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Fully exclusive NNLO/NNLL 
calculations from 
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LBNL / UC Berkeley

With a focus on UE sensitive observables



The	main	spirit	of	GENEVA	is	to	calculate	physical	jet	cross-
sec:ons
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Don’t	count	number	of	partons,	count	number	of	jets

Do	calcula4ons	for	jet	cross-sec4ons,	and	use	shower	to	fill	out	jet

Partonic	cross-sec4ons	are	ill-defined	beyond	LO	in	standard	perturba4on	theory

This	problem	is	well	known,	and	always	measure	and	calculate	jet	cross-sec4ons



This	allows	us	to	separate	the	total	hadronic	event	into	
different	jet	mul:plici:es
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+ · · ·

Calculate each jet cross section to desired fixed and resummed 
accuracy, and use shower to fill out jets with radiation
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By equating this to be equal to the inclusive 1-jet result given we find
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The above expressions completely define the fully di↵erential jet cross-sections. In the next section we will provide
some additional details on the specific implementation of the various pieces in GENEVA. Before doing so, however,
there is one additional feature of the above equations that should be mentioned. It concerns the phase space map that
is used to map a partonic phase space point �2 point with T1 < T cut

1 onto the jet phase space point �1. While there
are many IR safe maps available (for example the FKS map �̃1(�2) that is used in the subtractions in the second term
of Eq. (18)), there is one additional constraint on the map �T

1 (�2) used in the first term of Eq. (18). As discussed
below Eq. (4), the fact that we are projecting partonic �2 phase space points with T1 < T cut

1 onto jet �1 phase space
points leaves an e↵ect on calculated observables. In particular, it changes the T0 distribution by an amount of order
↵2
sT cut

1 /T0. For small values of T0 ⇠ T cut
1 this would destroy the NNLL’ accuracy of the T0 spectrum. To avoid this,

we define a special phase space map that is discussed in the next section.

B. Details of the GENEVA implementation

There are still several choices that can be made when implementing the above formulas. In this section we provide
some additional details about the specific choices that were made in the GENEVA implementation.

1. Choice of the jet resolution variables

We choose N -Jettiness as the jet resolution variables. N -Jettiness is defined as

TN =
2

Q2

X

k

min {qA · pk, qB · pk, q1 · pk, . . . , qN · pk} . (19)

For the original definition of N -Jettiness and definitions of the reference vectors qµi see [? ]. From this definition
it is immediately obvious that N -jettiness is a sensible jet resolution variable and that it is IR safe. What makes
the particular choice of jet resolution variable appealing theoretically is that it is a completely inclusive event shape
variable, which makes it very well defined theoretically.

2. The T0 spectrum at NNLL’ from SCET

An all orders factorization theorem can be proven for N -Jettiness [? ], which for N = 0 can be written in schematic
form as

d�SCET

d�0dT0 =
d�ij

d�0
Hij(Q

2, µ)

⇥Bi(xa, µ)⌦Bj(xb, µ)⌦ S(µ) . (20)

An important property of this factorization formula is that each factorization ingredient depends only on a single
characteristic scale. Therefore, there are no large logarithms in the perturbative expansion of each ingredient if it is
evaluated at its characteristic scale, whose canonical values are given by

µH = Q µB =
p

QT0 , µS = T0 . (21)
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where we have defined a normalized splitting probability P(�1) which satisfies
Z

d�1

d�0dT0 P(�1) = 1 , (9)

Here we have used the definition given in Eq. (3), which implies in this case that the integral over �1 for fixed �0 and
T0 (which is an integration over two variables) is equal to 1, for any value of �0, T0. This will be discussed in more
detail in Sec. 2B 4. Some of the details on how to obtain the NNLL’ spectra required are given in Sec. 2B 2.

The non-singular matching corrections can now be written as
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As mentioned before, the fact that the NNLL’ resummation reproduces all singular terms through O(↵2
s) ensures that

these matching terms are indeed non-singular.
Having obtain an expression for the inclusive 1-jet cross-section, we can now divide this into an exclusive 1-jet

cross-section and an inclusive 2-jet cross-section, using the jet resolution variable T cut
1 . The exclusive 1-jet cross-

section needs to be correct to NLO accuracy, while at the same time resumming the dependence on T cut
1 to at least

LL accuracy. The inclusive 2-jet cross-section needs to be correct to LO accuracy, while resumming the dependence
on T1. When combined according to Eq. (2), they need to reproduce the inclusive 1-jet cross-section just derived.
To obtain the required expressions, we write the di↵erential jet cross-sections again in terms of a resummed and a
non-singular contribution
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The resummed can be written as
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where d�C
�1/d�1 needs to include the resummation of the T0 variable, and will be derived soon. U1(�1, T cut

1 ) denotes
a Sudakov factor that resums the dependence on T cut

1 to LL accuracy, and U 0
1(�1, T cut

1 ) denotes its derivative. The
details of this Sudakov factor are given in Sec. 2B 5.

