Multi-leg scattering amplitudes for LHC phenomenology: modern tools and methods

Tiziano Peraro

Higgs Centre for Theoretical Physics University of Edinburgh

QCD@LHC, Zurich 25 August 2016

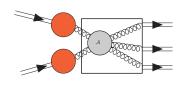
Introduction and motivation

Introduction and motivation

- Experiments Large Hadron Collider (LHC)
 - high-accuracy experimental data (up to % level)
 - high c.o.m. energy ⇒ multi-particle final states
 - large SM background (could hide new/interesting physics)

We need scattering amplitudes for theoretical predictions with

- high accuracy
- multi-particle interactions



Scattering amplitudes

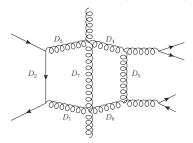
- LO not reliable ⇒ need at least NLO
- NNLO needed for high precision
- ⇒ need to compute loop integrals

Loop amplitudes

- The integrand of a generic ℓ-loop integral:
 - is a rational function in the components of the loop momenta k_i
 - ullet polynomial numerator $\mathcal{N}_{i_1\cdots i_n}$

$$\mathcal{M}_n = \int d^d k_1 \cdots d^d k_\ell \;\; \mathcal{I}_{i_1 \cdots i_n}, \qquad \mathcal{I}_{i_1 \cdots i_n} \equiv rac{\mathcal{N}_{i_1 \cdots i_n}}{D_{i_1} \cdots D_{i_n}}$$

- quadratic polynomial denominators D_i
 - they correspond to Feynman loop propagators



$$D_i = \left(\sum_j (-)^{s_{ij}} k_j + p_i\right)^2 - m_i^2$$

Loop amplitudes

 Loop amplitudes can be written as linear combinations of Master Integrals (MIs)

$$\mathcal{A}^{(L)} = \sum_{i} c_i I_i$$

- the integrals *I_i* are special functions of the kinematic invariants
 - at one-loop only logarithms and dilogarithms
 - at higher loops multiple polylogarithms, elliptic functions, etc...
- the coefficients c_i are rational functions of kinematic invariants
 - ... but their computation can be more complex than the MIs, especially for high-multiplicity processes

Loop amplitudes

 Loop amplitudes can be written as linear combinations of Master Integrals (MIs)

$$\mathcal{A}^{(L)} = \sum_{i} c_i I_i$$

- the integrals *I_i* are special functions of the kinematic invariants
 - at one-loop only logarithms and dilogarithms
 - at higher loops multiple polylogarithms, elliptic functions, etc...
- the coefficients c_i are rational functions of kinematic invariants
 - ...but their computation can be more complex than the MIs, especially for high-multiplicity processes

In this talk I will mostly focus on the coefficients

⇒ see also K. Papadopoulos's talk on the calculation of MIs

One-loop integrand reduction and automated tools

The Integrand reduction of one-loop amplitudes

 Every one-loop integrand, can be decomposed as [Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

$$\mathcal{I}_{n} = \frac{\mathcal{N}}{D_{1} \cdots D_{n}} = \sum_{j_{1} \dots j_{5}} \frac{\Delta_{j_{1} j_{2} j_{3} j_{4} 5}}{D_{j_{1}} D_{j_{2}} D_{j_{3}} D_{j_{4}} D_{j_{5}}} + \sum_{j_{1} j_{2} j_{3} j_{4}} \frac{\Delta_{j_{1} j_{2} j_{3} j_{4}}}{D_{j_{1}} D_{j_{2}} D_{j_{3}} D_{j_{4}}}$$
$$+ \sum_{j_{1} j_{2} j_{3}} \frac{\Delta_{j_{1} j_{2} j_{3}}}{D_{j_{1}} D_{j_{2}} D_{j_{3}}} + \sum_{j_{1} j_{2}} \frac{\Delta_{j_{1} j_{2}}}{D_{j_{1}} D_{j_{2}}} + \sum_{j_{1}} \frac{\Delta_{j_{1}}}{D_{j_{1}}}$$

The residues or on-shell integrands

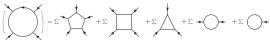
$$\Delta_{i_1\cdots i_k} = \sum_i \underbrace{c_i^{(i_1\cdots i_k)}}_{\text{process dep.}} \underbrace{\mathbf{m}_i^{(i_1\cdots i_k)}(k)}_{\text{universal basis polynomials in the loop }k^\mu}$$

