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Introduction and motivation

Introduction and motivation

Experiments Large Hadron Collider (LHC)
high-accuracy experimental data (up to % level)
high c.o.m. energy⇒ multi-particle final states
large SM background (could hide new/interesting physics)

We need scattering amplitudes for theoretical predictions with
high accuracy
multi-particle interactions

A

Scattering amplitudes

LO not reliable⇒ need at least NLO
NNLO needed for high precision

⇒ need to compute loop integrals
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Introduction and motivation

Loop amplitudes

The integrand of a generic `-loop integral:
is a rational function in the components of the loop momenta ki

polynomial numerator Ni1···in

Mn =

∫
ddk1 · · · ddk` Ii1···in , Ii1···in ≡

Ni1···in

Di1 · · ·Din

quadratic polynomial denominators Di
they correspond to Feynman loop propagators

D2

D3

D1

D7

D4

D6

D5

Di =
(∑

j

(−)sij kj + pi

)2
− m2

i
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Introduction and motivation

Loop amplitudes

Loop amplitudes can be written as linear combinations of Master
Integrals (MIs)

A(L) =
∑

i

ci Ii

the integrals Ii are special functions of the kinematic invariants
at one-loop only logarithms and dilogarithms
at higher loops multiple polylogarithms, elliptic functions, etc. . .

the coefficients ci are rational functions of kinematic invariants
. . . but their computation can be more complex than the MIs,
especially for high-multiplicity processes

In this talk I will mostly focus on the coefficients

⇒ see also K. Papadopoulos’s talk on the calculation of MIs
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One-loop integrand reduction and automated tools

The Integrand reduction of one-loop amplitudes

Every one-loop integrand, can be decomposed as
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

In =
N

D1 · · ·Dn
=
∑

j1...j5

∆j1j2j3j4j5

Dj1 Dj2 Dj3 Dj4 Dj5
+
∑

j1j2j3j4

∆j1j2j3j4

Dj1 Dj2 Dj3 Dj4

+
∑
j1j2j3

∆j1j2j3

Dj1 Dj2 Dj3
+
∑
j1j2

∆j1j2

Dj1 Dj2
+
∑

j1

∆j1

Dj1

The residues or on-shell integrands

∆i1···ik =
∑

i

c(i1···ik)
i︸ ︷︷ ︸

process dep.

m(i1···ik)
i (k)︸ ︷︷ ︸

universal basis
polynomials in the loop kµ

form a known, universal integrand basis
unknown, process-dependent coefficients ci ⇒ polynomial fit

All the integrals of the integrand basis m(i1···ik)
i are known at one loop
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One-loop integrand reduction and automated tools

Fit-on-the-cut at one-loop

[Ossola, Papadopoulos, Pittau (2007)]

Integrand decomposition: +
∑
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Fit-on-the cut

fit m-point residues on
m-ple cuts

Cutting a loop
propagator means

1
Di
→ δ(Di)

i.e. putting it on-shell
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One-loop integrand reduction and automated tools

One-loop integrand reduction: implementations

General-purpose implementations of one-loop integrand reduction:

CUTTOOLS [Ossola, Papadopoulos, Pittau (2007)]

four-dimensional integrand reduction
extra-dimensional contributions in dim. regularization computed via
process-independent (but theory-dependent) Feynman rules

SAMURAI [Mastrolia, Ossola, Reiter, Tramontano (2010)]

d-dimensional integrand reduction
works with d dimensional integrands for any theory

NINJA [T.P. (2014)]

semi-numerical integrand reduction via Laurent expansion
Forde (2007), Badger (2008), P. Mastrolia, E. Mirabella, T.P. (2012)
faster and more stable integrand-reduction algorithm
used by GOSAM and MADLOOP (MADGRAPH5_AMC@NLO)
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One-loop integrand reduction and automated tools

Generalized unitarity: loops from trees

Britto, Cachazo, Feng (2004), Giele, Kunszt, Melnikov (2008)

Evaluating loop integrands on multiple cuts
the cut loop propagators are put on-shell
the integrand factorizes as a product of tree-level amplitudes

=

×

×

Loops from trees
We can compute the coefficients of loop amplitudes from products of
tree-level amplitudes

implemented in BLACKHAT, NJET and several private codes
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One-loop integrand reduction and automated tools

One-loop tools

Master Integrals
FF [van Oldenborg (1990)]
LOOPTOOLS [Hahn et al. (1998)]
QCDLOOP [Ellis, Zanderighi (2007), Carrazza, Ellis, Zanderighi (2016)]
ONELOOP [van Hameren (2010)]
. . .