We choose the non-singular terms as
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where C2(�2) denotes a subtraction term that reproduces all singular behavior of B2(�2). Such subtractions are
known in complete generality, and we choose the FKS subtractions in our implementation. The O(↵s) term in the

expansion of the U (0)
1 (�1, T cut

1 ) Sudakov factor or its derivative is denoted by U (1)(0)
1 (�1, T cut

1 ). Finally, we have
defined a splitting probability P(�2) which is defined in the same way as P(�1) in Eq. (9).
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one immediately obtains
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We present results for Drell-Yan production from the Geneva Monte-Carlo framework. We com-
bine fixed-order corrections up to O(↵2

s) with higher-order resummation in the resolution variable to
produce fully di↵erential exclusive parton-level events. The parton-level events are further matched
to parton showering provided by Pythia 8. Logarithms in the resolution variable are resummed to
NNLL0, which includes all NNLO corrections in the singular limit. In this way, inclusive observables
are correct to NNLO0 up to small power corrections in the resolution cuto↵.

1. INTRODUCTION

2. THEORETICAL FRAMEWORK

A. General Setup

In order to describe Z production to next to next to leading order (NNLO), one needs to include all partonic
contributions with up to two final state partons. In a traditional fixed order calculations, the phase space of all these
partonic contributions is integrated over, and only the result for infrared (IR) safe observables can be obtained. An
exclusive event generator, on the other hand, needs to provide a weight for each phase space point, which should
represent the fully di↵erential cross-section d�/d�n. Of course, fully di↵erential cross-sections are ill-defined past
leading order (LO) due to the presence of IR divergences that only cancel once IR safe observables are calculated,
which combine the virtual diagrams with an integral over the collinear and soft region of the real emissions.

The best one can do is to define a fully di↵erential partonic jet cross-section, where a given phase space point
represents a jet event, with each four-vector providing the energy and direction of a partonic jet, which includes
besides the partonic event also the contributions from soft and collinear emissions. Note that a partonic jet is in
general quite di↵erent from regular jets observed experimentally. First, each partonic jet has a fixed flavor, and its
invariant mass is equal to the mass of that flavor. In order to accomplish such a jet definition requires carefully defined
phase space maps, which an on-shell N -body phase space point onto an on-shell M -body point. However, as long as
these phase space maps are IR safe, the fully di↵erential cross-section for such a partonic jet event is guaranteed to be
finite. There are many choices to define such a partonic jet, and one can choose one based on theoretical simplicity.

We define an N -jet resolution variable TN , such that events with TN < T cut
N have N or less jets, while events with

TN > T cut
N have more than N jets. This allows us to divide the whole phase space required into
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Here the exclusive 0-jet cross-section contains all partonic events with T0 < T cut
0 , the exclusive 1-jet cross-section

those with T0 > T cut
0 and T1 < T cut

1 , and the inclusive 2-jet cross-section those with T0 > T cut
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1 .
We can also define an inclusive 1-jet cross-section which can be written as
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where we have defined a shorthand notation for the the integral over �2, holding the underlying point �1 fixed
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This therefore integrates over the �1 ! �2 radiation variables. Using the events in Eq. (1), the cross section for any
observable X is given by
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where MX(�N ) is the measurement function that computes the observable X for the N -parton final state �N .
Note that the resulting cross-section is not identical to the fixed order result. This is because for events with extra

partons in the final state, but which satisfy T0 < T cut
0 , the observable is calculated on the projected phase space point

�0, rather than the original point �N . A similar e↵ect happens for events with T1 < T cut
1 . This di↵erence vanishes

in the limit T cut
0 ! 0 and T cut

1 ! 0, and in practice we will choose these parameters to be very small. For a more
detailed discussion about the e↵ect of this on observables, please see the discussion in [? ]. However, we will come
back to this point at a later stage.

