

Outline

MiNLO

Nason, Zanderighi, KH

MiNLO'

Nason, Oleari, Zanderighi, KH

Extending the MiNLO method

Frederix, KH

Melia, Monni, Re, Zanderighi, KH

MiNLO introduction

- ° Fixed order for jet prodⁿ procs fails if jets are close/low pt
- ° Example: Higgs p⊤ from NLO H+jet calculation:

Proper description at low pt requires resummation

MiNLO introduction

- MiNLO matches fully differential NLO calcⁿs to LL (nearly NLL_σ) Sudakov resummation
- MiNLO finite in all ph.space: no need of generation cuts

Question: what's MiNLO accuracy for inclusive quantities?

NLO H+jet radiation spectrum

- \circ NLO H+jet calcⁿ : $d\sigma = d\sigma_{\mathcal{S}} + d\sigma_{\mathcal{S}\mathcal{R}} + d\sigma_{\mathcal{F}}$
- $Φ = H Born kinematics (here yH), L = Log \frac{Q^2}{p_T^2}$
- $d\sigma_{\mathcal{S}}: p_T \rightarrow 0$ divergent terms

$$\frac{d\sigma_{S}}{d\Phi dL} = \frac{d\sigma_{LO}}{d\Phi} \left[1 + \bar{\alpha}_{S} \left(\mu_{R}^{2} \right) \mathcal{H}_{1} \left(\mu_{R}^{2} \right) \right] \frac{d}{dL} \left[\Delta \left(Q, p_{T} \right) \mathcal{L} \left(\left\{ x_{\ell} \right\}, \mu_{F}, p_{T} \right) \right] \Big|_{NLO}$$

• $d\sigma_{SR}$: $p_T \rightarrow 0$ divergent remainder as Sudakov only NLL $_\sigma$

$$\frac{d\sigma_{SR}}{d\Phi dL} = \frac{d\sigma_{LO}}{d\Phi} \,\bar{\alpha}_{S}^{2} \left(\mu_{R}\right) \left[L\,\widetilde{R}_{21} + \widetilde{R}_{20}\right]$$

 $\circ |d\sigma_{\mathcal{F}}|: p_{\mathsf{T}} \to 0 \text{ finite}$

MiNLO radiation spectrum

 \circ NLO H+jet calc $^{\rm n}$: $d\sigma = d\sigma_{\cal S} + d\sigma_{\cal SR} + d\sigma_{\cal F}$ MiNLO

- $\circ \ \ \text{MiNLO H+jet calc}^{\text{n}}: \ d\sigma_{\mathcal{M}} = \boxed{d\sigma_{\mathcal{R}}} + \boxed{d\sigma_{\mathcal{M}\mathcal{R}}} + \boxed{d\sigma_{\mathcal{F}}}$
- \circ $d\sigma_{\mathcal{R}}$: $p_T \to 0$ divergent terms, $d\sigma_{\mathcal{S}}$, after MiNLO

$$\frac{d\sigma_{\mathcal{R}}}{d\Phi dL} = \frac{d\sigma_{\text{LO}}}{d\Phi} \left[1 + \bar{\alpha}_{\text{S}} \left(\mu_{R}^{2} \right) \, \mathcal{H}_{1} \left(\mu_{R}^{2} \right) \right] \, \frac{d}{dL} \left[\Delta \left(Q, p_{\text{T}} \right) \, \mathcal{L} \left(\left\{ x_{\ell} \right\}, \mu_{F}, p_{\text{T}} \right) \right]$$

 \circ $d\sigma_{\mathcal{MR}}$: $p_T \to 0$ divergent remainder, $d\sigma_{\mathcal{SR}}$, after MiNLO

$$\frac{d\sigma_{\scriptscriptstyle MR}}{d\Phi dL} = \frac{d\sigma_{\scriptscriptstyle LO}}{d\Phi} \, \Delta \left(Q, p_{\scriptscriptstyle T}\right) \, \prod_{\ell=1}^{n_i} \frac{q^{(\ell)} \left(x_\ell, p_{\scriptscriptstyle T}\right)}{q^{(\ell)} \left(x_\ell, \mu_{\scriptscriptstyle F}\right)} \, \left[\bar{\alpha}_{\scriptscriptstyle S}^2 \left(p_{\scriptscriptstyle T}\right) \, \left[\widetilde{R}_{21} \, L + \widetilde{R}_{20}\right] - \bar{\alpha}_{\scriptscriptstyle S}^3 \left(p_{\scriptscriptstyle T}\right) L^2 \, \Sigma_\ell C_\ell \, \bar{\beta}_0 \mathcal{H}_1\right]$$