Reduction
integrand reduction (CUTTOOLS, SAMURAI, NINJA)
tensor reduction

COLLIER [Denner, Dittmaier (since 2003), Denner, Dittmaier, Hofer (2016)]
GOLEM95 [T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon, T. Reiter (2009),
J.P. Guillet, G. Heinrich, J. von Soden-Fraunhofen (2014)]
IREGI (part of MADLOOP)
. . .
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One-loop integrand reduction and automated tools

One-loop tools (reduction tools)
Testing reduction tools with MADLOOP (courtesy of V. Hirschi)
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Pure reduction time∗ (x ≡ relative to NINJA)
gg→ t̄t + n g gg→ Y + (n + 1) g

Tool n = 0 n = 1 n = 2 n = 0 n = 1 n = 2
NINJA 0.4 ms 5.3 ms 78 ms 2.2 ms 33 ms 1.4 s

CUTTOOLS 2.6 x 2.5 x 2.8 x N/A N/A N/A
SAMURAI 5.0 x 3.9 x 4.3 x 4.1 x 4.3 x 6.3 x

GOLEM95 12 x 20 x 40 x 8.9 x 25 x N/A
IREGI 14 x 51 x 150 x 25 x 175 x N/A

COLLIER 2.1 x 2.6 x 2.8 x 1.3 x 2.9 x 5.6 x

∗all tools but
COLLIER require
performing the
reduction twice
for estimating the
numerical accuracy.
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One-loop integrand reduction and automated tools

One-loop tools (cont.)

One-loop packages
HELAC-NLO: numerical recursion + OPP reduction
FORMCALC: analytic generation + PV or integrand reduction
OPENLOOPS: recursive numerical generation of tensor integrands

reduction via COLLIER, CUTTOOLS, SAMURAI

MADLOOP (MADGRAPH5_AMC@NLO) alt. OpenLoops
reduction via NINJA, GOLEM95, IREGI, CUTTOOLS, SAMURAI, . . .

GOSAM: analytic generation (with a two-loop extension)
reduction via NINJA, SAMURAI, GOLEM95

RECOLA: recursion relations + reduction via COLLIER
BLACKHAT and NJET: generalized unitarity

Montecarlo tools (Born, real+subtraction, phase-space,. . . )
SHERPA, AMC@NLO, MADEVENT, POWHEG, HERWIG, PYTHIA,. . .
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Integrand reduction and generalized unitarity at higher loops

Integrand reduction
and generalized unitarity

at higher loops
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Integrand reduction and generalized unitarity at higher loops

Progress in integrand reduction at higher loop

Integrand decomposition found with techniques of algebraic geometry
(e.g. multivariate polynomial division)
Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

It can be combined with generalized unitarity, diagrammatic approaches
and purely algebraic techniques
S. Badger, H. Frellesvig, P. Mastrolia, E. Mirabella, G. Ossola, A. Primo, Y. Zhang,
T.P. (2011—now)

First two-loop 5-point amplitude recently computed
Badger, Frellesvig, Zhang (2013), Badger, Mogull, Ochirov, O’Connell (2015),
Gehrmann, Henn, Lo Presti (2015)

First two-loop 5-point Master Integrals have been computed
Gehrmann, Henn, Lo Presti (2015), Papadopoulos, Tommasini, Wever (2015)
⇒ see K. Papadopoulos’s talk

First two-loop 6-point amplitude recently computed
Dunbar, Perkins, Warren (2016), Badger, Mogull, T.P. (2016)

Functional reconstruction for 2-loop generalized unitarity T.P. (2016)
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Integrand reduction and generalized unitarity at higher loops

Analytic multi-leg calculations: kinematic variables
Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)

rational parametrization of the n-point phase-space and the spinor
components using 3n− 10 momentum-twistor variables

5-point example→ 5 variables {x1, . . . , x5}

|1〉 =
(1

0

)
, |1] =

( 1
x4−x5

x4

)
, xk = xk(sij, tr(γ5 1 2 3 4))

|2〉 =
(0

1

)
, |2] =

( 0
x1

)
, pµi =

〈i|σµ| i]
2

|3〉 =
( 1

x1

1

)
, |3] =

(x1 x4

−x1

)
,

|4〉 =
( 1

x1
+ 1

x1 x2

1

)
, |4] =

(x1(x2 x3 − x3 x4 − x4)

− x1 x2 x3 x5
x4

)
,

|5〉 =
( 1

x1
+ 1

x1 x2
+ 1

x1 x2 x3

1

)
, |5] =

(x1 x3(x4 − x2)
x1 x2 x3 x5

x4

)
.
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Integrand reduction and generalized unitarity at higher loops

Choosing an integrand basis

Badger, Mogull, T.P. (2016)

Choosing an integrand basis:
the problem of finding an integrand basis is solved at any loop
the choice is however not unique
the complexity of the results can heavily depend of the choice