Choosing the cut on the jet resolution variable to be small renders fixed order (FO) perturbation theory insu�cient
to describe the di↵erential cross-sections. Large logarithms of the ratio of the jet resolution variable over the typical
scale in the process need to be resummed to at least leading logarithmic (LL) accuracy. In [? ] a formalism was
developed to combine such a resummation with the NNLO accuracy desired, and the exclusive 0-jet and inclusive
1-jet rate can be written as
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Here d�resum
0 is the spectrum di↵erential in �0 with the dependence on T cut

0 resummed to a given logarithmic
accuracy, while the remaining two terms give the matching corrections required to reproduce the desired FO accuracy.
This matching corrections are separated into a singular contributions d�singmatch

0 and a non-singular contribution
d�nonsmatch

0 , where the singular matching includes all terms that do not vanish as T cut
0 ! 0, while the nonsingular

matching includes those that do vanish in that limit. A similar separation has been performed for the inclusive
1-jet spectrum, where now the d�resum

�1 resums the dependence on T0, while the singular (non-singular) matching
contributions contain the terms that do (don’t) vanish in the limit T0 ! 0.

In GENEVA, the resummation of the T0 dependence will be carried out to NNLL’ accuracy, where the prime indi-
cates that we include two-loop matching contributions. As will be explained later, this implies that the resummation
provides all the terms singular in T0 through O(↵2

s), such that the singular matching vanishes. Thus, we can write
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The alert reader might wonder how one can obtain an expression for a fully exclusive 1-jet cross-section, where the
dependence on T0 has been resummed to NNLL’ accuracy, since it is generally only know how to obtain the distribution
in d�/d�0dT0. One can write the fully di↵erential resummed spectrum as

d�NNLL0

�1

d�1
(T0 > T cut

0 ) =
d�NNLL0

�1

d�0dT0 P(�1) (8)

2

where we have defined a shorthand notation for the the integral over �2, holding the underlying point �1 fixed

d�2

d�1
= d�2 � [�1 � �1(�2)] . (3)

This therefore integrates over the �1 ! �2 radiation variables. Using the events in Eq. (1), the cross section for any
observable X is given by

�(X) =

Z
d�0

d�mc
0

d�0
(T cut

0 )MX(�0) (4)

+

Z
d�1

d�mc
1

d�1
(T0 > T cut

0 ; T cut
1 )MX(�1)

+

Z
d�2

d�mc
�2

d�2
(T0 > T cut

0 , T1 > T cut
1 )MX(�2) .

where MX(�N ) is the measurement function that computes the observable X for the N -parton final state �N .
Note that the resulting cross-section is not identical to the fixed order result. This is because for events with extra

partons in the final state, but which satisfy T0 < T cut
0 , the observable is calculated on the projected phase space point

�0, rather than the original point �N . A similar e↵ect happens for events with T1 < T cut
1 . This di↵erence vanishes

in the limit T cut
0 ! 0 and T cut

1 ! 0, and in practice we will choose these parameters to be very small. For a more
detailed discussion about the e↵ect of this on observables, please see the discussion in [? ]. However, we will come
back to this point at a later stage.

Choosing the cut on the jet resolution variable to be small renders fixed order (FO) perturbation theory insu�cient
to describe the di↵erential cross-sections. Large logarithms of the ratio of the jet resolution variable over the typical
scale in the process need to be resummed to at least leading logarithmic (LL) accuracy. In [? ] a formalism was
developed to combine such a resummation with the NNLO accuracy desired, and the exclusive 0-jet and inclusive
1-jet rate can be written as

d�mc
0

d�0
(T cut

0 ) =
d�resum

0

d�0
(T cut

0 ) +
d�singmatch

0

d�0
(T cut

0 ) +
d�nonsmatch

0

d�0
(T cut

0 ) ,

d�mc
�1

d�1
(T0 > T cut

0 ) =
d�resum

�1

d�1
(T0 > T cut

0 ) +
d�singmatch

�1

d�1
(T0 > T cut

0 ) +
d�nonsmatch

�1

d�1
(T0 > T cut

0 ) . (5)

Here d�resum
0 is the spectrum di↵erential in �0 with the dependence on T cut

0 resummed to a given logarithmic
accuracy, while the remaining two terms give the matching corrections required to reproduce the desired FO accuracy.
This matching corrections are separated into a singular contributions d�singmatch

0 and a non-singular contribution
d�nonsmatch

0 , where the singular matching includes all terms that do not vanish as T cut
0 ! 0, while the nonsingular

matching includes those that do vanish in that limit. A similar separation has been performed for the inclusive
1-jet spectrum, where now the d�resum

�1 resums the dependence on T0, while the singular (non-singular) matching
contributions contain the terms that do (don’t) vanish in the limit T0 ! 0.

