
Jan Stypka

Outline of the talk
1. Problem description

2. Initial approach and its problems

3. A neural network approach (and its problems)

4. Potential applications

5. Demo & Discussion

Initial project definition

“Extracting keywords from HEP publication abstracts”

Problems with keyword extraction

• What is a keyword?

• When is a keyword relevant to a text?

• What is the ground truth?

Ontology

• all possible terms in HEP

• connected with relations

• ~60k terms altogether

• ~30k used more than once

• ~10k used in practice

Large training corpus

• ~200k abstracts with manually
assigned keywords since 2000

• ~300k if you include the 1990s and
papers with automatically assigned
keywords (invenio-classifier)

Approaches to keyword extraction

• statistical (invenio-classifier)

• linguistic

• unsupervised machine learning

• supervised machine learning

Traditional ML approach

• using ontology for candidate generation
• hand engineering features
• a simple linear classifier for binary classification

Candidate generation
• surprisingly difficult part

• matching all the words in the
abstract against the ontology

• composite keywords, alternative
labels, permutations, fuzzy
matching

• including also the neighbours
(walking the graph)

Feature extraction
• term frequency (number of occurrences in this document)

• document frequency (how many documents contain this word)

• tf-idf

• first occurrence in the document (position)

• number of words

Feature extraction
tf df tfidf 1st occur # of words

quark 0.22 -0.12 0.32 0.03 -0.21

neutrino/tau 0.57 0.60 -0.71 -0.30 -0.59

Higgs:
coupling -0.44 -0.41 -0.12 0.89 -0.28

elastic
scattering -0.90 0.91 0.43 -0.43 0.79

Sigma0: mass 0.11 -0.77 -0.94 0.46 0.17

Keyword classification
tf tfidf

quark 0.22 0.32

neutrino/tau 0.57 -0.71

Higgs:
coupling -0.44 -0.12

elastic
scattering -0.90 0.43

Sigma0:
mass 0.11 -0.94

tf
-1

-0,5

0

0,5

1

tfidf
-1 -0,5 0 0,5 1

Keyword classification
tf tfidf

quark 0.22 0.32

neutrino/tau 0.57 -0.71

Higgs:
coupling -0.44 -0.12

elastic
scattering -0.90 0.43

Sigma0:
mass 0.11 -0.94

tf
-1

-0,5

0

0,5

1

tfidf
-1 -0,5 0 0,5 1

Keyword classification
tf tfidf

quark 0.22 0.32

neutrino/tau 0.57 -0.71

Higgs:
coupling -0.44 -0.12

elastic
scattering -0.90 0.43

Sigma0:
mass 0.11 -0.94

tf
-1

-0,5

0

0,5

1

tfidf
-1 -0,5 0 0,5 1

Ranking approach
• keywords should not be classified in isolation

• keyword relevance is not binary

• keyword extraction is a ranking problem!

• model should produce a ranking of the vocabulary for every abstract

• model learns to order all the terms by relevance to the input text

• we can represent a ranking problem as a binary classification problem

Pairwise transform
a b c result

w1 a1 b1 c1 ✓

w2 a2 b2 c2 ✗

w3 a3 b3 c3 ✓

w4 a4 b4 c4 ✗

a b c result

w1 - w2 a1 - a2 b1 - b2 c1 - c2 ↑
w1 - w3 a1 - a3 b1 - b3 c1 - c3 ↑
w1 - w4 a1 - a4 b1 - b4 c1 - c4 ↓
w2 - w3 a2 - a3 b2 - b3 c2 - c3 ↑
w2 - w4 a2 - a4 b2 - b4 c2 - c4 ↓
w3 - w4 a3 - a4 b3 - b4 c3 - c4 ↑

RankSVM result
a b c result

w1 - w2 a1 - a2 b1 - b2 c1 - c2 ↑
w1 - w3 a1 - a3 b1 - b3 c1 - c3 ↑
w1 - w4 a1 - a4 b1 - b4 c1 - c4 ↓
w2 - w3 a2 - a3 b2 - b3 c2 - c3 ↑
w2 - w4 a2 - a4 b2 - b4 c2 - c4 ↓
w3 - w4 a3 - a4 b3 - b4 c3 - c4 ↑

1. black hole: information theory

2. equivalence principle

3. Einstein

4. black hole: horizon

5. fluctuation: quantum

6. radiation: Hawking

7. density matrix

Mean Average Precision
• metric to evaluate rankings

• gives a single number

• can be used to compare different rankings of the same vocabulary

• average precision values at ranks of relevant keywords

• mean of those averages across different queries

Mean Average Precision
1. black hole: information theory

2. equivalence principle

3. Einstein

4. black hole: horizon

5. fluctuation: quantum

6. radiation: Hawking

Mean Average Precision
1. black hole: information theory

2. equivalence principle

3. Einstein

4. black hole: horizon

5. fluctuation: quantum

6. radiation: Hawking

Precision = 1/1 = 1

Precision = 1/2 = 0.5

Precision = 2/3 = 0.66

Precision = 3/4 = 0.75

Precision = 3/5 = 0.6

Precision = 4/6 = 0.66

AveragePrecision = (1 + 0.66 + 0.75 + 0.66) / 4 ≈ 0.77

Traditional ML approach aftermath
• Mean Average Precision (MAP) of RankSVM ≈ 0.30

• MAP of random ranking of 100 keywords with 5 hits ≈ 0.09

• need something better

• candidate generation is difficult, features are not meaningful

• is it possible to skip those steps?