Local integrands for 5- and 6-point 2-loop all-plus amplitudes
free of spurious singularities
smooth soft limits to lower-point integrands
infrared properties manifest at the integrand level

⇒ simpler results
7 . . . but no general algorithm for building one (yet)
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Integrand reduction and generalized unitarity at higher loops

Two-loop unitarity cuts in d dimensions

Badger, Frellesvig, Zhang (2013)

d-dim. dependence of loops kµi ⇒ embed kµi in D dimensions (D > 4)

unitarity cuts `2
i = 0⇒ explicit D-dim. representation of loop components

describe internal on-shell states with D-dim. spinor-helicity formalism

additional gluon states as ds −D scalars (ds = 4, d in FDH, tHV)

D = 6 sufficient up to two loops

also useful for functional
reconstruction

ℓj1+j2 ℓ1

ℓ2

ℓ3

ℓj1ℓj1+1

ℓj1+j2+1

ℓj1+j2+2

ℓj1+2

ℓj1+3
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Finite fields and functional reconstruction techniques

Finite fields and functional reconstruction

Calculation of multi-leg amplitudes
several independent invariants
large intermediate expressions

Functional reconstruction from numerical evaluation
sidesteps issue of large intermediate expressions
evaluation over finite fields Zp = {1, . . . , p− 1} (p prime)

fast but exact
first proposed for IBPs [von Manteuffel, Schabinger (2014)]

Developed an efficient algorithm for functional reconstruction [T.P. (2016)]

works on (dense) multivariate polynomials and rational functions
implemented in C++ code (proof of concept)
the input is a numerical procedure computing a function
the output is its analytic expression
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Finite fields and functional reconstruction techniques

Finite fields and functional reconstruction

T.P. (2016)

Scattering amplitudes over finite fields
spinor-helicity
tree-level recursion
two-loop d-dim. gen. unitarity

ℓj1+j2 ℓ1

ℓ2

ℓ3

ℓj1ℓj1+1

ℓj1+j2+1

ℓj1+j2+2

ℓj1+2

ℓj1+3

use efficient numerical
techniques for analytic
calculations

two-loop unitarity cuts from
Berends-Giele off-shell
currents

T. Peraro (University of Edinburgh) Multi-leg scattering amplitudes for LHC phenomenology Zurich, 2016 16



Finite fields and functional reconstruction techniques

Finite fields and functional reconstruction: examples

five-gluon on-shell integrands of maximal cuts (≡ top-level topology) for

1

2

3

4

5

k1k2

4

5
k1k2

1

2

3

(for a complete set of helicities)
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Finite fields and functional reconstruction techniques

Finite fields and functional reconstruction

penta-box
Helicity Non-vanishing coeff. Max. terms Max. degree Avg. non-zero terms

(1+, 2+, 3+, 4+, 5+) 14 19 8 15.00
(1−, 2+, 3+, 4+, 5+) 27 443 19 152.96
(1+, 2−, 3+, 4+, 5+) 37 1977 24 674.97
(1+, 2+, 3+, 4−, 5+) 61 474 18 184.05
(1−, 2−, 3+, 4+, 5+) 35 1511 24 278.77
(1−, 2+, 3+, 4+, 5−) 79 7027 34 1112.82
(1+, 2+, 3+, 4−, 5−) 18 19 8 15.00
(1−, 2+, 3−, 4+, 5+) 41 2412 22 368.41
(1+, 2−, 3+, 4−, 5+) 85 18960 42 3934.96
(1−, 2+, 3+, 4−, 5+) 85 10386 37 1803.52

double-pentagon
Helicity Non-vanishing coeff. Max. terms Max. degree Avg. non-zero terms

(1+, 2+, 3+, 4+, 5+) 104 1937 26 626.39
(1−, 2+, 3+, 4+, 5+) 104 1449 27 601.43
(1+, 2+, 3−, 4+, 5+) 104 1554 23 642.90
(1−, 2−, 3+, 4+, 5+) 99 1751 26 739.05
(1+, 2−, 3−, 4+, 5+) 104 2524 24 923.71
(1−, 2+, 3+, 4+, 5−) 104 1838 27 823.00
(1−, 2+, 3+, 4−, 5+) 104 1307 24 630.48
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Summary & Outlook

Summary and Outlook

Summary
One-loop multi-leg calculations

are automated by many public and private tools
current focus is performance, numerical stability and reliability

High-multiplicity (2→ 3 or higher) processes at two-loops
first MIs available
first amplitudes using integrand reduction and generalized unitarity
use of functional-reconstruction and finite-field techniques

Outlook
complete two-loop five-point amplitudes for arbitrary helicities
broader application of multivariate functional reconstruction
(good integrand-basis, IBPs, diagrammatic techniques, . . . )
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Summary & Outlook

THANKS!
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