 $\circ |d\sigma_{\mathcal{F}}|: p_{\mathsf{T}} \to 0 \text{ finite}$

MiNLO integrated

Integrate out all the radiation (including jet in the Born):

$$\frac{d\sigma_{\mathcal{M}}}{d\Phi} = \int_{L} \frac{d\sigma_{\mathcal{R}}}{d\Phi dL} + \int_{L} \frac{d\sigma_{\mathcal{F}}}{d\Phi dL} + \int_{L} \frac{d\sigma_{\mathcal{MR}}}{d\Phi dL}$$

$$= \frac{d\sigma_{\text{NLO}}}{d\Phi} + \int_{L} \frac{d\sigma_{\mathcal{MR}}}{d\Phi dL}$$

• $d\sigma_{\mathcal{MR}}$: $p_T \to 0$ divergent remainder, $d\sigma_{\mathcal{SR}}$, after MiNLO

$$\circ \quad \widetilde{R}_{21} \neq 0 : \quad \int_{L} \frac{d\sigma_{\mathcal{MR}}}{d\Phi dL} = -\frac{d\sigma_{\text{LO}}}{d\Phi} \, \bar{\alpha}_{\text{S}} \, \frac{\widetilde{R}_{21}}{\Sigma_{\ell} C_{\ell}}$$

$$\circ \quad \widetilde{R}_{21} = 0 : \quad \int_{L} \frac{d\sigma_{\mathcal{MR}}}{d\Phi dL} = -\frac{d\sigma_{\text{LO}}}{d\Phi} \, \bar{\alpha}_{\text{S}}^{3/2} \, \sqrt{\frac{\pi}{2}} \, \frac{\widetilde{R}_{20} - \bar{\beta}_{0} \mathcal{H}_{1}}{\sqrt{\Sigma_{\ell} C_{\ell}}}$$

MiNLO'

- But H+1-jet spectrum known analytically to high accuracy
- $^{\circ}$ Analytic control allows to formulate Sudakov s.t. $d\sigma'_{\mathcal{MR}}=0$

MiNLO → MiNLO'

$$\Delta (Q, p_{\mathrm{T}}) \to \Delta' (Q, p_{\mathrm{T}}) = \Delta (Q, p_{\mathrm{T}}) \delta \Delta (Q, p_{\mathrm{T}})$$

$$\delta \Delta (Q, p_{\mathrm{T}}) = \exp \left[\int_{0}^{L} dL' \, \bar{\alpha}_{\mathrm{S}}^{2} (p'_{\mathrm{T}}) \, \left[\widetilde{R}_{21} \, L' + \widetilde{R}_{20} - \bar{\beta}_{0} \mathcal{H}_{1} \right] \right]$$

$$\frac{d\sigma'_{\mathcal{M}}}{d\Phi} = \int_{L} \frac{d\sigma'_{\mathcal{R}}}{d\Phi dL} + \int_{L} \frac{d\sigma_{\mathcal{F}}}{d\Phi dL} = \frac{d\sigma_{\text{NLO}}}{d\Phi}$$

MiNLO' simultaneously NLO for H & H+1-jet prodⁿ

Higgs rapidity

- Conventional NLO H prodⁿ: red
- MiNLO' H+1-jet+parton shower: green
- Agree with each other ~ to within the line thickness

Extending the MiNLO method

- MiNLO' needed radⁿ spectrum at N³LL_σ to NLO
- ∘ For MiNLO → MiNLO' H+1-jet we put in N³LL_{σ} term ~ `B₂'
- Known for pt of Boson/you jet rate in W/Z/H/HW/HZ prodn
- Generally we don't know $p_T' \rightarrow 0$ divergent terms to NLO
- Then what?

