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Initial project definition

“Extracting keywords from HEP publication abstracts”



Problems with keyword extraction

• What is a keyword? 

• When is a keyword relevant to a text? 

• What is the ground truth?



Ontology

• all possible terms in HEP 

• connected with relations 

• ~60k terms altogether 

• ~30k used more than once 

• ~10k used in practice



Large training corpus

• ~200k abstracts with manually 
assigned keywords since 2000 

• ~300k if you include the 1990s and 
papers with automatically assigned 
keywords (invenio-classifier)



Approaches to keyword extraction

• statistical  (invenio-classifier) 

• linguistic 

• unsupervised machine learning 

• supervised machine learning



Traditional ML approach

• using ontology for candidate generation 
• hand engineering features 
• a simple linear classifier for binary classification



Candidate generation
• surprisingly difficult part 

• matching all the words in the 
abstract against the ontology 

• composite keywords, alternative 
labels, permutations, fuzzy 
matching 

• including also the neighbours 
(walking the graph)



Feature extraction
• term frequency (number of occurrences in this document) 

• document frequency (how many documents contain this word) 

• tf-idf  

• first occurrence in the document (position) 

• number of words



Feature extraction
tf df tfidf 1st occur # of words

quark 0.22 -0.12 0.32 0.03 -0.21

neutrino/tau 0.57 0.60 -0.71 -0.30 -0.59

Higgs: 
coupling -0.44 -0.41 -0.12 0.89 -0.28

elastic 
scattering -0.90 0.91 0.43 -0.43 0.79

Sigma0: mass 0.11 -0.77 -0.94 0.46 0.17
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Ranking approach
• keywords should not be classified in isolation 

• keyword relevance is not binary 

• keyword extraction is a ranking problem! 

• model should produce a ranking of the vocabulary for every abstract 

• model learns to order all the terms by relevance to the input text 

• we can represent a ranking problem as a binary classification problem



Pairwise transform
a b c result

w1 a1 b1 c1 ✓

w2 a2 b2 c2 ✗

w3 a3 b3 c3 ✓

w4 a4 b4 c4 ✗

a b c result

w1 - w2 a1 - a2 b1 - b2 c1 - c2 ↑
w1 - w3 a1 - a3 b1 - b3 c1 - c3 ↑
w1 - w4 a1 - a4 b1 - b4 c1 - c4 ↓
w2 - w3 a2 - a3 b2 - b3 c2 - c3 ↑
w2 - w4 a2 - a4 b2 - b4 c2 - c4 ↓
w3 - w4 a3 - a4 b3 - b4 c3 - c4 ↑



RankSVM result
a b c result

w1 - w2 a1 - a2 b1 - b2 c1 - c2 ↑
w1 - w3 a1 - a3 b1 - b3 c1 - c3 ↑
w1 - w4 a1 - a4 b1 - b4 c1 - c4 ↓
w2 - w3 a2 - a3 b2 - b3 c2 - c3 ↑
w2 - w4 a2 - a4 b2 - b4 c2 - c4 ↓
w3 - w4 a3 - a4 b3 - b4 c3 - c4 ↑

1. black hole: information theory 

2. equivalence principle 

3. Einstein 

4. black hole: horizon 

5. fluctuation: quantum 

6. radiation: Hawking  

7. density matrix 



Mean Average Precision
• metric to evaluate rankings 

• gives a single number 

• can be used to compare different rankings of the same vocabulary 

• average precision values at ranks of relevant keywords

• mean of those averages across different queries
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Mean Average Precision
1. black hole: information theory 

2. equivalence principle 

3. Einstein 

4. black hole: horizon 

5. fluctuation: quantum 

6. radiation: Hawking

Precision = 1/1 = 1 

Precision = 1/2 = 0.5 

Precision = 2/3 = 0.66 

Precision = 3/4 = 0.75 

Precision = 3/5 = 0.6 

Precision = 4/6 = 0.66

AveragePrecision = (1 + 0.66 + 0.75 + 0.66) / 4 ≈ 0.77 



Traditional ML approach aftermath
• Mean Average Precision (MAP) of RankSVM ≈ 0.30

• MAP of random ranking of 100 keywords with 5 hits ≈ 0.09

• need something better 

• candidate generation is difficult, features are not meaningful 

• is it possible to skip those steps?



Deep learning approach

1 This

2 is

3 the

4 beginning

5 of

6 the

7 abstract

8 and

1 -0.2 0.9 0.6 0.2 -0.3 -0.4

2 0.3 -0.5 -0.8 0.3 0.6 0.1

3 0.7 -0.8 -0.1 0.2 -0.9 -0.6

4 0.6 -0.5 -0.8 0.3 0.6 0.4

5 -0.9 0.2 0.4 0.7 -0.3 -0.3

6 0.3 0.7 0.6 -0.5 -0.9 -0.1

7 0.2 -0.9 0.4 -0.8 -0.4 -0.5

8 -0.8 -0.4 -0.3 0.7 -0.1 0.6

NN

0.91 black hole

0.34 Einstein

0.06 leptoquark

0.21 neutrino/tau

0.01 CERN

0.29 Sigma0

0.48 p: decay

0.12 Yann-Mills

→ 
→ 
→ 
→ 
→ 
→ 
→ 
→



Word vectors
• strings for computers are meaningless tokens 

• “cat” is as similar to “dog” as it is to “skyscraper” 