Deep learning approach

1 This

2 is

3 the

4 beginning

5 of

6 the

7 abstract

8 and

1 -0.2 0.9 0.6 0.2 -0.3 -0.4

2 0.3 -0.5 -0.8 0.3 0.6 0.1

3 0.7 -0.8 -0.1 0.2 -0.9 -0.6

4 0.6 -0.5 -0.8 0.3 0.6 0.4

5 -0.9 0.2 0.4 0.7 -0.3 -0.3

6 0.3 0.7 0.6 -0.5 -0.9 -0.1

7 0.2 -0.9 0.4 -0.8 -0.4 -0.5

8 -0.8 -0.4 -0.3 0.7 -0.1 0.6

NN

0.91 black hole

0.34 Einstein

0.06 leptoquark

0.21 neutrino/tau

0.01 CERN

0.29 Sigma0

0.48 p: decay

0.12 Yann-Mills

→
→
→
→
→
→
→
→

Word vectors
• strings for computers are meaningless tokens

• “cat” is as similar to “dog” as it is to “skyscraper”

• in vector space terms, words are vectors with one 1 and a lot of 0

• it’s major problem is:

Word vectors
• we need to represent the meaning of the words

• we want to perform arithmetics e.g. vec[“hotel”] - vec[“motel”] ≈ 0

• we want them to be low-dimensional

• we want them to preserve relations  
e.g. vec[“Paris”] - vec[“France”] ≈ vec[“Berlin”] - vec[“Germany”]

• vec[“king”] - vec[“man”] + vec[“woman”] ≈ vec[“queen”]

word2vec
• proposed by Mikolov et al. in 2013

• learn the model on a large raw (not preprocessed) text corpus

• trains a model by predicting a target word by its neighbours

• “Ioannis is a _____ Greek man” or “Eamonn ____ skiing” or  
“Ilias’ _____ is really nice”

• use a context window and walk it through the whole corpus
iteratively updating the vector representations

word2vec

• cost function:

• where the probabilities:

word2vec

word2vec

GloVe

Demo

Classic Neural Networks
• just a directed graph with weighted edges

• supposed to simulate our brain architecture

• nodes are called neurons and divided into layers

• usually at least three layers - input, hidden (one or more) and output

• feed the input into the input layer, propagate the values along the
edges until the output layer

Forward propagation in NN

Backpropagation in NN

Neural Networks
• just adjust parameters to minimise the errors and conform to the

training data

• in theory able to approximate any function

• take a long time to train

• come in different variations e.g. recurrent neural networks and
convolutional neural networks

Recurrent Neural Networks
• classic NN have no state/memory

• RNNs try to go about this by adding
an additional matrix in every node

• computing the state of a neuron
depends on the previous layer and
on the current state (inner matrix)

• used for learning sequences

• come in different kinds e.g. LSTM or
GRU

=

Convolutional Neural Networks
• inspired by convolutions in image

and audio processing

• you learn a set of neurons once and
reuse them to compute values from
the whole input data

• similar to convolutional filters

• very successful in image and audio
classification

NN approach
• we tested CNN, RNN and a

combination of both - CRNN

• trained on half of the full corpus

• the output layer was a vector of N
neurons where N ∈ {1k, 2k, 5k, 10k}
corresponding to N most popular
keywords in the corpus

• NNs learned to predict 0 or 1 for each
keyword (relevant or not), however we
used the confidence values for each
label to produce a ranking

Results for ordering 1k labels

M
ea

n
Av

er
ag

e
Pr

ec
is

io
n

0

0,1

0,2

0,3

0,4

0,5

0,6

Random RNN CNN CRNN

0,490,51
0,47

0,01

Generalisation

• keyword extraction is just a special case

• what we were actually doing was multi-label text classification i.e.
learning to assign many arbitrary labels to text

• the models can be used to do any text classification - the only
requirement is a predefined vocabulary and a large training set

Predicting subject categories
• we used the same CNN model to

assign subject categories to
abstracts

• 14 subject categories in total  
(more than one may be relevant)

• a small output space makes the
problem much easier

• Mean Reciprocal Rank (MRR) is just
the inversion of the rank of the first
relevant label (1, ½, ⅓, ¼, ⅕ …)

Performance

0

0,25

0,5

0,75

1

MRR MAP
Random Trained Random Trained

0,920,93

0,230,23

Feedback
• the model should be able to learn continuously on incoming data

• learning on your own predictions only enforces the mistakes

• there should be a possibility to provide the network more ground
truth (human curated) answers that would improve its performance

• workflow: model automatically suggests the keywords, cataloguer
makes corrections and confirms, model learns on this new data

• in that way the neural network should improve over time

Demo

But what about invenio-classifier?

• difficult to compare accuracy - one produces a ranking, the other set
of keywords

• data that magpie is trained on is naturally biased towards invenio-
classifier

• best to evaluate manually

• requires training

• better handles short text

• doesn’t require explicit mentioning

• understands synonyms and handles
fuzzy matching

• works only on top N keywords

• improves over time

• works “out of the box”

• needs a fairly long text

• needs keywords to be explicitly
mentioned in a certain form

• works on the whole ontology

magpie invenio-classifier

Links
https://github.com/jstypka/magpie

http://inspire.jacenkow.com:5050/

http://cs224d.stanford.edu/syllabus.html

http://bdewilde.github.io/blog/2014/09/23/intro-to-automatic-keyphrase-
extraction/

http://colah.github.io/

http://fa.bianp.net/blog/2012/learning-to-rank-with-scikit-learn-the-pairwise-
transform/

https://github.com/jstypka/magpie
http://inspire.jacenkow.com:5050/
http://cs224d.stanford.edu/syllabus.html
http://bdewilde.github.io/blog/2014/09/23/intro-to-automatic-keyphrase-extraction/
http://colah.github.io/
http://fa.bianp.net/blog/2012/learning-to-rank-with-scikit-learn-the-pairwise-transform/

Thanks!

