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e Consider the Drell-Yan process with dimuon rapidity Y
and mass M.
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e There are logarithms of (1 — 2):
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e There is a large literature on summing these logarithms
starting with Sterman (1987).



DEDUCTOR

e http://pages.uoregon.edu/soper/deductor/
e Dipole shower.
e In principle, uses quantum density matrix in color & spin.

e LC+ approximation for color.

e /. Nagy and D. E. Soper,
“Summing threshold logs in a parton shower,”
arXiv:1605.05845 |hep-ph]



Coming in DEDUCTOR

e Perturbative improvement to LC+ approximation.

e (Quantum spin.

e Interface to hadronization model.

Now in DEDUCTOR

e Threshold logs (this talk).

e Choices, e.g. for definition of ordering variable.



Shower evolution

e Showers develop in “shower time.”

e Hardest interactions first.
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Shower ordering variable

e Originally, PYTHIA used virtuality to order splittings.
e Now, PYTHIA and SHERPA use “kp.”

e DEDUCTOR uses A,
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e Here ()y is a fixed timelike vector.



Contrast with SCET

e SCET distinguishes multiple regions.
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e A parton shower has just larger A and smaller .

e Shower evolution from



The shower state

e Here 1 am 1gnoring spin.

e To describe the state at shower time ¢
based on an ensemble of runs of the program,
use the density operator in color space

p({p, f1m:t) = Y p({p. f.¢, chmnt) [{chm) ({¢}m]
{ehmod/}m

e Here p({p, f,c,c}m,t) is the probability to find the system
with momenta and flavors {p, f},, in this color state.

e Denote this function by ‘p(t))
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Evolution equation

p(t)) = Us(t,to)|p(to))

%US (¢, t/) = [H;(t) — S(t)|Us(t, t/) S(t) = no-splitting operator

H1(t) = splitting operator

t

Us(t,t") = Ns(t,t') + / dr Us(t, 7)H 1 (T)Ns(T,t")

t/

where

Ns(7,t") = T exp —/ dr" S(7')
t i




Role of parton distributions

e p(t) contains a factor of parton distributions,
p(t)) = F(t)|ppert ()
o Here |ppert(t)) is | M )(M| from Feynman diagrams.

e We include parton distribution functions at the current scale.

F)|{p, £, ctm)
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Evolution for the
perturbative state

p(t)) = F(t)|ppere(t))

| ppere (1)) = M5 () — SP°7(1)] | e 1)

e Calcuate HY"(t) <
from Feynman diagrams.
hard

e Then use




p(t)) = F(t)|ppert(t))

%|ppert (t)) = [H7™ (1) — S ()] ppers (£))

o Calculate SPert

from Feynman diagrams.

hard

e ['hen use

S(t) = s () - F(o) | L Fey
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Including threshold logs

e A parton shower can sum logarithms if you let it.

e | can show you the main idea.
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What not to do

e Suppose that the shower state evolves according to

(1) = Un(t,1)|p(t"))

%Z/lv(t,t’) = [Ha(t) = VOl (1, 1)
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Hi(t) = splitting operator

V(t) = no-splitting operator

~ (

e We calculate V(t) from H;(t) so that the inclusive
cross section does not change during the shower.

14



What to do

e The shower state evolves 1n shower time.

(1)) = Us (t.4)|(t) (][] [
d LT
o Us(t, 1) = [Hi(t) — S(1)Us (¢, 1) -
H1(t) = splitting operator

S(t) = virtual splitting .
and parton evolution

~+ (

e We simply calculate S(t) from one loop virtual graphs
plus parton evolution.
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What happens

Us(t,tg) = Ns(t, tg) + / dr Us(t, T)Hi(T)Ns(T,to)

Ns(ta,t)) =Texp | [ dr [-V() + 0(r) = S0))]

| J 11

e Within the LC+ approximation, the operators commute.

e There is an extra factor

exp / 2d7‘ V(1) — S(T))_

L J 11

that changes the cross section.




The most important term

e LLook at the Drell-Yan process.

e Look at the factor for line “a” just after the hard interaction.

e Assume that no real gluons have been emitted yet.

) ) ) ) ) @
S
| —1
e
o—— T
%\
)y
44.1!!4;,,,
\_/ \_/ \_/ \_/ %

e Use y = dimensionless virtuality variable (with y < 1)

and z = momentum fraction.
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e Result: almost everything cancels.

e T'wo terms do not quite cancel.

[Va(t) o Sa(t)] ‘{p7 f7 Cla C}m) —

[ Y0+ g, fasa(na/z, Q%)
< /O _Z ( fa/A(nanQ )

dz fa/A na/zaQQ ) . AZCCLZ>
% B o R LED

Poa(2) — dua QCa'Z) 1@ 1

T }|{p,f,C/,C}m)

e 2 < 1/(1+ y) comes from splitting kinematics.

e z < 1 comes from parton evolution. 8
I



e This gives
Va(t) — Sa(t)H{pv f,c,s C}m) —
{/1 7 as 20, (1 fa/A(na/ZvQQy)> 1® 1]

J(+y) 2T 1—2 faya(Na, Q%y)

_I_'”}{pvfaclvc}m)

e The 1/(1 — 2) factor creates the “threshold log.”

e But the parton factor contains a factor (1 — z)
so there is no actual log.

e For y < 1, this contribution is suppressed by a factor of y.

e But, the parton factor can be large, so we keep this.
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Conclusion on threshold logs

e We find simple and intuitive leading order formulas.

e This is in the context of a leading order parton shower
not “NLO,” “NLL” or “NNLL.”

e This is implemented as part O
of DEDUCTOR.

e The summation applies to all e
hard processes. T

e ['he shower sums the threshold
logs jointly with other large logs.
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Some details

e There are more terms, some with non-trivial color.

e We need to account for switch to parton
distributions based on virtuality instead of transverse
momentum as the measure of hardness.
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IR

do /dQ [nb/GeV]

Drell-Yan cross section
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IR

Ratios of Drell-Yan cross sections
19 [ B I B

{
l

1.8

1.7

{
l

DEDUCTOR (full)

1.6

{
l

\
l

1.5

T T T 1 T T T 1]
L1

{
l

1.3

{
l

1.2 __-z=

DEDUCTOR (no A) DEDUCTOR (std.)

1.1

{
l

«—
| 11 |

p—t
{
N
l

=
©

-
-
Ot
—_
—_
&)
(\)
DO
ot
V)
&0
ot
N
N
ot
ot
ot
ot
@)
@)
&)
\'I

Q [TeV] 23



IR

Scale dependence of Drell-Yan cross section
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Jet Production

One jet inclusive cross section
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Jet Production

Ratios of one jet inclusive cross section
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[do(X)/dPr|/[do(1)/dPr|
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Jet Production

Scale dependence of one jet inclusive cross section
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(szeneral conclusion

e Parton shower event generators can sum logarithms.
e They are leading order, so not as precise as SCET.

e But they are usetul because they are more general.

e Summing threshold logs with a parton shower is possible.
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