
RECAST

Lukas Heinrich
DIANA Meeting 2016/05/02

RECAST

Experimental HEP faces idiosyncratic challenges re:
archiving, reproducibility, re-executability of research output

• few, large experiments / collaborations

• unique, but largely proprietary datasets (there'll ever only
be one dataset of 8 TeV pp collisions)

• many interested third parties (read: phenomenologists):
interested in re-execution, but lack access to data,
knowledge to execute original data analysis

2

RECAST
RECAST a service to address common requests from pheno:
re-execute analysis w.r.t new signal signal model

• most resources go into simulating large background
samples, taking data, stay fixed in this scenario

• just re-execute analysis chain for one new signal dataset

3

RECAST

Challenges in archiving analysis chain:

• wide range of software used, broad spectrum in quality,
documentation, support, etc

• generally can't assume common interfaces, coordination

4

(semi-)professionally
developed / released / 
maintained

packages used by 
multiple analyses,
midterm support

unique analysis 
code, know-how  
moves with  
analysis team

ROOT Gaudi/Athena

collaboration-wide  
analysis software

case-specific frameworks 
(SUSY, Higgs)

numpy HistFitter

one-off scripts
event selection

plotting
fitting code

MC Generators

RECAST

Two ingredients to preservation:

1. capture individual analysis steps, including all required
software dependencies, simple executable interface

2. capture workflow to execute analysis steps in correct order 

Developed generic vocabulary to describe both. Goals:

• independent of execution backend

• clean separation of concerns, modularized

• flexible, extensible to support future changes

• robust, easily digestible data format

5

RECAST

6

Capturing Activities

Capturing Activities

Packaged analysis step (packtivity) describes specific task,
possibly parametrized by small number of arguments.

Inputs:

• parameters as JSON data

• external state (e.g. work directory)

Output:

• modified state

• semantic JSON description of 
output / activity results

7

packtivity

JSON

JSON State'

State

Three ~independent ingredients
Capturing Activities

8

JSON

packtivity

State

JSON

process:
takes input JSON and produces complete description.
Simple example: command line string template with
interpolation fields, that are filled by passed JSON data.
Reconstruction Tags
environment:
packaged execution environment, with all dependencies
to run above job and write to external state.

Examples:

• Docker Image w/ attached external volume

• Full VM image w/ shared FS (EOS, AFS etc)

• Environment described by Umbrella (already uses json,
but mixes process and environment notions)

• GRID Input tarball + cmtconfig

State'

publisher:
human/machine readable JSON describing output. Often
independent of job details: globbing files in workdir,
declare certain input pars as output ("./cmd infile outfile")

JSON

Job

environ-
ment

process

State

State'

JSON

publisher

Example: fitting code of a Run-1 ATLAS SUSY analysis
Capturing Activities

9

JSON

Job

environ-
ment

process

State

State'

JSON

publisher

input JSON: output JSON:

for this env, we can request add. resource  
grid proxy, cvmfs, afs access

often, jobs can execute in same image  
but need different shells

publisher that maps 
input arguments to output JSON

Packaging activities, according to process, env, publisher
schema gives us:

•Simple JSON API to call parametrized analysis activities

• probably can't rely on more common interface,  
JSON ubiquitous / future-proof

•Let's us add new component descriptions (new  
kinds of container techniques, publishers) down  
the road, w/o changing existing

•JSON for input and output, notions of 
external state sets us up nicely for using  
packtivities as building blocks for workflows

Capturing Activities

10

JSON

Job

environ-
ment

process

State

State'

JSON

publisher

11

Capturing Workflows

How do we use captured activities to execute more complex
analyses? Two (three) options:

1. write meta-program that steers execution using your favorite
language
• pro: workflow can have arbitrary complexity

• con: no introspection intro structure of workflow, handle parallelism manually, hard
to re-use shared workflows, more analysis-specific code to maintain

2. Use declarative workflow description (language/schema)
• con: can only describe supported workflow types

• basic assumption: often similar workflow patterns are re-used ("map-reduce",
simple chain, simple combinatorics)

• pro: gives as static, analyzable/queryable description of workflow structure, re-use
shared workflows easily, jobs can be distributed, parallelized from inspection

3. (Give up, hope for documentation, run everything by hand)
• well, let's not do that…

Capturing Workflows

12

Workflow Model:

•Directed Acyclic Graph: 
nodes=packtivities, edges=dependencies

•Fits W3C PROV standard terminology

•"structured job queue", jobs submitted to  
a backend when upstream ready

•Basic Problem:

•entire DAG is often not known at until  
execution time. depends on  
activity results

•simple example: download dataset 
process all files in parallel, merge.

Capturing Workflows

13

�13

packtivity

packtivity

packtivity

packtivity

packtivity

packtivity

vs

output:
[A,B]

output:
[A,B,C]

Dynamic Workflows

•described by a DAG + list of  
extension rules. Two components

•Simple processing loop:

•process until all nodes done  
no extensions left / applicable

Capturing Workflows

14

done

running
running

defined

predicate: signal if extension can be applied
based on current DAG state.