• in vector space terms, words are vectors with one 1 and a lot of 0 

• it’s major problem is:



Word vectors
• we need to represent the meaning of the words 

• we want to perform arithmetics e.g. vec[“hotel”] - vec[“motel”] ≈ 0 

• we want them to be low-dimensional 

• we want them to preserve relations  
e.g. vec[“Paris”] - vec[“France”] ≈ vec[“Berlin”] - vec[“Germany”] 

• vec[“king”] - vec[“man”] + vec[“woman”] ≈ vec[“queen”]



word2vec
• proposed by Mikolov et al. in 2013 

• learn the model on a large raw (not preprocessed) text corpus  

• trains a model by predicting a target word by its neighbours 

• “Ioannis is a _____ Greek man” or “Eamonn ____ skiing” or  
“Ilias’ _____ is really nice” 

• use a context window and walk it through the whole corpus 
iteratively updating the vector representations



word2vec

• cost function: 

• where the probabilities:



word2vec



word2vec



GloVe



Demo



Classic Neural Networks
• just a directed graph with weighted edges 

• supposed to simulate our brain architecture 

• nodes are called neurons and divided into layers 

• usually at least three layers - input, hidden (one or more) and output 

• feed the input into the input layer, propagate the values along the 
edges until the output layer 



Forward propagation in NN



Backpropagation in NN



Neural Networks
• just adjust parameters to minimise the errors and conform to the 

training data 

• in theory able to approximate any function 

• take a long time to train 

• come in different variations e.g. recurrent neural networks and 
convolutional neural networks



Recurrent Neural Networks
• classic NN have no state/memory 

• RNNs try to go about this by adding 
an additional matrix in every node 

• computing the state of a neuron 
depends on the previous layer and 
on the current state (inner matrix) 

• used for learning sequences 

• come in different kinds e.g. LSTM or 
GRU

=



Convolutional Neural Networks
• inspired by convolutions in image 

and audio processing 

• you learn a set of neurons once and 
reuse them to compute values from 
the whole input data 

• similar to convolutional filters 

• very successful in image and audio 
classification



NN approach
• we tested CNN, RNN and a 

combination of both - CRNN 

• trained on half of the full corpus 

• the output layer was a vector of N 
neurons where N ∈ {1k, 2k, 5k, 10k} 
corresponding to N most popular 
keywords in the corpus 

• NNs learned to predict 0 or 1 for each 
keyword (relevant or not), however we 
used the confidence values for each 
label to produce a ranking

Results for ordering 1k labels
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Generalisation

• keyword extraction is just a special case 

• what we were actually doing was multi-label text classification i.e. 
learning to assign many arbitrary labels to text 

• the models can be used to do any text classification - the only 
requirement is a predefined vocabulary and a large training set



Predicting subject categories
• we used the same CNN model to 

assign subject categories to 
abstracts 

• 14 subject categories in total  
(more than one may be relevant) 

• a small output space makes the 
problem much easier 

• Mean Reciprocal Rank (MRR) is just 
the inversion of the rank of the first 
relevant label (1, ½, ⅓, ¼, ⅕ …)

Performance
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Feedback
• the model should be able to learn continuously on incoming data 

• learning on your own predictions only enforces the mistakes 

• there should be a possibility to provide the network more ground 
truth (human curated) answers that would improve its performance 

• workflow: model automatically suggests the keywords, cataloguer 
makes corrections and confirms, model learns on this new data 

• in that way the neural network should improve over time



Demo



But what about invenio-classifier?

• difficult to compare accuracy - one produces a ranking, the other set 
of keywords 

• data that magpie is trained on is naturally biased towards invenio-
classifier 

• best to evaluate manually



• requires training 

• better handles short text 

• doesn’t require explicit mentioning 

• understands synonyms and handles 
fuzzy matching 

• works only on top N keywords 

• improves over time

• works “out of the box” 

• needs a fairly long text 

• needs keywords to be explicitly 
mentioned in a certain form 

• works on the whole ontology 

magpie invenio-classifier



Links
https://github.com/jstypka/magpie 

http://inspire.jacenkow.com:5050/ 

http://cs224d.stanford.edu/syllabus.html 

http://bdewilde.github.io/blog/2014/09/23/intro-to-automatic-keyphrase-
extraction/ 

http://colah.github.io/ 

http://fa.bianp.net/blog/2012/learning-to-rank-with-scikit-learn-the-pairwise-
transform/

https://github.com/jstypka/magpie
http://inspire.jacenkow.com:5050/
http://cs224d.stanford.edu/syllabus.html
http://bdewilde.github.io/blog/2014/09/23/intro-to-automatic-keyphrase-extraction/
http://colah.github.io/
http://fa.bianp.net/blog/2012/learning-to-rank-with-scikit-learn-the-pairwise-transform/


Thanks!


