RECAST

Lukas Heinrich
DIANA Meeting 2016/05/02

%’/ NNNNNNNNNNNNNNNNN

RECAST

Experimental HEP faces idiosyncratic challenges re:
archiving, reproducibility, re-executability of research output

e few, large experiments / collaborations

® unique, but largely proprietary datasets (there'll ever only
be one dataset of 8 TeV pp collisions)

e many interested third parties (read: phenomenologists):
interested in re-execution, but lack access to data,
knowledge to execute original data analysis

(?’ NEW YORK UNIVERSITY 2

RECAST

RECAST a service to address common requests from pheno:
re-execute analysis w.r.t new signal signal model

® most resources go into simulating large background
samples, taking data, stay fixed in this scenario

® just re-execute analysis chain for one new signal dataset

Zl/gl
: /—\ X F‘h
o . e SDF Runll Preliminary CDF Runll Preliminary
-2 ey
§2 ® D ta] 1
D ("] Z+diboson _
M Fake 3
- Uncertainty _‘
2 —tC/A*=10 3
0
8
6
L1l .
2 L
0
4 :
= e o T o
3 o4 e e
2 W -
4 200 400 600

%’/ NEW YORK U Hy [GeV] 3

RECAST

Challenges in archiving analysis chain:

¢ wide range of software used, broad spectrum in quality,
documentation, support, etc

¢ generally can't assume common interfaces, coordination

(semi-)professionally
developed / released /
maintained

(?’ NEW YORK UNIVERSITY

case-specific frameworks
(SUSY, Higgs)

HistFitter

packages used by
multiple analyses,
midterm support

4

A e —

one-off scripts
event selection
plotting
fitting code

T ——— E—

unique analysis
code, know-how
moves with
analysis team

RECAST

Two Iingredients to preservation:

1. capture individual analysis steps, including all required
software dependencies, simple executable interface

2. capture workflow to execute analysis steps in correct order

Developed generic vocabulary to describe both. Goals:

¢ independent of execution backend
¢ clean separation of concerns, modularized
¢ flexible, extensible to support future changes

® robust, easily digestible data format

%” NEW YORK UNIVERSITY)

RECAST

Capturing Activities

(?’ NEW YORK UNIVERSITY 6

Capturing Activities

Packaged analysis step (packtivity) describes specific task,
possibly parametrized by small number of arguments.

Inputs:

e parameters as JSON data

¢ external state (e.g. work directory)

Output: @

e modified state

e semantic JSON description of
output / activity results

(?’ NEW YORK UNIVERSITY 7

Capturing Activities

Three ~independent ingredients
process:

takes input JSON and produces complete description.
Simple example: command line string template with
interpolation fields, that are filled by passed JSON data.
Reconstruction Tags

environment:

packaged execution environment, with all dependencies
to run above job and write to external state.

Examples:

e Docker Image w/ attached external volume
e Full VM image w/ shared FS (EOS, AFS etc)

e Environment described by Umbrella (already uses json,
but mixes process and environment notions)

e GRID Input tarball + cmtconfig
publisher:

human/machine readable JSON describing output. Often
independent of job details: globbing files in workdir,
declare certain input pars as output ("./cmd infile outfile")

%” NEW YORK UNIVERSITY

JSON

Capturing Activities
Example: fitting code of a Run-1 ATLAS SUSY analysis

process:
process type: 'string-interpolated-cmd’

cmd: '/resources/pMSSM-TwolLep-Fit/post fit.sh {fitresultsarchive} {workdir} {modelName} {resultsyaml}’
publisher:

publisher type: 'frompar-pub oublisher that maps
outputmap: — —

input arguments to output JSON
output: resultsyaml A4

environment:
environment type: 'docker-encapsulated'’
envscript: /resources/fitenv.sh <= often, jobs can execute in same image

but need different shells
enwron
ment -~ .

input JSON: output JSON:
{ : D)

"fitresultsarchive": "/workdir/fit.tgz", "output": "/workdir/fitres.yml"
"workdir": "/workdir/fitwork", } v

"modeName': 255123,
"resultsyaml”: "/workdir/fitres.yml" JSON
}

(?’ NEW YORK UNIVERSITY

image: lukasheinrich/dilepton_ fit

resources: :
for this env, we can request add. resource

- CVMFS ¢ _____—" grid proxy, cvmfs, afs access

Capturing Activities

Packaging activities, according to process, env, publisher
schema gives us:

e Simple JSON API to call parametrized analysis activities

e probably can't rely on more common interface,
JSON ubiquitous / future-proof -

A4

¢| et's us add new component descriptions (new
Kinds of container technigues, publishers) down

the road, w/o changing existing

¢ JSON for input and output, notions of
external state sets us up nicely for using
packtivities as building blocks for workflows