Example: wait for dataset download to be
finished

body: extend DAG: add nodes, edges, or new
extension rules

Example: inspect download node output,
create appropriate # of nodes, add edges

t = t0
#rules=1

t = t1
#rules=0

running

output:
[A,B]

Next step: describe extension rules in declarative form
according to a JSON Schema.

•We call each extension a workflow "stage"
• simple predicates: a stage can be scheduled while all schedules activities of

dependent stages are done

• simple bodies: library of workflow patterns that take result JSON from
dependencies' activities and creates new input JSON for newly scheduled activities,
adds edges as necessary

• examples: map (process array output w/ one activity each), reduce (collect array
outputs with single activity), combinatorics (cartesian products, lockstep
iteration/zip of arrays) etc.

• operate solely on JSON data of activities, completely factorized from jobs. Can
build quite complex workflows w/ very few basic building blocks (HEP workflows
tend to be lots's of parallel processing / map-reduce). Suspect a saturation of
patterns w/ time.

Capturing Workflows

15

Example: simple Monte Carlo Event generation pipeline
Capturing Workflows

workflow 
input

1. Input: Couplings
2. Generate Generator Cards from couplings
3. Create Integration Grid (one-time cost)
4. Generate hard interactions based on Grid in parallel
5. Run Parton Shower
6. Merge files

16

Example: simple Monte Carlo Event generation pipeline
Capturing Workflows

predicate: wait for  
prepare to finish  

before scheduling grids

reference upstream outputs 
to assemble new input JSON

multiple packtivities per stage

JSON reference to packtivity definition

steps.yml

workflow.yml

17

• Many HEP data pipelines share a lot of upstream data
processing (reconstrution from RAW data, basic event
selection / thinning, ATLAS: derivations). Only diverge at
the very end.

• Want to be able to compose workflows from subworkflows.

• results in recursively nested workflows, "scoped"
extensions

Capturing Workflows

18

Example: simple Monte Carlo Event generation pipeline
Capturing Workflows

rootflow.yml subchain.yml

same scheduler, but just 
specify workflow  

instead of step. Input JSON  
become subworkflow input

subworkflow does not need  
to respect any naming  

scoping resolves correct stages

depend on all "analysis" stages 
in subfworkflows. 
Uses JSONPath

19

Taking Stock:

•Defined two sets of JSON schemas

•Wrapping Activities + execution environment 
into "packtivity" that has JSON API

•Generic workflow definition that uses 
APIs + a number of patterns to  
assemble complex workflows

Capturing Workflows

20

21

Executing Workflows

Reference / Demo implementation to execute workflows.
Three packages:

•adage: low-level steering of DAG update/process loop for
tasks/extension rules defined as python callables.

•Pluggable backend support. Currently: multiprocessing
pool, distributed computing via Celery Worker pool.
Obvious new backends: HTCondor cluster, etc…

•API access to event loop via single coroutine. Ticks in
loop could also be steered via web service w/ workflow
state stored in DB

Executing Workflows

22

Reference / Demo implementation to execute workflows.
Three packages:

•packtivity: read-in packtivity definitions, make JSON API
available as python callables. Has process/publisher/
environment handlers (e.g. craft docker command, attach
external state etc)

•yadage (yaml+ adage): parsing workflow definitions from
JSON/YAML, library of standard DAG extensions, scoping

Executing Workflows

23

Executing RECAST workflows in a scalable deployment:

• Demo Cluster on CERN OpenStack: Cluster of ~30 VCPUS
with Docker installed. Celery Job Queue to request Workflow
processing

Executing Workflows

Interactive Container /
Request Submission

persistent result 
storage

Worker  
Container

workflow
state volume

Packtivity
Container

Packtivity
Container

Redis
Container

Monitoring

queue requests > submit request 
< messages

store workflow  
results

Runs Celery worker, listens for
workflow requests.

Has access to Docker socket, during
workflow launches sibling containers
for packtivities. Per-workflow shared
volume

Transfers workflow results to
persistent storage upon completion

24

• 1-Click deployment of new nodes via user-scripts (plan to
transition to OpenStack Heat).

•Worker nodes, glorified Docker Hosts (we add a bit of
Monitoring, CVMFS, GRID Host Certs), could transition to
CERN Container Project 

Executing Workflows

Interactive Container /
Request Submission

persistent result 
storage

Worker  
Container

workflow
state volume

Packtivity
Container

Packtivity
Container

Redis
Container

Monitoring

queue requests > submit request 
< messages

store workflow  
results

25

Each Event is a re-execution of a
Dockerized Run-1 ATLASAnalysis Chain

CERN Analysis Preservation
CERN Analysis Preservation Portal

• New effort to archive analysis information  
in Invenio-based backend

• Naturally acts on JSON records, ideal place  
to store Workflow Definition, exposes API 
to query for workflows of a given analysis

• Can now store workflows according to our 
schemas, RECAST can pull workflow & 
re-execute it with new input

• Will make it easy to cross-reference shared  
workflow stages across analyses

27