In GENEVA, the resummation of the T0 dependence will be carried out to NNLL’ accuracy, where the prime indi-
cates that we include two-loop matching contributions. As will be explained later, this implies that the resummation
provides all the terms singular in T0 through O(↵2

s), such that the singular matching vanishes. Thus, we can write

d�mc
0

d�0
(T cut

0 ) =
d�NNLL0

0

d�0
(T cut

0 ) +
d�nons

0

d�0
(T cut

0 ) , (6)
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(T0 > T cut
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d�NNLL0

�1

d�1
(T0 > T cut

0 ) +
d�nons

�1

d�1
(T0 > T cut

0 ) . (7)

The alert reader might wonder how one can obtain an expression for a fully exclusive 1-jet cross-section, where the
dependence on T0 has been resummed to NNLL’ accuracy, since it is generally only know how to obtain the distribution
in d�/d�0dT0. One can write the fully di↵erential resummed spectrum as

d�NNLL0

�1

d�1
(T0 > T cut

0 ) =
d�NNLL0

�1

d�0dT0 P(�1) (8)
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• Create phase 
space for jet 
event

• Calculate 
cross section 
and assign to 
partonic event

• Let parton 
shower fill jets 
with radiation

In	contrast	to	most	other	Monte-Carlo	generators,	Geneva	
calculates	physical	jet	cross-sec:ons

Φ0 Φ1 Φ2



The	main	ques:on	is	what	expression	to	use	for	the	
differen:al	jet	cross-sec:on

5

d�

d�N
?

MC



6

In	summary,	Geneva	implements	the	following	results	for	the	
fully	differen:al	jet	cross-sec:ons

Fixed order 𝓣0 resummation 𝓣1 resummation

𝜎0 NNLO NNLL’

𝜎1 NLO NNLL’ NLL

𝜎≥2 LO NNLL’ NLL

Use the full power of SCET to obtain exclusive jet 
distributions to given FO and resummation accuracy

By performing high logarithmic accuracy, can choose very 
small values for jet separations 
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To	interface	with	a	parton	shower,	need	to	make	integra:ons	
in	partonic	calcula:on	exclusive	again

Perturbative shower 
constraint

𝜎0 within 0-jet

𝜎1 within 1-jet

𝜎≥2
maintain hardest 

emission
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To	interface	with	a	parton	shower,	need	to	make	integra:ons	
in	partonic	calcula:on	exclusive	again

Perturbative shower 
constraint Detailed constraints

𝜎0 within 0-jet 𝓣0 < 𝓣0cut

𝜎1 within 1-jet 𝓣1 < 𝓣1cut 
other technical details

𝜎≥2
maintain hardest 

emission 𝓣2 < 𝓣1
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To	interface	with	a	parton	shower,	need	to	make	integra:ons	
in	partonic	calcula:on	exclusive	again

Perturbative shower 
constraint Detailed constraints

𝜎0 within 0-jet 𝓣0 < 𝓣0cut

𝜎1 within 1-jet 𝓣1 < 𝓣1cut 
other technical details

𝜎≥2
maintain hardest 

emission 𝓣2 < 𝓣1

Do first emissions in Geneva and let shower handle  
higher multiplicities



Before I talk about UE sensitive observables, let’s briefly look 
at UE insensitive observables. 



Fully	inclusive	Z	boson	spectra	agree	with	NNLO	fixed	order	
calcula:on

16

FIG. 5. Comparison of Geneva with the NNLO rapidity
distribution of the vector boson. The orange curve shows the
results from Dynnlo, while the black histogram shows the
Geneva result. For Geneva, the uncertainties shown are the
FO uncertainties as described in the text.

parton shower. As required, the parton shower changes
the T0 spectrum only within the perturbative uncertain-
ties. In fact, over most of the T0 range the spectrum is
essentially unchanged.