(%fz NEW YORK UNIVERSITY 10

Capturing Workflows

(?’ NEW YORK UNIVERSITY 11

Capturing Workflows

How do we use captured activities to execute more complex
analyses? Two (three) options:

1. write meta-program that steers execution using your favorite
language
e pro: workflow can have arbitrary complexity

e con: no introspection intro structure of workflow, handle parallelism manually, hard
to re-use shared workflows, more analysis-specific code to maintain

2. Use declarative workflow description (language/schema)

e con: can only describe supported workflow types

e basic assumption: often similar workflow patterns are re-used ("map-reduce”,
simple chain, simple combinatorics)

e pro: gives as static, analyzable/queryable description of workflow structure, re-use
shared workflows easily, jobs can be distributed, parallelized from inspection

(%fz NEW YORK UNIVERSITY 12

Capturing Workflows
Workflow Model:

¢ Directed Acyclic Graph: X
nodes=packtivities, edges=dependencies \
¢ Fits W3C PROV standard terminology /

e 'structured job queue", jobs submitted to / .

a backend when upstream ready

e Basic Problem:

4

e entire DAG is often not known at until

execution time. depends on O

activity results /\ /
\

QOO

¢ simple example: download dataset < vs O\
process all files in parallel, merge. O

(%fz NEW YORK UNIVERSITY 13

output:
[A,B,C]

gy

O

O

Capturing Workflows

Dynamic Workflows

¢ described by a DAG + list of

extension rules. Two components

predicate: signal if extension can be applied @
based on current DAG state. @

Example: wait for dataset download to be /

finished

body: extend DAG: add nodes, edges, or new
extension rules

Example: inspect download node output,
create appropriate # of nodes, add edges

¢ Simple processing loop:

t =10 t =11
#rules=1 #rules=0

. #starting the loop
o proceSS unt” a” nOdeS done while nodes_left_or_rule(state):
update_dag(state)

no eXtenS|OnS Ieft / apphcable process_dag(backend,state)

#we're done for this tick, let others proceed
yield state

(?/ NEW YORK UNIVERSITY 14

Capturing Workflows

Next step: describe extension rules in declarative form
according to a JSON Schema.

¢ \We call each extension a workflow "stage"

e simple predicates: a stage can be scheduled while all schedules activities of
dependent stages are done

¢ simple bodies: library of workflow patterns that take result JSON from
dependencies' activities and creates new input JSON for newly scheduled activities,
adds edges as necessary

e examples: map (process array output w/ one activity each), reduce (collect array
outputs with single activity), combinatorics (cartesian products, lockstep
iteration/zip of arrays) etc.

e operate solely on JSON data of activities, completely factorized from jobs. Can
build quite complex workflows w/ very few basic building blocks (HEP workflows
tend to be lots's of parallel processing / map-reduce). Suspect a saturation of
patterns w/ time.

%’/ NEW YORK UNIVERSITY 5

Capturing Workflows

Example: simple Monte Carlo Event generation pipeline

Input: Couplings

Generate Generator Cards from couplings

Create Integration Grid (one-time cost)

Generate hard interactions based on Grid in parallel

Run Parton Shower

o O A~ o~

Merge files

(?/ NEW YORK UNIVERSITY 6

Capturing Workflows

Example: simple Monte Carlo Event generation pipeline

JSON reference to packtivity definition

- name: prepare
dependencies: ['init']
scheduler:
scheduler_type: singlestep-stage
step: {$ref: 'steps.yml#/prepare'}
parameters:
parl: {stages: init, output: parl}
par2: {stages: init, output: par2}
param_card: '{workdir}/param.dat’
predicate: wait for
— name: grid prepare to finish

dependencies: [‘prepare’] before scheduling grids
scheduler:

scheduler_type: singlestep-stage
step: {$ref: 'steps.yml#/grid'}
parameters:
param_card: {stages: prepare, output: param_card}

gridpack: '{workdir}/grid.tar.gz' ‘g\\\

- name: madevent reference upstream outputs

dependencies: ['grid'] to assemble new input JSON
scheduler:

scheduler_type: multistep-stage

step: {$ref: 'steps.yml#/madgraph'}

parameters:
gridpack: {stages: grid, output: gridpack}
nevents: {stages: init, output: nevents}
seed: {stages: init, output: seeds, flatten: true}
lhefile: '{workdir}/lhefile_{index}. lhe"

