LHCb results and perspectives on heavy-ion physics

QCD @ LHC 2016 22-26August 2016, Zurich

Burkhard Schmidt (CERN), on behalf of the LHCb collaboration

Introduction

- LHCb detector
- Experimental approach and physics reach
- Results from proton-lead collisions
 - > Cold Nuclear Matter (CNM) effects in J/ψ , $\psi(2S)$, Y and D^o -production
 - Two particle correlations and the near-side ridge
- Perspectives on Heavy Ion Physics
 - First look at PbPb collisions
 - Capabilities for Heavy Ion and Fixed Target physics with LHCb

Conclusions

LHCb Detector

- Single arm spectrometer in the forward direction
 - designed for b-physics but capable to address many other topics ...
 - fully instrumented in its angular acceptance
 - forward and backward coverage for asymmetric beams

Fixed Target Physics with LHCb

SMOG : System for Measuring the Overlap with Gas

SMOG can be used for fixed target physics:

- Filling scheme and precise vertexing allows to separate beam-beam and beam-gas contributions
- strong acceptance effects as a function of the z-position

Burkhard Schmidt

Fixed Target Physics with LHCb

SMOG : System for Measuring the Overlap with Gas

SMOG can be used for fixed target physics:

- Filling scheme and precise vertexing allows to separate beam-beam and beam-gas contributions
- strong acceptance effects as a function of the z-position

Burkhard Schmidt

Experimental approach

 LHCb can make valuable contributions to the study of proton – nucleus and nucleus-nucleus collisions in the forward region with a precision not accessible to other experiments.

In fixed target mode energy densities are achieved which are between those probed at the SPS and RHIC.

> The gap between the SPS and RHIC can be bridged by a single experiment

Hicp Physics Motivation for *p*A studies

Study of pA collisions important for HI physics

 pA collisions important as a reference sample for heavy ion collisions, but also interesting by themselves.

Examples:

- 1. Constrain nuclear PDF in e.g. Z-boson production in two different x-Q² regions
 - Complementary measurement to ATLAS and CMS
- 2. Particle correlations to probe collective effects in the dense environment of high energy collisions
 - LHCb can investigate at forward rapidity

the long-range correlation (ridge) on the near side, first observed in *pp* (*p*Pb & PbPb) at mid-rapidity

3. Associated Heavy flavour production in *p*Pb to probe Multiple Parton Interactions

Results from proton lead collisions

Setup for Proton-Ion physics

Rapidity coverage *pp:* 2 < y < 5

Forward production y = 0.47 in lab *p*Pb: 1.5 < y < 4.5 Data taken in 2013: ~1.1/nb

Backward production y = -0.47 in lab Pbp: -5.5 < y < -2.5 Data taken in 2013 ~0.5/nb

Common range for measurements: 2.5 < |y| < 4
 Center-of-mass energy : √SNN ≈ 5TeV

$\frac{HCb}{HCb}$ J/ ψ and ψ (2S) forward-backward ratio

determined in common range 2.5 < |y| <4.0

Part of experimental and theoretical uncertainties cancel [JHEP 1603 (2016) 133]

Large experimental uncertainties

 $\frac{d\sigma_{pA}}{d\sigma_{An}} \frac{dy}{dy}$

 $R_{FB}\left(\left| y \right| \right) =$

→ more statistics needed to get a trend (R_{FB} of inclusive $\psi(2S)$ compatible both with unity and with suppression of inclusive J/ ψ)

Burkhard Schmidt

$\frac{HCb}{HCb}$ J/ ψ and ψ (2S) modification factor

- determined in overlap region 2.5 < |y| < 4.0
- J/ψ cross-section in *pp* collisions at 5 TeV from interpolation of measurements at 2.76, 7 and 8 TeV

- R_{pPb} for $\psi(2S)$ is calculated from using: $R_{pPb}^{\Psi(2S)} \approx R_{pPb}^{J/\Psi}$

 $\frac{1}{A} \frac{d\sigma_{pA}/dy}{d\sigma_{nn}/dy}$

 $R_{pA}(y) =$

[JHEP 1603 (2016) 133]

[ALICE: JHEP 12 (2014) 073]

 $\sigma_{p\rm Pb}^{\psi(2S)}(5\,{\rm TeV})$

- Prompt $\psi(2S)$ more suppressed than prompt J/ ψ
- Energy loss + shadowing don't explain the ψ(2S) suppression in the backward region. Do other mechanism play a role ?
- Suppression of ψ(2S) from b consistent with that of J/ψ from b
- Suppression of inclusive ψ(2S) consistent with ALICE results