 Earlier we computed the difference w.r.t. conventional inclusive NLO that unknown/uncontrolled terms give rise to:

$$\frac{d\sigma_{\text{NLO}}}{d\Phi} - \frac{d\sigma_{\text{M}}}{d\Phi} = \frac{d\sigma_{\text{LO}}}{d\Phi} \,\bar{\alpha}_{\text{S}} \, \frac{\widetilde{R}_{21}}{\Sigma_{\ell} C_{\ell}} \, (1 + \mathcal{O}(\sqrt{\bar{\alpha}_{\text{S}}}))$$

Can manipulate this to get approx Sudakov coefficients:

$$\frac{d\sigma_{\text{NLO}}}{d\Phi} - \frac{d\sigma_{\mathcal{M}}}{d\Phi} = \frac{1}{2} \widetilde{R}_{21} \left(1 + \mathcal{O} \left(\sqrt{\bar{\alpha}_{\text{S}}} \right) \right)$$

$$\int_{L} \bar{\alpha}_{\text{S}}^{2} L^{2} \frac{d\sigma_{\mathcal{M}}}{dL d\Phi}$$

° If MiNLO Sudakov had all NLL $_{\sigma}$ terms, neglecting N³LL $_{\sigma}$, can write MiNLO' Sudakov equivalently as

$$\Delta'(Q, p_{\mathrm{T}}) = \Delta(Q, p_{\mathrm{T}}) \exp \left[\int_{0}^{L} dL' \, \bar{\alpha}_{\mathrm{S}}(p'_{\mathrm{T}}) \left[\tilde{R}_{21}L' + \tilde{R}_{20} - \bar{\beta}_{0}\mathcal{H}_{1} \right] \right]$$

$$\rightarrow \Delta(Q, p_{\mathrm{T}}) \left[1 + \bar{\alpha}_{\mathrm{S}}^{2}L^{2} \, \frac{\frac{d\sigma_{\mathrm{NLO}}}{d\Phi} - \frac{d\sigma_{\mathrm{M}}}{d\Phi}}{\int_{L} \bar{\alpha}_{\mathrm{S}}^{2}L^{2} \, \frac{d\sigma_{\mathrm{M}}}{dL \, d\Phi}} \right]$$

We implement this as a reweighting of the MiNLO xsecⁿ

$$d\sigma'_{\mathcal{M}} = d\sigma_{\mathcal{M}} \left[1 + \bar{\alpha}_{\mathrm{S}}^{2} L^{2} \frac{\frac{d\sigma_{\mathrm{NLO}}}{d\Phi} - \frac{d\sigma_{\mathcal{M}}}{d\Phi}}{\int_{L} \bar{\alpha}_{\mathrm{S}}^{2} L^{2} \frac{d\sigma_{\mathcal{M}}}{dL d\Phi}} \right] \longrightarrow \frac{d\sigma'_{\mathcal{M}}}{d\Phi} \equiv \frac{d\sigma_{\mathrm{NLO}}}{d\Phi}$$

We arrived at a numerical recipe for MiNLO → MiNLO'

Traded problem of computing N^{2/3}LL_σ MiNLO'
 Sudakov terms for that of computing NLO xsecⁿ for the process with one less jet (differential in Born vars)

 $^{\circ}$ Minimal requirement for Sudakov in initial MiNLO is NLL $_{\sigma}$

Higgs rapidity

- MiNLO' H+2-jets: red, formally NNLO
- HNNLOPS: green, formally NNLO
- MiNLO H+2-jets: blue, formally not quite LO

Leading jet transverse momentum

- MiNLO' H+2-jets: red, formally NLO
- HNNLOPS: green, formally NLO
- MiNLO H+2-jets: blue, formally not quite LO

Second jet transverse momentum

- MiNLO' H+2-jets: red, formally NLO
- HNNLOPS: green, formally LO
- MiNLO H+2-jets: blue, formally NLO

Summary

· MiNLO

Nason, Zanderighi, KH

MiNLO'

Nason, Oleari, Zanderighi, KH

Extending the MiNLO method

Frederix, KH

Melia, Monni, Re, Zanderighi, KH

- MiNLO matches fully differential B+n-jets NLO calcⁿs to LL (nearly NLL_σ) Sudakov resummation
- Example: NLO H+jet calculation:

MiNLO introduction

- MiNLO transitions to the resummed calcⁿ at low pt
- MiNLO finite in all ph.space: no need of generation cuts

Question: what's MiNLO accuracy for inclusive quantities?