scatter:
method: zip

parameters: ['seed’]"\\ multiple packtivities per stage

workflow.yml

(?’ NEW YORK UNIVERSITY

17

prepare:
process:

process_type: 'string-interpolated-cmd’

cmd: './paramfromyaml.py --madgraph HC_UFO0 -i "{{kHzz: {parl}, kAzz: {p

publisher:
publisher_type: 'frompar-pub'
outputmap:
param_card: param_card
environment:
environment_type: 'docker-encapsulated’
image: 'lukasheinrich/higgs-mc-studies’
grid:
process:
process_type: 'string-interpolated-cmd’
cmd: './scripts/setupgrid.sh {param_card} {gridpack}’
publisher:
publisher_type: 'frompar-pub'
outputmap:
gridpack: gridpack
environment:
environment_type: 'docker-encapsulated’
image: 'lukasheinrich/higgs-mc-studies’
madgraph:
process:
process_type: 'string-interpolated-cmd’
cmd: './scripts/rungrid.sh {gridpack} {nevents} {seed} {lhefile}'
publisher:
publisher_type: 'frompar-pub'
outputmap:
lhefile: lhefile
environment:

environment_type: 'docker-encapsulated’

image:

'lukasheinrich/higgs-mc-studies’

steps.yml

Capturing Workflows

e Many HEP data pipelines share a lot of upstream data
processing (reconstrution from RAW data, basic event
selection / thinning, ATLAS: derivations). Only diverge at
the very end.

e \Want to be able to compose workflows from subworkflows.

e results in recursively nested workflows, "scoped"

extensions & 0\?
T ?,(Q\<z
P\ S
PP — S50
QOP Q\é O

Capturing Workflows

Example: simple Monte Carlo Event generation pipeline

stages:
- name: prepare
dependencies: ['init']
scheduler:
scheduler_type: singlestep-stage
step: {$ref: 'steps.yml#/prepare'}
parameters:
parl: {stages: init, output: parl}
par2: {stages: init, output: par2}
param_card: '{workdir}/param.dat’

- name: grid
dependencies: ['prepare']
scheduler:
scheduler_type: singlestep-stage
step: {$ref: 'steps.yml#/qrid'}
parameters:
param_card: {stages: prepare, output: param_card}
gridpack: '{workdir}/grid.tar.gz'

- name: madevent
dependencies: ['grid']
scheduler:
scheduler_type: multistep-stage
workflow: {$ref: 'subchain.yml'}

same scheduler, but just
specify workflow
instead of step. Input JSON
become subworkflow input

parameters:
gridpack: {stages: grid, output: gridpack, unwrap: true}
nevents: {stages: init, output: nevents, unwrap: true}
seed: {stages: init, output: seeds, flatten: true}

scatter:
method: zip

parameters: ['seed'])
in subfworkflows.

- name: rootmerge ‘__———JJSGS JSONPath
dependencies: ['x.analysis']

scheduler:
scheduler_type: singlestep-stage
step: {$ref: 'steps.yml#/rootmerge'}
parameters:
mergedfile: '{workdir}/anamerged.root'
inputfiles: {stages: 'x.analysis', output: analysis_output}

rootflow.yml

(?’ NEW YORK UNIVERSITY

depend on all "analysis" stages

stages:

- name: madevent

dependencies: ['init'] "\\‘SUbWOI’kﬂOW does not need
scheduler:

scheduler_type: singlestep-stage to respect any naming

step: {$ref: 'steps.yml#/madgraph'} gcoping resolves correct stages
parameters:

gridpack: {stages: init, output: gridpack}
nevents: {stages: init, output: nevents}
seed: {stages: init, output: seed}
lhefile: '{workdir}/lhefile. lhe'

- name: pythia
dependencies: ['madevent']
scheduler:
scheduler_type: singlestep-stage
step: {$ref: 'steps.yml#/pythia'}
parameters:
settings_file: /analysis/mainPythiaMLM. cmnd
hepmcfile: '{workdir}/outputfile.hepmc'
lhefile: {stages: madevent, output: lhefile}

- name: delphes
dependencies: ['pythia']
scheduler:
scheduler_type: singlestep-stage
step: {$ref: 'steps.yml#/delphes'}
parameters:
detector_card: /analysis/template_cards/modified_delphes_card_ATLAS.tcl
outputfile: '{workdir}/outputfile.root'
inputfile: {stages: pythia, output: hepmcfile}

