Threshold logarithms in a parton shower

Zoltán Nagy DESY

work with Dave Soper, University of Oregon

QCD@LHC, Zürich, August 25, 2016

• Consider the Drell-Yan process with dimuon rapidity Y and mass M.

• There are logarithms of (1-z):

$$\int_{0}^{1} dz \ f_{a/A}(\eta_{a}/z, \mu_{F}^{2}) \left\{ \delta(1-z) + C\alpha_{s} \left[\frac{\log(1-z)}{1-z} \right]_{+} + \cdots \right\}$$

• There is a large literature on summing these logarithms starting with Sterman (1987).

DEDUCTOR

- http://pages.uoregon.edu/soper/deductor/
- Dipole shower.
- In principle, uses quantum density matrix in color & spin.
- LC+ approximation for color.
- Z. Nagy and D. E. Soper, "Summing threshold logs in a parton shower," arXiv:1605.05845 [hep-ph]

Coming in Deductor

- Perturbative improvement to LC+ approximation.
- Quantum spin.
- Interface to hadronization model.

Now in Deductor

- Threshold logs (this talk).
- Choices, e.g. for definition of ordering variable.

Shower evolution

- Showers develop in "shower time."
- Hardest interactions first.

Real time picture

Shower time picture

Shower ordering variable

- Originally, Pythia used virtuality to order splittings.
- Now, Pythia and Sherpa use " $k_{\rm T}$."
- Deductor uses Λ ,

$$\Lambda^{2} = \frac{(\hat{p}_{l} + \hat{p}_{m+1})^{2}}{2p_{l} \cdot Q_{0}} Q_{0}^{2} \qquad \text{final state,}$$

$$\Lambda^2 = -\frac{(\hat{p}_a - \hat{p}_{m+1})^2}{2p_a \cdot Q_0} Q_0^2 \qquad \text{initial state}$$

• Here Q_0 is a fixed timelike vector.

Contrast with SCET

• SCET distinguishes multiple regions.

- A parton shower has just larger λ and smaller λ .
- Shower evolution from

$$\frac{d}{d\lambda}$$

The shower state

- Here I am ignoring spin.
- To describe the state at shower time t based on an ensemble of runs of the program, use the density operator in color space

$$\rho(\{p, f\}_m, t) = \sum_{\{c\}_m, \{c'\}_m} \rho(\{p, f, c', c\}_m, t) |\{c\}_m\rangle \langle \{c'\}_m|$$

• Here $\rho(\{p, f, c', c\}_m, t)$ is the probability to find the system with momenta and flavors $\{p, f\}_m$ in this color state.

• Denote this function by $|\rho(t)|$.

Evolution equation

$$|\rho(t)\rangle = \mathcal{U}_{\mathcal{S}}(t, t_0)|\rho(t_0)\rangle$$

 $\mathcal{H}_{\mathrm{I}}(t) = \mathrm{splitting\ operator}$

$$\frac{d}{dt}\mathcal{U}_{\mathcal{S}}(t,t') = [\mathcal{H}_{I}(t) - \mathcal{S}(t)]\mathcal{U}_{\mathcal{S}}(t,t')$$

S(t) = no-splitting operator

$$\mathcal{U}_{\mathcal{S}}(t,t') = \mathcal{N}_{\mathcal{S}}(t,t') + \int_{t'}^{t} d\tau \ \mathcal{U}_{\mathcal{S}}(t,\tau) \mathcal{H}_{I}(\tau) \mathcal{N}_{\mathcal{S}}(\tau,t')$$

where

$$\mathcal{N}_{\mathcal{S}}(\tau, t') = \mathbb{T} \exp \left[-\int_{t'}^{\tau} d\tau' \ \mathcal{S}(\tau') \right]$$