The nonperturbative e↵ects are shown in Fig. 4, where
we compare the predictions for the T0 spectrum after the
shower (again in blue) and after the addition of proton
remnants, intrinsic kT smearing, and hadronization by
Pythia 8 in orange. These e↵ects change the T0 distri-
bution significantly in the peak region, while they become
power corrections in the transition and tail regions. This
behaviour is precisely as dictated by factorization, from
which one expects that these e↵ects should behave for T0
analogous to thrust in e+e�. Comparing to our e+e� re-
sults [24], this is precisely what we observe. A benefit of
the Geneva approach is that it allows to directly com-
bine the higher-order analytic resummation with these
nonperturbative corrections provided by the hadroniza-
tion model in Pythia 8.

B. Partonic NNLO0 Observables

We now show that Geneva reproduces fully inclusive
observables at NNLO accuracy, by comparing to dedi-
cated NNLO calculations. In this section, we only con-
sider the profile scale variations that reproduce the FO

FIG. 6. Comparison of Geneva with the NNLO rapidity dis-
tribution of the negatively charged lepton. The orange curve
shows the results from Dynnlo, while the black histogram
shows the Geneva result. For Geneva, the uncertainties
shown are the FO uncertainties as described in the text.

scale variations, as described in Sec. 2B 2.

In Fig. 5 and Fig. 6 we show the result for the rapid-
ity distribution of the vector boson and the negatively
charged lepton from its decay, respectively. The orange
band shows the NNLO result from Dynnlo [77]. We
show the results of Geneva as a black histogram, with
the error bars representing FO uncertainties as described
above. In the lower part of each plot, we show the ratio
to the Dynnlo central value.

The central value of Geneva agrees very well with
the fixed NNLO prediction. The perturbative uncertain-
ties from Geneva are also in reasonable agreement with
those from Dynnlo. The few fluctuations observed in
the plot are of statistical nature, as evidenced by the fact
that they grow larger toward larger rapidities, where the
statistics is poorer. The rapidity distribution of the vec-
tor boson has also been validated against the independent
NNLO calculation provided by Vrap [78].

In Fig. 7 we show the result of the transverse momen-
tum distribution of the negatively charged lepton. For
pT ` < m`+`�/2 this observable is a true NNLO distri-
bution and Geneva agrees very well with the NNLO
prediction. The region above and below m`+`�/2 is very
sensitive to Sudakov shoulder logarithms [79]. It is known
that the FO calculations perform very poorly in this re-
gion and fail to provide an accurate description of the
physics. On the other hand, Geneva will have some of
these logarithms resummed and should therefore provide

DYNNLO: 0903:2120



Resummed	observables	are	predicted	with	accuracies	which	
compare	well	with	dedicated	NNLL	calcula:ons18

FIG. 9. Comparison of Geneva with the analytic qT distribu-
tion at NNLL+NLO1 from Ref. [80]. The analytic results are
shown in blue, and the Geneva results are shown in black.

FIG. 10. Comparison of Geneva with the analytic �⇤ distri-
bution at NNLL+NLO1 from Ref. [80]. The analytic results
are shown in blue, and the Geneva results are shown in black.

tance cuts used by experimental analyses. Using the
same lepton cuts as in that study, we show our compari-

FIG. 11. Comparison of Geneva with the 0-jet cross section
as a function of pcutT from JetVHeto [81] at NNLL+NNLO.
The analytic results are shown in blue, and the Geneva re-
sults are shown in black. For Geneva, the uncertainties are
the FO uncertainties only, see text for details.

son in Fig. 9. Again, we observe a fairly good agreement
with the analytic NNLL prediction matched to NLO1.
Another variable, quite similar to the transverse momen-
tum of the vector boson, is the �⇤ between the two lep-
tons, with the precise definition of �⇤ given in [76]. The
comparison of Geneva to the NNLL+NLO1 calculation
of Ref. [80] is shown in Fig. 10, and we again observe
good agreement.

Finally, we show the result for the exclusive 0-jet
cross section as a function of pcutT in Fig. 11, where
the 0-jet sample is defined as all events containing no
jets with pT > pcutT . The jets are reconstructed with
the anti�kT algorithm [83] as implemented in Fast-
jet [84, 85], within a radius R = 0.4. We find good agree-
ment between Geneva and the dedicated NNLL+NNLO
calculation given by JetVHeto [81] within the pertur-
bative uncertainties. For this plot, we use the FO scale
uncertainties discussed in Sec. 2B 2, such that the uncer-
tainties at large pcutT are estimated correctly and thus pre-
cisely reproduce those of JetVHeto. At small pcutT they
are now underestimated and here the resummation un-
certainties should be added. The better agreement with
the NNLL+NNLO prediction compared to the lower or-
der NLL+NLO one, especially in the large pcutT region,
is of course driven by the correct inclusion of the NNLO
corrections in Geneva.