Integrate out all the radiation (including jet in the Born):

$$\frac{d\sigma'_{\mathcal{M}}}{d\Phi} = \int_{L} \frac{d\sigma'_{\mathcal{R}}}{d\Phi dL} + \int_{L} \frac{d\sigma_{\mathcal{F}}}{d\Phi dL} = \frac{d\sigma_{\text{NLO}}}{d\Phi}$$

- MiNLO' also NLO when Born jet in H+1-jet integrated out!
- MiNLO' simultaneously NLO for H & H+1-jet prodⁿ
- This is NLO merging but without actually merging anything
- Relies on analytic control of $p_T \rightarrow 0$ divergent terms to NLO
- Trivially replicated for H/W/Z/HW/HZ prodⁿ [successfully]

Higgs p_T

- NLO+parton shower H prodⁿ: red
- MiNLO' H+1-jet+parton shower: green
- NLO+parton shower H prodⁿ LO here, MiNLO'NLO here

- Can MiNLO' H+2-jets return NLO accuracy for H inclusive as well as H+1-jet?
- By construction the method makes MiNLO' H+2-jets identical to the target when 2nd jet integrated out [y₁₂]

$$d\sigma'_{\mathcal{M}} = d\sigma_{\mathcal{M}} \left[1 + \bar{\alpha}_{\mathrm{S}}^{2} L^{2} \frac{\int_{L} d\sigma_{\mathrm{NLO}} - \int_{L} d\sigma_{\mathcal{M}}}{\int_{L} \bar{\alpha}_{\mathrm{S}}^{2} L^{2} d\sigma_{\mathcal{M}}} \right]$$
 target
$$\rightarrow \int_{L} d\sigma'_{\mathcal{M}} \equiv d\sigma_{\mathrm{NLO}}$$
 coefficient

- So if you 'target' HNNLOPS instead of conventional NLO H+1-jet you'll get NNLO H inclusive and NLO H+1-jet
- Additional y_{01} Sudakov keeps coeff O(1) also for $y_{01} \rightarrow 0$

MiNLO' recently extended to procs w. non-trivial virtuals

- Conventional NLO: red
- MiNLO' W+W-+1-jet+parton shower: green
- MiNLO' W+W-+1-jet

MiNLO' recently extended to procs w. non-trivial virtuals

- NLO+parton shower W+W-: red
- MiNLO' W+W-+1-jet+parton shower: green
- MiNLO' W+W-+1-jet

NNLOPS

H+1-jet NLO

- 0-jet: unphysical
- ° 1-jet: NLO
- ° 2-jet: LO
- All else: no predictions

H+1-jet MiNLO'w. PS

- 0-jet: NLO
- ∘ 1-jet: NLO
- ° 2-jet: LO
- All else: PS

H+1-jet MiNLO'

- 0-jet: NLO
- 1-jet: NLO
- ° 2-jet: LO
- All else: no predictions

NNLOPS

- 0-jet: NNLO
- ∘ 1-jet: NLO
- ° 2-jet: LO
- All else: PS

NNLOPS very quickly (vanilla)

• In its most basic form:

n its most basic form:
$$d\sigma_{NNLOPS} = d\sigma_{MINLO} \times W(\Phi) \quad \text{with} \quad W(\Phi) = \frac{d\sigma_{NNLO}}{d\Phi}$$

- Multiplying d σ MINLO by W(Φ) to get NNLO accuracy doesn't spoil NLO already in d σ MINLO for ≥ 1 jet obs
- If $\frac{d\sigma}{d\Phi}^{MINLO} \neq \frac{d\sigma}{d\Phi}^{NNLO}$ W(Φ) spoils NLO $d\sigma_{MINLO}$ for ≥ 1 jet
- Bottleneck for NNLOPS is making a NLO x NLO MiNLO' Of course, the NNLO calcⁿ is the really hard part! We fully depend on NNLO friends for this.