~ name: analysis
dependencies: ['delphes']
scheduler:
scheduler_type: singlestep-stage
step: {$ref: 'steps.yml#/analysis'}
parameters:
fromdelphes: {stages: delphes, output: delphesoutput}
analysis_output: '{workdir}/anaout.root’

subchain.yml

19

Capturing Workflows

Taking Stock:
e Defined two sets of JSON schemas 0\.
¢ \Wrapping Activities + execution environment ?

into "packtivity" that has JSSON API O
. - PP
e Generic workflow definition that uses ({
APls + a number of patterns to §
assemble complex workflows CP ? ?
OO

&

(?’ NEW YORK UNIVERSITY 20

Executing Workflows

(?’ NEW YORK UNIVERSITY 21

Executing Workflows

Reference / Demo implementation to execute workflows.
Three packages:

e adage: low-level steering of DAG update/process loop for
tasks/extension rules defined as python callables.

¢ Pluggable backend support. Currently: multiprocessing
pool, distributed computing via Celery Worker pool.
Obvious new backends: HTCondor cluster, etc...

e AP| access to event loop via single coroutine. Ticks in
loop could also be steered via web service w/ workflow
state stored in DB

This repository

lukasheinrich / adage

%’/ NEW YORK UNIVERSITY -

Executing Workflows

Reference / Demo implementation to execute workflows.
Three packages:

¢ packtivity: read-in packtivity definitions, make JSON API
available as python callables. Has process/publisher/
environment handlers (e.g. craft docker command, attach
external state etc)

e yadage (yaml+ adage): parsing workflow definitions from
JSON/YAML, library of standard DAG extensions, scoping

0 This repository O This repository

lukasheinrich / yadage lukasheinrich / packtivity

(%// s

Executing Workflows

Executing RECAST workflows in a scalable deployment:

e Demo Cluster on CERN OpenStack: Cluster of ~30 VCPUS
with Docker installed. Celery Job Queue to request Workflow

processing

Runs Celery worker, listens for
workflow requests.

I - Has access to Docker socket, during
Interactive Container / workflow launches sibling containers
Request Submission for packtivities. Per-workflow shared

_ — — Worker volume

Container

Transfers workflow results to
persistent storage upon completion

workflow
state volume

Packtivity
Container

—————

queue requests > submit request

< messages
Redis
Container
| Monitoring I
store workflow

results
persistent result
storage

(?/ NEW YORK UNIVERSITY 04

Packtivity
Container

S—

Executing Workflows

¢ 1-Click deployment of new nodes via user-scripts (plan to
transition to OpenStack Heat).

¢ \Worker nodes, glorified Docker Hosts (we add a bit of
Monitoring, CVMFS, GRID Host Certs), could transition to

CERN Container Project

Interactive Container /
Request Submission
—_— — — Worker

Container

workflow
state volume

Packtivity
Container

—————

queue requests > submit request

< messages
Redis
Container
| Monitoring I
store workflow
results
persistent result
storage

(?/ NEW YORK UNIVERSITY o5

Packtivity
Container

S—

@= Cluster Overview . w e B © ZoomOut (12 hours ago to a few

server: All+ cpucomp: iowait + irq + nice + softirq + steal + system + user ~

CPU
23K — —
20K
1.8K
15K
13K W
1.0K
03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00
== non-idle == idle
Processed Tasks & Queue Length
215K 1.0 150
0.8 T~
2.10K / -
100
0.6
2.05K
0.4
50
2.00 K 02
1.95K 0 0
04:00 06:00 08:00 10:00 12:00 14:00 04:00 06:00 08:00 10:00
== all workers == derivative -= stats.gauges.celeryqueue.recast_cap_queue.length
Task Events i Task Events
1.0 200
0.5 150
0 100
-0.5 50
1.0 0 e
(2016-01-26 0&‘2)1*0) 12:00 14:00 04:00 06:00 08:00 10:00
failed == re -I‘W: (1] cceeded e succeeded
= started: 0 . .
~ succeeded: 0 Each Event is a re-execution of a

Dockerized Run-1 ATLASAnNalysis Chain

e

CERN Analysis Preservation

CERN Analysis Preservation Portal (=) Sraiysis preservation

* New effort to archive analysis information e
In Invenio-based backend

e Naturally acts on JSON records, ideal place [rotos
to store Workflow Definition, exposes API J— —
to query for workflows of a given analysis o

‘ histitprepare

e Can now store workflows according to our —
schemas, RECAST can pull workflow &] s

re-execute it with new input .
h I
o Will make it easy to cross-reference shared |

workflow stages across analyses |

postproc J

%’/ NEW YORK UNIVERSITY o7