JetVHETO: 1206:4998



For	jet	based	observables,	MPI	is	typically	a	non-negligible	
effect

Need to understand 
and trust MPI 
predictions for testing 
the SM at high 
accuracy 

Especially at 
relatively low pT, jet 
cross MPI can affect 
jet cross-section 
significantly
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Care	needs	to	be	taken	to	include	MPI	effects,	since	
perturba:ve	calcula:ons	included	no	informa:on

The factorization formula that is starting point for the 
perturbative calculations in Geneva has no information  

about MPI effects

Geneva therefore has no perturbative information on MPI

Should therefore use the MPI model inside Pythia without  
any constraints 
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Care	needs	to	be	taken	to	include	MPI	effects,	since	
perturba:ve	calcula:ons	included	no	informa:on

Perturbative shower 
constraint MPI constraints

𝜎0 within 0-jet None

𝜎1 within 1-jet None

𝜎≥2
maintain hardest 

emission None

Technically, needs to take into account that MPI is interleaved 
with showering of primary event
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Results for UE sensitive observables



UE	sensi:ve	observables	typically	measure	observables	in	a		
region	transverse	to	the	primary	interac:on

2

the effect of multiple proton-proton interactions in the same
bunch crossing (termed pile-up). The correction of the data
to the particle level, and the combination of the electron
and muon channel results are described in Sect. 7. Section 8
contains the estimation of the systematic uncertainties. The
results are discussed in Sect. 9 and finally the conclusions
are presented in Sect. 10.

2 Underlying event observables

Since there is no final-state gluon radiation associated with
a Z-boson, lepton-pair production consistent with Z-boson
decays provides a cleaner final-state environment than jet
production for measuring the characteristics of the underlying
event in certain regions of phase space. The direction of the
Z-boson candidate is used to define regions in the azimuthal
plane that have different sensitivity to the UE, a concept first
used in [12]. As illustrated in Fig. 1, the azimuthal angular
difference between charged tracks and the Z-boson, |Df |=
|f �fZ-boson|, is used to define the following three azimuthal
UE regions:

– |Df |< 60�, the toward region,
– 60� < |Df |< 120�, the transverse region, and
– |Df |> 120�, the away region.

These regions are well defined only when the measured
pZ

T is large enough that, taking into account detector resolu-
tion, it can be used to define a direction. The away region
is dominated by particles balancing the momentum of the
Z-boson except at low values of pZ

T. The transverse region is
sensitive to the underlying event, since it is by construction
perpendicular to the direction of the Z-boson and hence it is
expected to have a lower level of activity from the hard scat-
tering process compared to the away region. The two opposite
transverse regions may be distinguished on an event-by-event
basis through their amount of activity, as measured by the
sum of the charged-particle transverse momenta in each of
them. The more or less-active transverse regions are then
referred to as trans-max and trans-min, respectively, with
the difference between them on an event-by-event basis for
a given observable defined as trans-diff [13, 14]. The activ-
ity in the toward region, which is similarly unaffected by
additional activity from the hard scatter, is measured in this
analysis, in contrast to the underlying event analysis in dijet
events [5].

The observables measured in this analysis are derived
from the number, Nch, and transverse momenta, pT, of sta-
ble charged particles in each event. They have been studied
both as one-dimensional distributions, inclusive in the prop-
erties of the hard process, and as profile histograms which
present the dependence of the mean value of each observable
(and its uncertainty) on pZ

T. The observables are summarised
in Tab. 1. The mean charged-particle transverse momentum is

Df�Df

Z-boson

Toward
|Df |< 60�

Away
|Df |> 120�

Transverse
60� < |Df |< 120�

Transverse
60� < |Df |< 120�

Fig. 1 Definition of UE regions as a function of the azimuthal angle
with respect to the Z-boson.

constructed on an event-by-event basis and is then averaged
over all events to calculate the observable mean pT.

Table 1 Definition of the measured observables. These are defined for
each azimuthal region under consideration except for pZ

T.