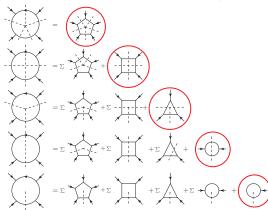
- form a known, universal integrand basis
- unknown, process-dependent coefficients $c_i \Rightarrow polynomial$ fit
- ullet All the integrals of the integrand basis $\mathbf{m}_i^{(i_1\cdots i_k)}$ are known at one loop

Fit-on-the-cut at one-loop

[Ossola, Papadopoulos, Pittau (2007)]

Integrand decomposition:





Fit-on-the cut

- fit m-point residues on m-ple cuts
- Cutting a loop propagator means

$$\frac{1}{D_i} \to \delta(D_i)$$

i.e. putting it on-shell

One-loop integrand reduction: implementations

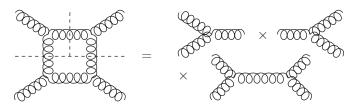
General-purpose implementations of one-loop integrand reduction:

- CUTTOOLS [Ossola, Papadopoulos, Pittau (2007)]
 - four-dimensional integrand reduction
 - extra-dimensional contributions in dim. regularization computed via process-independent (but theory-dependent) Feynman rules
- SAMURAI [Mastrolia, Ossola, Reiter, Tramontano (2010)]
 - *d*-dimensional integrand reduction
 - works with d dimensional integrands for any theory
- NINJA [T.P. (2014)]
 - semi-numerical integrand reduction via Laurent expansion Forde (2007), Badger (2008), P. Mastrolia, E. Mirabella, T.P. (2012)
 - faster and more stable integrand-reduction algorithm
 - used by GoSam and MadLoop (MadGraph5_aMC@NLO)

Generalized unitarity: loops from trees

Britto, Cachazo, Feng (2004), Giele, Kunszt, Melnikov (2008)

- Evaluating loop integrands on multiple cuts
 - the cut loop propagators are put on-shell
 - the integrand factorizes as a product of tree-level amplitudes



Loops from trees

We can compute the coefficients of loop amplitudes from products of tree-level amplitudes

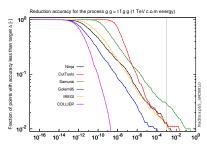
implemented in BLACKHAT, NJET and several private codes

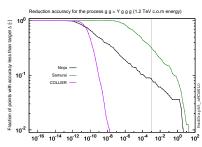
One-loop tools

- Master Integrals
 - FF [van Oldenborg (1990)]
 - LOOPTOOLS [Hahn et al. (1998)]
 - QCDLOOP [Ellis, Zanderighi (2007), Carrazza, Ellis, Zanderighi (2016)]
 - ONELOOP [van Hameren (2010)]
 - ...
- Reduction
 - integrand reduction (CUTTOOLS, SAMURAI, NINJA)
 - tensor reduction
 - COLLIER [Denner, Dittmaier (since 2003), Denner, Dittmaier, Hofer (2016)]
 - GOLEM95 [T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon, T. Reiter (2009), J.P. Guillet, G. Heinrich, J. von Soden-Fraunhofen (2014)]
 - IREGI (part of MADLOOP)
 - ...

One-loop tools (reduction tools)

Testing reduction tools with MADLOOP (courtesy of V. Hirschi)





	Pure reduction time* ($x \equiv relative to NINJA$)						
	$gg o t\bar{t} + ng$			$gg \rightarrow Y + (n+1)g$			
Tool	n = 0	n = 1	n=2	n = 0	n = 1	n=2	
NINJA	0.4 ms	5.3 ms	78 ms	2.2 ms	33 ms	1.4 s	
CutTools	2.6 x	2.5 x	2.8 x	N/A	N/A	N/A	
SAMURAI	5.0 x	3.9 x	4.3 x	4.1 x	4.3 x	6.3 x	
GOLEM95	12 x	20 x	40 x	8.9 x	25 x	N/A	
IREGI	14 x	51 x	150 x	25 x	175 x	N/A	
Collier	2.1 x	2.6 x	2.8 x	1.3 x	2.9 x	5.6 x	

*all tools but COLLIER require performing the reduction twice for estimating the numerical accuracy.

One-loop tools (cont.)

