12$

- MiNLO' H+2-jets: red
- HNNLOPS: green
- MiNLO H+2-jets: blue

Extending the MiNLO method applied to $\mathrm{H}+2$-jets
jet rate $\log _{10} \sqrt{y}_{12}$ in events with $\sqrt{y}{ }_{01}>200 \mathrm{GeV}$

- MiNLO' H+2-jets: red
- HNNLOPS: green
- MiNLO H+2-jets: blue