Role of parton distributions

• $\rho(t)$ contains a factor of parton distributions,

$$|\rho(t)\rangle = \mathcal{F}(t)|\rho_{\text{pert}}(t)\rangle$$

- Here $|\rho_{\text{pert}}(t)|$ is $|M\rangle\langle M|$ from Feynman diagrams.
- We include parton distribution functions at the current scale.

$$\mathcal{F}(t) | \{p, f, c', c\}_{m}\}$$

$$= \frac{f_{a/A}(\eta_{a}, \mu_{a}^{2}(t)) f_{b/B}(\eta_{b}, \mu_{b}^{2}(t))}{4n_{c}(a)n_{c}(b) 4\eta_{a}\eta_{b}p_{B} \cdot p_{B}} | \{p, f, c', c\}_{m}\}$$

Evolution for the perturbative state

$$|\rho(t)\rangle = \mathcal{F}(t)|\rho_{\text{pert}}(t)\rangle$$

$$\frac{d}{dt} | \rho_{\text{pert}}(t) \rangle = [\mathcal{H}_I^{\text{pert}}(t) - \mathcal{S}^{\text{pert}}(t)] | \rho_{\text{pert}}(t) \rangle$$

- Calcuate $\mathcal{H}_I^{\text{pert}}(t)$ from Feynman diagrams.
- Then use

$$\mathcal{H}_I(t) = \mathcal{F}(t)\mathcal{H}_I^{\text{pert}}(t)\mathcal{F}(t)^{-1}$$

$$|\rho(t)\rangle = \mathcal{F}(t)|\rho_{\text{pert}}(t)\rangle$$

$$\frac{d}{dt} | \rho_{\text{pert}}(t)) = [\mathcal{H}_I^{\text{pert}}(t) - \mathcal{S}^{\text{pert}}(t)] | \rho_{\text{pert}}(t))$$

• Calculate S^{pert} from Feynman diagrams.

• Then use

$$S(t) = S^{\text{pert}}(t) - F(t)^{-1} \left[\frac{d}{dt} F(t) \right]$$

Including threshold logs

• A parton shower can sum logarithms if you let it.

• I can show you the main idea.

What not to do

• Suppose that the shower state evolves according to

$$\begin{aligned} \left| \rho(t) \right) &= \mathcal{U}_{\mathcal{V}}(t,t') \middle| \rho(t') \right) \\ \frac{d}{dt} \, \mathcal{U}_{\mathcal{V}}(t,t') &= \left[\mathcal{H}_{\mathrm{I}}(t) - \mathcal{V}(t) \right] \mathcal{U}_{\mathcal{V}}(t,t') \\ \mathcal{H}_{\mathrm{I}}(t) &= \text{splitting operator} \end{aligned}$$

$$\mathcal{V}(t) = \text{no-splitting operator}$$

• We calculate V(t) from $\mathcal{H}_I(t)$ so that the inclusive cross section does not change during the shower.

What to do

• The shower state evolves in shower time.

$$|\rho(t)\rangle = \mathcal{U}_{\mathcal{S}}(t, t')|\rho(t')\rangle$$

$$\frac{d}{dt} \mathcal{U}_{\mathcal{S}}(t, t') = [\mathcal{H}_{\mathrm{I}}(t) - \mathcal{S}(t)] \mathcal{U}_{\mathcal{S}}(t, t')$$

$$\mathcal{H}_{\rm I}(t) = {\rm splitting\ operator}$$

$$S(t)$$
 = virtual splitting
and parton evolution

• We simply calculate S(t) from one loop virtual graphs plus parton evolution.