NNLOPS results

Higgs rapidity

- Conventional NNLO H prodⁿ: red [Catani, Grazzini, Sargsyan]
- HNNLOPS: green
- HNNLOPS = Conventional NNLO H prodⁿ

 \circ $\varepsilon = \sigma (0-jet)/\sigma (total) xsec^n as f^n of jet pt threshold$

- · JETVHETO NNLO+NNLL: green [Banfi, Monni, Salam, Zanderighi]
- HNNLOPS tuned to NNLO+NNLL Higgs pt spectrum: red

- In the beginning we saw the MiNLO matching is constructed s.t. NLO accuracy is preserved
- Extending MiNLO \rightarrow MiNLO' must also respect this, i.e. can only affect MiNLO by relative α_S^2 terms
- I.E. coeff of $\alpha_S^2 L^2$ must be O(1) and not e.g. O(1/ $\sqrt{\alpha_S}$) here:

$$d\sigma'_{\mathcal{M}} = d\sigma_{\mathcal{M}} \left[1 + \bar{\alpha}_{S}^{2} L^{2} \frac{\int_{L} d\sigma_{NLO} - \int_{L} d\sigma_{\mathcal{M}}}{\int_{L} \bar{\alpha}_{S}^{2} L^{2} d\sigma_{\mathcal{M}}} \right]$$

- ° Since denominator is guaranteed to be O(α) numerator must therefore be as well: $\int_L d\sigma_{\rm NLO} \int_L d\sigma_{\rm M} \sim \mathcal{O}\left(\bar{\alpha}_{\rm S}\right)$
- \circ **Demands** MiNLO Sudakov in $d\sigma_{\mathcal{M}}$ be already NLL σ correct

- Test: MiNLO → MiNLO' for H/W/Z+2-jets
- ° Derived CAESAR N^2LL_σ resummation of y_{01} and y_{12} k_T jet rates in H+jets production
- ° This req^d analytic N^2LL_σ multiple emission correction in Sudakov form factor [`F2'] for k_T jet rates
- Following CAESAR formalism we derived general expression

$$\mathcal{F}_2 = -\frac{\pi^2}{16} \frac{\sum_{\ell=1}^n C_\ell^2 - \sum_{\ell=1}^{n_i} C_\ell^2}{\left(\sum_{\ell=1}^n C_\ell\right)^2}$$

 Checked it numerically agrees with automatized CAESAR program to 4 s.f. for all channels in jet prodⁿ and Z+jets

- Is coefficient O(1)?
- In moderate-high you region there's no issue HNNLOPS equals NLO H+1-jet up to unenhanced H.O. terms
- At low you you need to worry about large you logs
- o If H+2-jets MiNLO' has no joint you resummation the coefficient is out of control in the small you region
- We implement a y₀₁ Sudakov together with the y₁₂
 Sudakov according to the coherent parton branching formalism (as in the first MiNLO paper)

- We argue coefficient is then O(1) throughout ph. space
- ° Except in the region where $\alpha_S L^2 >> 1$, but control in this region is generally limited anyway for all kinds of calcⁿs
- The conjecture is largely based on detailed comparison of `nested' CAESAR jet rate resummations vs. CKKW
- They are identical, up to a subleading soft wide angle term missing in CKKW [beyond CKKW's remit]
- Even if it's wrong and MiNLO is **only** LL_{σ} for y₀₁ \rightarrow 0, that's enough to have HJJ stay LO (in F.O. domain), which is enough to have NNLO 0-jet & NLO 1-jet (coeff goes like $\sim 1/\sqrt{\alpha_s}$)!

Higgs transverse momentum exclusively in 2-jet events

- MiNLO' H+2-jets: red, NLO at low p_T, NLO at high p_T
- HNNLOPS: green, LO at low p_T, NLO at high p_T
- ° MiNLO H+2-jets: blue, NLO at low рт, LO at high рт

jet rate log10 √y12

- MiNLO' H+2-jets: red
- HNNLOPS: green
- MiNLO H+2-jets: blue

jet rate log10 √y12 in events with √y01 > 200 GeV

- MiNLO' H+2-jets: red
- HNNLOPS: green
- MiNLO H+2-jets: blue