Observable Definition

pZ
T Transverse momentum of the Z-boson

Nch/dh df Number of stable charged particles
per unit h–f

ÂpT/dh df Scalar pT sum of stable charged
particles per unit h–f

Mean pT Average pT of stable charged
particles

3 The ATLAS detector

The ATLAS detector [11] covers almost the full solid angle
around the collision point. The components that are relevant
for this analysis are the tracking detectors, the liquid-argon

Phys. Rev. D65 092002



Several	physics	effects	contribute	to	the	UE	sensi:ve	
observables

• MPI effects 

• Soft radiation of the primary interaction 

• Hadronization effects of MPI and primary partons 

• …

An important question is how to separate  these various 
different effects

Will come back to this later



ATLAS	has	measured	several	standard	UE	sensi:ve	observables	
ATLAS arXiv:1409.3433

<pT> vs number of charged tracks

Atlas
Geneva+Py8
Geneva+Py8(no MPI)
Pythia8
Tune 11
Tune 14
Tune 17

0

1

2

3

4

5

Z ! µ+µ�, 7 TeV, Transverse region, dressed level

hm
ea
n
p
T
i[
G
eV

]

5 10 15 20 25 30 35 40 45 50
0.8

0.9

1.0

1.1

1.2

1.3

Nch

M
C
/D

at
a

0

0.5

1

1.5

2

2.5

3

3.5

4

Z ! µ+µ�, 7 TeV, Away region, dressed level

hm
ea
n
p
T
i[
G
eV

]

5 10 15 20 25 30 35 40 45 50
0.9

0.95

1.0

1.05

1.1

Nch

M
C
/D

at
a

Figure 1: Mean charged particle pT as a function of multiplicity, in the transverse region

(left panel) and away region (right panel).

below the data as pZT increases, whereas Geneva stays closer to the data even for very

high (> 100GeV) bins of pZT in both regions. The Nch/�⌘ �� distribution as a function

of pZT in figure 7 follow a similar pattern, but the agreement of Pythia8 with the data

is overall much better than for the average
P

pT /�⌘ �� distribution, and the di↵erence

between Geneva and Pythia is less pronounced. Both are in reasonable agreement with

the data.

3.2 CMS

The CMS analysis uses similar UE-sensitive observables and event region definitions. CMS

candidate events also only include di-muon events, with 81 < mµ+µ� < 101GeV. Fig. 8

shows the Nch/�⌘ �� and
P

pT /�⌘ �� distributions as a function of pZT for relatively small

pZT < 100 GeV. As expected, MPI e↵ects are required for a proper description of the

data. Again Geneva agrees well with standalone Pythia for both observables. Fig. 9

shows the di↵erential Nch and pT spectra in the toward and transverse regions, with no

restrictions on pZT (note that unlike ATLAS, here the pT spectrum is plotted rather than

the
P

pT spectrum). Geneva agrees well with Pythia on the Nch distribution, and both

underestimate the charged track density for low Nch and overestimate it for Nch > 10.

Agreement between Pythia and Geneva on the pT spectrum holds only for low values of

pT. Geneva agrees with the data within 20% across the whole pT spectrum, while Pythia

predicts a comparatively softer spectrum for pT > 3GeV. Again, a more careful theoretical

study is required to understand whether the increased agreement can be attributed to

Geneva’s higher perturbative accuracy.
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Fig. 21 Comparison of data and MC predictions for charged particle mean pT as a function of charged particle multiplicity, Nch, in the toward (a)
and transverse (b) regions. The bottom panel in each plot shows the ratio of MC predictions to data. The shaded bands represent the combined
statistical and systematic uncertainties, while the error bars show the statistical uncertainties.
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Figure 4: The di↵erential Nch/�⌘ �� distribution at low pZT < 5GeV, in the toward region

(left panel) and transverse region (right panel).
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Figure 5: The di↵erential Nch/�⌘ �� distribution at high pZT > 110GeV, in the toward

region (left panel) and transverse region (right panel).
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Fig. 11 Comparisons of data and MC predictions for charged particle multiplicity density, Nch/dh df , for Z-boson transverse momentum, pZ
T, in

the interval 20�50 GeV, in the toward (a) and transverse (b) regions. The bottom panels in each plot show the ratio of MC predictions to data. The
shaded bands represent the combined statistical and systematic uncertainties, while the error bars show the statistical uncertainties.
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Figure 6: The charged particle scalar
P

pT density average values, as a function of Z-

boson transverse momentum pZT , in the toward region (left panel) and transverse region