What happens

$$\mathcal{U}_{\mathcal{S}}(t, t_0) = \mathcal{N}_{\mathcal{S}}(t, t_0) + \int_{t_0}^{t} d\tau \ \mathcal{U}_{\mathcal{S}}(t, \tau) \mathcal{H}_{I}(\tau) \mathcal{N}_{\mathcal{S}}(\tau, t_0)$$

$$\mathcal{N}_{\mathcal{S}}(t_2, t_1) = \mathbb{T} \exp \left[\int_{t_1}^{t_2} d\tau \left[-\mathcal{V}(\tau) + (\mathcal{V}(\tau) - \mathcal{S}(\tau)) \right] \right]$$

- Within the LC+ approximation, the operators commute.
- There is an extra factor

$$\exp\left[\int_{t_1}^{t_2} d\tau \, \left(\mathcal{V}(\tau) - \mathcal{S}(\tau)\right)\right]$$

that changes the cross section.

The most important term

- Look at the Drell-Yan process.
- Look at the factor for line "a" just after the hard interaction.
- Assume that no real gluons have been emitted yet.

• Use y = dimensionless virtuality variable (with $y \ll 1$) and z = momentum fraction.

- Result: almost everything cancels.
- Two terms do not quite cancel.

$$\begin{aligned} & [\mathcal{V}_{a}(t) - \mathcal{S}_{a}(t)] | \{p, f, c', c\}_{m} \} = \\ & \left\{ \int_{0}^{1/(1+y)} \frac{dz}{z} \sum_{\hat{a}} \frac{\alpha_{s}}{2\pi} \left(\frac{f_{\hat{a}/A}(\eta_{a}/z, Q^{2}y)}{f_{a/A}(\eta_{a}, Q^{2}y)} P_{a\hat{a}}(z) - \delta_{a\hat{a}} \frac{2C_{a}z}{1-z} \right) [1 \otimes 1] \right. \\ & \left. - \int_{0}^{1} \frac{dz}{z} \sum_{\hat{a}} \frac{\alpha_{s}}{2\pi} \left(\frac{f_{\hat{a}/A}(\eta_{a}/z, Q^{2}y)}{f_{a/A}(\eta_{a}, Q^{2}y)} P_{a\hat{a}}(z) - \delta_{a\hat{a}} \frac{2C_{a}z}{1-z} \right) [1 \otimes 1] \right. \\ & \left. + \cdots \right\} | \{p, f, c', c\}_{m} \right) \end{aligned}$$

- z < 1/(1+y) comes from splitting kinematics.
- z < 1 comes from parton evolution.

• This gives

$$\begin{aligned} & [\mathcal{V}_{a}(t) - \mathcal{S}_{a}(t)] | \{p, f, c', c\}_{m}) = \\ & \left\{ \int_{1/(1+y)}^{1} dz \, \frac{\alpha_{s}}{2\pi} \, \frac{2C_{a}}{1-z} \left(1 - \frac{f_{a/A}(\eta_{a}/z, Q^{2}y)}{f_{a/A}(\eta_{a}, Q^{2}y)} \right) [1 \otimes 1] \right. \\ & \left. + \cdots \right\} | \{p, f, c', c\}_{m}) \end{aligned}$$

- The 1/(1-z) factor creates the "threshold log."
- But the parton factor contains a factor (1-z) so there is no actual log.
- For $y \ll 1$, this contribution is suppressed by a factor of y.
- But, the parton factor can be large, so we keep this.

Conclusion on threshold logs

- We find simple and intuitive leading order formulas.
- This is in the context of a leading order parton shower not "NLO," "NLL" or "NNLL."
- This is implemented as part of Deductor.
- The summation applies to all hard processes.
- The shower sums the threshold logs jointly with other large logs.

Some details

- There are more terms, some with non-trivial color.
- We need to account for switch to parton distributions based on virtuality instead of transverse momentum as the measure of hardness.

Drell-Yan

Drell-Yan

Drell-Yan

Scale dependence of Drell-Yan cross section

Jet Production

Jet Production

Ratios of one jet inclusive cross section

Jet Production

Scale dependence of one jet inclusive cross section

General conclusion

• Parton shower event generators can sum logarithms.

• They are leading order, so not as precise as SCET.

• But they are useful because they are more general.

• Summing threshold logs with a parton shower is possible.