- One-loop packages
 - HELAC-NLO: numerical recursion + OPP reduction
 - FORMCALC: analytic generation + PV or integrand reduction
 - OPENLOOPS: recursive numerical generation of tensor integrands
 - reduction via Collier, CutTools, Samural
 - MADLOOP (MADGRAPH5_AMC@NLO) alt. OpenLoops
 - reduction via Ninja, Golem95, IREGI, CutTools, Samurai, . . .
 - GoSAM: analytic generation (with a two-loop extension)
 - reduction via NINJA, SAMURAI, GOLEM95
 - Recola: recursion relations + reduction via Collier
 - BLACKHAT and NJET: generalized unitarity
- Montecarlo tools (Born, real+subtraction, phase-space,...)
 - SHERPA, AMC@NLO, MADEVENT, POWHEG, HERWIG, PYTHIA,...

Integrand reduction and generalized unitarity at higher loops

Progress in integrand reduction at higher loop

- Integrand decomposition found with techniques of algebraic geometry (e.g. multivariate polynomial division)
 Y. Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)
- It can be combined with generalized unitarity, diagrammatic approaches and purely algebraic techniques

```
S. Badger, H. Frellesvig, P. Mastrolia, E. Mirabella, G. Ossola, A. Primo, Y. Zhang, T.P. (2011—now)
```

- First two-loop 5-point amplitude recently computed Badger, Frellesvig, Zhang (2013), Badger, Mogull, Ochirov, O'Connell (2015), Gehrmann, Henn, Lo Presti (2015)
- First two-loop 5-point Master Integrals have been computed Gehrmann, Henn, Lo Presti (2015), Papadopoulos, Tommasini, Wever (2015)
 ⇒ see K. Papadopoulos's talk
- First two-loop 6-point amplitude recently computed Dunbar, Perkins, Warren (2016), Badger, Mogull, T.P. (2016)
- Functional reconstruction for 2-loop generalized unitarity T.P. (2016)

Analytic multi-leg calculations: kinematic variables

Hodges (2009), Badger, Frellesvig, Zhang (2013), Badger (2016)

- rational parametrization of the n-point phase-space and the spinor components using 3n 10 momentum-twistor variables
- 5-point example \rightarrow 5 variables $\{x_1, \dots, x_5\}$

$$|1\rangle = {1 \choose 0}, \qquad |1] = {1 \choose \frac{x_4 - x_5}{x_4}}, \qquad x_k = x_k (s_{ij}, \operatorname{tr}(\gamma_5 \ 1 \ 2 \ 3 \ 4))$$

$$|2\rangle = {0 \choose 1}, \qquad |2] = {0 \choose x_1}, \qquad p_i^{\mu} = \frac{\langle i | \sigma^{\mu} | i |}{2}$$

$$|3\rangle = {1 \choose 1}, \qquad |3] = {x_1 x_4 \choose -x_1},$$

$$|4\rangle = {1 \choose x_1} + {1 \over x_1 x_2}, \qquad |4] = {x_1 (x_2 x_3 - x_3 x_4 - x_4) \choose -\frac{x_1 x_2 x_3 x_5}{x_4}},$$

$$|5\rangle = {1 \choose x_1} + {1 \over x_1 x_2} + {1 \over x_1 x_2 x_3}, \qquad |5] = {x_1 x_3 (x_4 - x_2) \choose \frac{x_1 x_2 x_3 x_5}{x_4}}.$$

Choosing an integrand basis

Badger, Mogull, T.P. (2016)

- Choosing an integrand basis:
 - the problem of finding an integrand basis is solved at any loop
 - the choice is however not unique
 - the complexity of the results can heavily depend of the choice
- Local integrands for 5- and 6-point 2-loop all-plus amplitudes
 - free of spurious singularities
 - smooth soft limits to lower-point integrands
 - infrared properties manifest at the integrand level
 - ⇒ simpler results
 - X ... but no general algorithm for building one (yet)

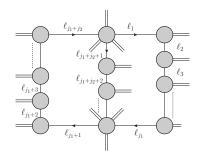
Two-loop unitarity cuts in *d* dimensions

Badger, Frellesvig, Zhang (2013)

- *d*-dim. dependence of loops $k_i^{\mu} \Rightarrow \text{embed } k_i^{\mu} \text{ in } \mathcal{D} \text{ dimensions } (\mathcal{D} > 4)$
- ullet unitarity cuts $\ell_i^2=0\Rightarrow$ explicit ${\mathcal D}$ -dim. representation of loop components
- describe internal on-shell states with D-dim. spinor-helicity formalism
- additional gluon states as $d_s \mathcal{D}$ scalars ($d_s = 4, d$ in FDH, tHV)