(right panel).
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Figure 7: The number of charged particle tracks, as a function of Z-boson transverse

momentum pZT , in the toward region (left panel) and transverse region (right panel).
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Figure 9: The di↵erential charged particle multiplicity (top) and transverse momen-

tum (bottom) distributions in the toward region (left panels) and transverse region (right

panels).

calculations matched to parton showers can reproduce the hard physics at fixed order,

usually they do not account for soft perturbative physics associated with the primary

interaction. For this reason, it is di�cult to disentangle the perturbative e↵ects of the

primary interaction, MPI, and nonperturbative physics when tuning the underlying-event

model.

By choosing an observable for which the underlying primary perturbative physics is

known precisely, one can get a better handle on the e↵ects due to MPI. Recently, ATLAS
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Figure 4: Distributions of the charged particle multiplicity (upper row) and transverse mo-
mentum (bottom row) of the selected tracks. The left plots show the comparisons of the
normalized distributions in the away, transverse, and towards regions for events satisfying
81 < Mµµ < 101 GeV/c2. Comparisons of the normalized distributions in the transverse region
are shown in the centre plots, requiring 81 < Mµµ < 101 GeV/c2 or pµµ

T < 5 GeV/c . The right
plots show the comparisons of the normalized distributions in the transverse region with the
predictions of various simulations for events satisfying 81 < Mµµ < 101 GeV/c2.
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Figure 9: The di↵erential charged particle multiplicity (top) and transverse momen-

tum (bottom) distributions in the toward region (left panels) and transverse region (right

panels).

calculations matched to parton showers can reproduce the hard physics at fixed order,

usually they do not account for soft perturbative physics associated with the primary

interaction. For this reason, it is di�cult to disentangle the perturbative e↵ects of the

primary interaction, MPI, and nonperturbative physics when tuning the underlying-event

model.

By choosing an observable for which the underlying primary perturbative physics is

known precisely, one can get a better handle on the e↵ects due to MPI. Recently, ATLAS
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Figure 4: Distributions of the charged particle multiplicity (upper row) and transverse mo-
mentum (bottom row) of the selected tracks. The left plots show the comparisons of the
normalized distributions in the away, transverse, and towards regions for events satisfying
81 < Mµµ < 101 GeV/c2. Comparisons of the normalized distributions in the transverse region
are shown in the centre plots, requiring 81 < Mµµ < 101 GeV/c2 or pµµ

T < 5 GeV/c . The right
plots show the comparisons of the normalized distributions in the transverse region with the
predictions of various simulations for events satisfying 81 < Mµµ < 101 GeV/c2.



To	separate	MPI	correc:ons,	need	to	remove	the	soQ	
perturba:ve	effects	from	UE	sensi:ve	observables

As already mentioned, UE sensitive observables  
not only probe MPI, but also long distance physics related to 

primary interaction (i.e. soft radiation …)

Therefore very difficult to separate MPI effects from primary 
interaction effects

Best way forward is to choose observable for which primary 
interaction very well known, including soft radiation effects

Beam thrust distribution calculated precisely in Geneva
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Figure 10: The beam thrust distribution TCM.

Figure 11 compares Geneva+Pythia8 for the TCM distribution in di↵erent regions of

transverse momentum of the Z boson. This introduces a dependence on the pZT spectrum

in the measurement. While the overall shape is still described well by Geneva+Pythia8,

a slight discrepancy develops in the tails of the distribution at large TCM. This is most

likely due to the fact that the pZT distribution is predicted with lower accuracy in Geneva

compared to the beam thrust distribution. As expected, there is better agreement in

the pZT > 25 range, where the pZT spectrum starts to be dominated by the fixed-order

calculation.

5 Conclusions

We have presented a study of UE-sensitive observables for Drell-Yan neutral-current pro-

duction in the Geneva Monte Carlo framework. By adding the ability to turn on the

MPI model included in Pythia8, one obtains an accurate description of observables that

are sensitive to both hard and soft physics. UE-sensitive observables often contain contri-
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• Seems that current MPI 
model in PY already 
doing good job 

• This means that MPI 
extracted from other 
processes seems to 
work for 0-jettiness



QUESTIONS?


