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Problem statement

x∗ = arg max
x

f (x)

Constraints:

• f is a black box for which no closed form is known;

gradients df
dx are not available.

• f is expensive to evaluate;

• (optional) uncertainty on observations yi of f

e.g., yi = f (xi ) + εi because of Poisson fluctuations.

Goal: find x∗, while minimizing the number of evaluations f (x).
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Disclaimer

If you do not have these constraints, there is certainly a better
optimisation algorithm than Bayesian optimisation.

(e.g., L-BFGS-B, Powell’s method (as in Minuit), etc)
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Bayesian optimisation

for t = 1 : T ,

1. Given observations (xi , yi ) for i = 1 : t, build a probabilistic
model for the objective f .

Integrate out all possible true functions, using Gaussian
process regression.

2. Optimise a cheap utility function u based on the posterior
distribution for sampling the next point.

xt+1 = arg max
x

u(x)

Exploit uncertainty to balance exploration against exploitation.

3. Sample the next observation yt+1 at xt+1.
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Where shall we sample next?
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Build a probabilistic model for the objective function
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This gives a posterior distribution over functions that could have
generated the observed data.
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Acquisition functions

Acquisition functions u(x) specify which sample x should be tried
next:

• Upper confidence bound UCB(x) = µGP(x) + κσGP(x);

• Probability of improvement PI(x) = P(f (x) ≥ f (x+t ) + κ);

• Expected improvement EI(x) = E[f (x) − f (x+t )];

• ... and many others.

where x+t is the best point observed so far.

In most cases, acquisition functions provide knobs (e.g., κ) for
controlling the exploration-exploitation trade-off.

• Search in regions where µGP(x) is high (exploitation)

• Probe regions where uncertainty σGP(x) is high (exploration)
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Plugging everything together (t = 0)
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xt+1 = arg maxx UCB(x)
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... and repeat until convergence (t = 1)
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... and repeat until convergence (t = 2)
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... and repeat until convergence (t = 3)
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... and repeat until convergence (t = 4)
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... and repeat until convergence (t = 5)
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What is Bayesian about Bayesian optimization?

• The Bayesian strategy treats the unknown objective function
as a random function and place a prior over it.

The prior captures our beliefs about the behaviour of the
function. It is here defined by a Gaussian process whose
covariance function captures assumptions about the
smoothness of the objective.

• Function evaluations are treated as data. They are used to
update the prior to form the posterior distribution over the
objective function.

• The posterior distribution, in turn, is used to construct an
acquisition function for querying the next point.
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Limitations

• Bayesian optimisation has parameters itself!

Choice of the acquisition function
Choice of the kernel (i.e. design of the prior)
Parameter wrapping
Initialization scheme

• Gaussian processes usually do not scale well to many
observations and to high-dimensional data.

Sequential model-based optimization provides a direct and
effective alternative (i.e., replace GPs by a tree-based model).
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Applications

• Bayesian optimization has been used in many scientific fields,
including robotics, machine learning or life sciences.

• Use cases for high energy physics?

Optimisation of simulation parameters in event generators;
Optimisation of compiler flags to maximize execution speed;
Optimisation of hyper-parameters in machine learning for HEP;
... let’s discuss further ideas?
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Software

• Python
Spearmint https://github.com/JasperSnoek/spearmint
GPyOpt https://github.com/SheffieldML/GPyOpt
RoBO https://github.com/automl/RoBO

scikit-optimize https://github.com/MechCoder/scikit-optimize

(work in progress)

• C++
MOE https://github.com/yelp/MOE

Check also this Github repo for a vanilla implementation
reproducing these slides.
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Summary

• Bayesian optimisation provides a principled approach for
optimising an expensive function f ;

• Often very effective, provided it is itself properly configured;

• Hot topic in machine learning research. Expect quick
improvements!
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