 $\mathcal{D} = 6$ sufficient up to two loops

also useful for functional reconstruction



Finite fields and functional reconstruction techniques

Finite fields and functional reconstruction

- Calculation of multi-leg amplitudes
 - several independent invariants
 - large intermediate expressions
- Functional reconstruction from numerical evaluation
 - sidesteps issue of large intermediate expressions
 - evaluation over finite fields $\mathcal{Z}_p = \{1, \dots, p-1\}$ (p prime)
 - fast but exact
 - first proposed for IBPs [von Manteuffel, Schabinger (2014)]

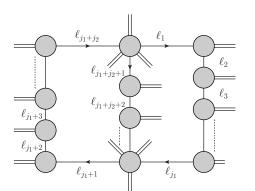
Developed an efficient algorithm for functional reconstruction [T.P. (2016)]

- works on (dense) multivariate polynomials and rational functions
- implemented in C++ code (proof of concept)
- the input is a numerical procedure computing a function
- the output is its analytic expression

Finite fields and functional reconstruction

T.P. (2016)

- Scattering amplitudes over finite fields
 - spinor-helicity
 - tree-level recursion
 - two-loop d-dim. gen. unitarity

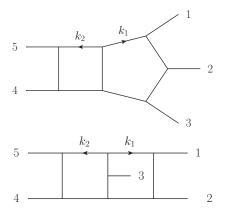


use efficient numerical techniques for analytic calculations

two-loop unitarity cuts from Berends-Giele off-shell currents

Finite fields and functional reconstruction: examples

ullet five-gluon on-shell integrands of maximal cuts (\equiv top-level topology) for



(for a complete set of helicities)

Finite fields and functional reconstruction

penta-box

Helicity	Non-vanishing coeff.	Max. terms	Max. degree	Avg. non-zero terms
$(1^+, 2^+, 3^+, 4^+, 5^+)$	14	19	8	15.00
$(1^-, 2^+, 3^+, 4^+, 5^+)$	27	443	19	152.96
$(1^+, 2^-, 3^+, 4^+, 5^+)$	37	1977	24	674.97
$(1^+, 2^+, 3^+, 4^-, 5^+)$	61	474	18	184.05
$(1^-, 2^-, 3^+, 4^+, 5^+)$	35	1511	24	278.77
$(1^-, 2^+, 3^+, 4^+, 5^-)$	79	7027	34	1112.82
$(1^+, 2^+, 3^+, 4^-, 5^-)$	18	19	8	15.00
$(1^-, 2^+, 3^-, 4^+, 5^+)$	41	2412	22	368.41
$(1^+, 2^-, 3^+, 4^-, 5^+)$	85	18960	42	3934.96
$(1^-, 2^+, 3^+, 4^-, 5^+)$	85	10386	37	1803.52

double-pentagon

Helicity	Non-vanishing coeff.	Max. terms	Max. degree	Avg. non-zero terms
$(1^+, 2^+, 3^+, 4^+, 5^+)$	104	1937	26	626.39
$(1^-, 2^+, 3^+, 4^+, 5^+)$	104	1449	27	601.43
$(1^+, 2^+, 3^-, 4^+, 5^+)$	104	1554	23	642.90
$(1^-, 2^-, 3^+, 4^+, 5^+)$	99	1751	26	739.05
$(1^+, 2^-, 3^-, 4^+, 5^+)$	104	2524	24	923.71
$(1^-, 2^+, 3^+, 4^+, 5^-)$	104	1838	27	823.00
$(1^-, 2^+, 3^+, 4^-, 5^+)$	104	1307	24	630.48

Summary & Outlook

Summary and Outlook

Summary

- One-loop multi-leg calculations
 - are automated by many public and private tools
 - current focus is performance, numerical stability and reliability
- High-multiplicity (2 → 3 or higher) processes at two-loops
 - first MIs available
 - first amplitudes using integrand reduction and generalized unitarity
 - use of functional-reconstruction and finite-field techniques

Outlook

- complete two-loop five-point amplitudes for arbitrary helicities
- broader application of multivariate functional reconstruction (good integrand-basis, IBPs, diagrammatic techniques, ...)

THANKS!