$\frac{HCb}{MCp}$ $\gamma_{(1S)}$ – production: CNM effects

 Measurement of R_{pPb} and R_{FB} with Y(1S) complementary to J/Ψ (probing different x_A)
 [JHEP 07 (2014) 094]

• Cold nuclear effects are also visible with γ (1S) production

- > Suppression in forward region smaller than for J/Ψ
- Possible enhancement in backward region due to anti-shadowing
- Good agreement for prediction with energy loss and shadowing (EPSog NLO)

Hicp **Prompt** *D*^o **modification factor**

• D° cross-section in pp collision at $\sqrt{s} = 5$ TeV extrapolated using LHCb measurements at 7 and 13 TeV. [Nucl. Phys. B87 (2013), arXiv:1510.01707]

> pp data at $\sqrt{s} = 5$ TeV are being analyzed, will be updated soon

LHCb-CONF-2016-003

- > No strong p_T dependence of the D° modification factor R_{pPb}
- Nuclear modification factor smaller in forward region (pos. rapidity)
- Measurements consistent with theoretical predictions from CTEQ6M+EPSo9NLO: Nucl. Phys. B373 (1992) 295, JHEP 10 (2003) 046, JHEP 04 (2009) 065

Heb Prompt *D*^o forward-backward ratio

- For R_{FB} part of experimental and theoretical uncertainties cancel
- No need of *pp* reference cross section

LHCb-CONF-2016-003

- Significant production asymmetry in forward-backward samples
- No strong p_T dependence of R_{FB}
- Asymmetry more pronounced for larger rapidity
- Measurements consistent with theoretical predictions of CTEQ6M+EPSo9NLO: Nucl. Phys. B373 (1992) 295, JHEP 10 (2003) 046, JHEP 04 (2009) 065

Burkhard Schmidt

LHCD Two particle correlations in *p*Pb and Pb*p*

• Measurement of angular ($\Delta\eta$, $\Delta\phi$)-correlations of prompt charged particles

> In high activity events, the near side ridge ($\Delta \phi = o$) is clearly visible

Burkhard Schmidt

LHCD Two particle correlations in the FW region

- 1. Study the evolution of the long-range correlations by calculating projection of $\Delta \phi$ in the range 2.0 < η < 2.9 (exclude jet peak)
 - Subtract the zero yield at minimum (ZYAM)
- Correlation yield increases with event activity
 On the near side, the second ridge emerges with a maximum in the range 1 < p_T < 2 GeV/c
- Near side is more pronounce in Pbp than in pPb

2. Compare **absolute activity classes**

Burkhard Schmidt

Prospects for Heavy Ion physics with LHCb

LHCP Lead-lead collisions in LHCb

- First participation in PbPb running in Nov/Dec 2015
 - 24 colliding bunches; integrated luminosity ~5 / μb
 - all inelastic interactions recorded with minimum-bias trigger, no global event cut → important for centrality determination

01 Dec 2015 19:40:23

Event 1755501 Bun 168976

PbPb collision with a J/ψ candidate in 1130 reconstructed tracks

Frist look at centrality determination

- Use quantity which doesn't saturate for centrality measurement
 - Energy deposition in the electromagnetic (ECAL) / hadronic (HCAL) calorimeters seems to be a good centrality estimator
 - > First step: Event classification in terms of ECAL activity classes
 - Tracking may be possible up to 15'000 clusters in VELO

 \rightarrow ~ 50-60% ECAL event activity class

Burkhard Schmidt

J/ψ and D° in PbPb collisions

J/ψ → μ⁺ μ⁻

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

Burkhard Schmidt

$\frac{LHCb}{HCp}$ Coherent photoproduction of J/ψ in PbPb

 Also ultra peripheral collisions are of great interest
 > QED with extreme field-strength and large cross-sections Events containing only 2 long tracks in the spectrometer

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

- Very clean signature with very soft transverse momentum spectrum
- Ongoing studies will benefit from new high rapidity HERSCHEL detector
 - rapidity coverage 5 < η < 9
- Possibility to define large rapidity gaps

Burkhard Schmidt

Fixed Target physics with SMOG

J/ψ production in *p*Ne collisions

Astrophysical interest:

- Measure σ (p He → p̄ X) to clarify uncertainty on secondary production of p̄ in the interstellar medium
- Many other interesting measurements possible

and in PbNe collisions

Summary and Conclusions

- LHCb participated successfully in proton-lead run in 2013
 - Measurement of J/ψ , $\psi(2s)$, Y and D^o and Z-production \rightarrow cold nuclear matter effects visible
 - Limited by statistics → benefit from larger data samples in Run II
- LHCb physics can cover pp, pA, and AA interactions
 - Rich program in heavy flavour physics, EW and (soft) QCD
 - We have collected a small sample of PbPb collisions in December 2015
 - We hope to enhance statistics for *p*Pb by a factor 10 this year
- LHCb is in the unique position to do also fixed target physics
 - Exploit the SMOG system with different noble gases
 - Bridge the gap from SPS to LHC physics by a single experiment

> LHCb is truly a "GPD" in the forward direction

Backup

$\frac{IHC}{VHC}$ $J/\psi \& \psi(2S)$ production in pPb collisions

QCD @ LHC , Zurich August 22-26, 2016

Prompt J/ψ and J/ψ from b are extracted by simultaneous fit of mass and pseudo-proper time : $t_z = (Z_{I/\psi} - ZPV) \times M_{I/\psi} / p_z$ [JHEP 02 (2014) 072]

Burkhard Schmidt

Mass distributions: - Signal : Crystal-Ball fct. exponential - Bkg :

- red line: sum of all contr.

t_{τ} distributions:

- Signal:

- $\delta(t_z)$ for prompt J/ψ expo. for *b*-component - Bkg: empirical function from sideband

blue line: prompt J/ψ black line: J/ψ from b Green hatched: comb. bkg sum of all contr. red line: 25

$\frac{HCb}{HCb}\psi$ (2S) relative suppression wrt J/ψ

Relative suppression is calculated as:

- Intriguing stronger suppression of prompt $\psi(2S)$ than that of prompt J/ ψ
- Expect similar suppression for ψ(2S) from b and J/ψ from b

 \rightarrow R compatible with 1 within large uncertainties

• Results for inclusive $\psi(2S)$ compatible with ALICE measurement

Burkhard Schmidt

LHCb **Z-production in proton-lead collisions**

> muon selection: $p_T > 20 \text{ GeV/c}$; 2.0 < y< 4.5; 60 < M($\mu^+\mu^-$) < 120 GeV/c²

backgrounds: very small, purity>99% determined from data

Clean signals: 11 forward-candidates and 4 backward candidates,

Forward: $\sigma_{Z(\rightarrow \mu + \mu)} = 13.5^{+5.4}_{-4.0}$ (stat.) ± 1.2(syst.) nb
Backward: $\sigma_{Z(\rightarrow \mu + \mu)} = 10.7^{+8.4}_{-5.1}$ (stat.) ± 1.0(syst.) nb
Looking forward to 10x the statistics in Run II

Burkhard Schmidt

QCD @ LHC, Zurich August 22-26, 2016

[JHEP 09 (2014) 030]

LHCb **Prospects for 2016 pPb run**

- Plan to do fixed target studies during pPb run at $\sqrt{s_{NN}} = 5 \text{ TeV}$
- Requested L_{int} of 20/nb at $\sqrt{s_{NN}} \sim 8 \text{ TeV}$,
 - shared between both beam configurations pPb & Pbp

Channel	2013 yields	Yields expected in 2016 with $20 \mathrm{nb}^{-1}$
$\Upsilon(3S) \to \mu^+ \mu^-$	—	300
$\psi(2S) \to \mu^+ \mu^-$	500	10000
$Z \to \mu^+ \mu^-$	12	250
Associated $J/\psi - D^0$ production	—	100
Drell Yan	_	1000

- > Statistic would allow to achieve same precision on R_{FB} in $\psi(2S)$ as for J/ ψ
- > Measurement of R_{pPb} for all upsilon states, including Y(3S)
- > Improved precision on Z-production \rightarrow constrain nPDF
- Associated HF production in pA to study single- and double- parton scattering

$\frac{LHCb}{\Gamma HCp} J/\psi \text{ over Drell-Yan measurement}$

Figure 3: Double ratio $\mathcal{R}_{pPb}^{\psi/DY}$ in p–Pb collisions at $\sqrt{s} = 5.02$ TeV for the various nPDF sets and in the coherent energy loss model.

- Quarkonium production data so far not precise enough to distinguish between various CNM models (shadowing / e-loss)
- Double ratio has been proposed as a powerful measurement to disentangle between shadowing and e-loss models
 - LHCb is ideal for this measurement:
 - Optimal acceptance
 - VELO detector capabilities permit to decrease significantly the background from *bb* production
- Many systematic effects cancel in the ratio higher precision
- Projections with 20/nb :
 1000 Drell-Yan candidates