

Mechanical Monitoring Issues in Preparation to Next Step of W7-X Operation

V. Bykov,

A. Carls, J. Zhu, P. van Eeten, L. Wegener, H-S. Bosch and W7-X team

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

- Introduction
- Challenges of next step operation
- Filtering of new regimes
- Improvements of FE modeling and monitoring
- Agreement for next step operation
- Conclusions

Introduction: W7-X status

First helium plasma:

Dec. 10, 2015

(bean cross-section)

OP1.1

(limiter configuration plasma): Dec. 2015 – March 2016 ~ 940 discharge programs; pulse length up to 6 s; with up to 4 MJ

Prof. H-S. Bosch, Plenary talk, Thursday 08th.

Engineering: all systems are functioning properly, More than 130 coil energizing.
95% of mechanical sensors are fine,
Two "main" 2.5 T load configurations are checked (MN loads, up to 70% of maximum design values).
Many cycles with similar loadings

Next step of operation (OP1.2a):

with an inertially cooled divertor: August – December 2017 up to 80 MJ, up to 60 s pulse

Commissioning is on-going:

evacuation of cryostat and plasma vessel trim coils with full current magnet system cooldown

Introduction: The device W7-X

Introduction: Magnet system supports

- Five step analysis is required:
- 1) bolt preload and shrink fit
- 2) dead weight

Fragment of

magnet

system

Global

Model

72° ANSYS

- 3) cooldown
- 4) EM load application
- 5) EM unloading

- Multiple bolted connections with expected opening;
- •Multiple contact elements with initial gap and gradual gap closing;
- •Elements with different order of stiffness;
- •Non-linear geometry option is to be activated to get reliable results.

Significant increasing of coil currents

	/ Coil current, kA											
Coil tuno	OP1.1	/ OP 1.2a V	Planned (demanding) new 2.5T regimes during OP1.2a									
Coil type	"J regime"	"A regime"	High Iota	High	Low mirror	Inward	Low iota					
	Limiter (0)	Standard (2)	(1)	mirror (2)	(2)	shifted (3)	(4)					
Non-planar coils												
Type 1	12.8	13.5	14.9	14.5	12.6	13.1	12.2					
Type 2	12.8	13.5	14.9	14.1	13.2	13.0	12.2					
Туре 3	12.8	13.5	14.9	13.4	13.2	13.2	12.2					
Type 4	12.8	13.5	14.9	12.8	14.2	14.6	12.2					
Type 5	12.8	13.5	14.9	12.4	14.2	14.7	12.2					
Planar coils				7	-							
Туре А	0 ÷ 5	0	-10.3	0	0	4.1	9.2					
Туре В	0 ÷ 5	0	-10.3	0	0	-8.2	9.2					
Outer warm Trim coils	1.1		1.8/1.95	1.8/1.95	1.8/1.95	1.8/1.95	1.8/1.95					

Next phase operation:

25% increasing of EM forces in non-planar coils

2-3 times increasing of EM forces in planar coils

2-3 times increasing of EM forces in trim coils

And many other proposals from physicists....

OP1.2: New regimes and regime variations

WENDELSTEIN 7-X								
	coil currents	$I_{1}[kA]$	I, [kA]	$I_3[kA]$	$I_{\Delta}[kA]$	$I_{5}[kA]$	$I_{\Delta}[kA]$	$I_{R}[kA]$
J	Limiter OP1.1	12.78		12.78	12.78	12.78	4.98	4.98
В	Low iota	12.20	12.20	12.20	12.20	12.20	9.15	9.15
A	Standard case	13.47	13.47	13.47	13.47	13.47	0.00	0.00
D	Low mirror	12.63	13.17	13.17	14.24	14.24	0.00	0.00
Е	High mirror	14.51	14.10	13.43	12.76	12.36	0.00	0.00
G	Inward shift	13.07	12.94	13.21	14.57	14.71	4.09	-8.17
C	High iota	14.88	14.88	14.88	14.88	14.88	-10.26	-10.26
I	Limiter case	14.15	14.55	13.49	12.17	11.77	-3.97	7.94
Н	Outward shift	14.03	14.03	13.63	12.95	12.95	-5.67	5.67
F	Low shear	15.32	15.04	14.23	11.52	11.38	-9.76	10.16
EEM		12.3	12.3	12.3	12.3	12.3	4.8	4.8
GGP		12.3	12.3	12.3	12.3	12.3	4.8	0.0
IJM		13.0	12.8	12.4	12.0	11.8	0.0	0.0
MKM		13.2	12.7	11.9	11.1	10.6	0.0	0.0
KJN		13.0	12.7	12.2	11.7	11.4	1.1	-1.1
KKL		13.3	12.9	12.1	11.4	11.0	-1.1	1.1
KJM		12.9	12.6	14.0	11.3	11.0	0.0	0.0
KKM		13.3	12.9	10.1	11.8	11.4	0.0	0.0
ETM		13.9	14.6	13.3	14.6	14.4	-9.6	-9.6
UEM		12.6	10.8	8.8	6.8	6.4	9.5	9.5
PKM		13.3	12.7	11.5	10.4	9.8	0.0	0.0
AAM		11.8	11.4	12.7	12.9	12.8	8.8	8.8
ATM		13.6	15.5	13.5	16.0	15.9	-10.5	-10.5
-IM		12.5	13.3	13.4	14.7	15.0	0.0	0.0
-HM		12.3	13.5	13.7	15.9	16.5	0.0	0.0
TEH		14.1	9.7	9.7	9.4	5.3	3.3	13.2
EET		11.9	11.7	12.0	13.2	13.3	8.8	-2.8
EES		11.9	11.8	12.0	13.3	13.4	8.2	-3.0
EFS		12.0	11.9	12.2	13.4	13.5	7.3	-3.9
EGS		12.1	12.0	12.3	13.5	13.7	6.4	-4.9
EGS		12.3	12.1	12.4	13.7	13.8	5.6	-5.9
FHS		12.4	12.3	12.5	13.8	13.9	4.6	-7.0
QIT		12.4	12.0	11.5	10.9	10.5	6.9	-6.9
HFW		12.9	12.7	13.0	14.3	14.4	9.6	-9.6

Coil current for reference cases ($B_0 = 2.5T$), kA (Maximum structural Design Values at $B_0 = 3T$)

Many new regimes and/or coil current variations (just an example)

Filtering of proposals from physicists

To be corrected after further monitoring and FE analyses...

Fast filtering of new regimes

Results of fast acceptance with 10% -rule for neighboring coils i&j:

$$I_i^{new}$$
 within $I_i^{reference} \ ^k \mp 10\%$; I_j^{new} within $I_j^{reference} \ ^k \mp 10\%$; $(I_i - I_j)^{new}$ within $(I_i - I_i)^{reference} \ ^k \mp (10\% \ or \ 1kA)$

Short | I2-I1 I3-I2 I4-I3 I5-I4 I2-IA I3-IA I4-IB I5-IB id | regime regime regime regime regime regime regime

/ /	IJM	J	J	J	J	A	A	A	A
/	MKM	J	J	J	J	A	A	A	A
	KJN	J	J	J	J	A	A	A	A
	KKL	J	J	J	J	A	A	A	A
	KJM	J	NaN	F	J	A	A	A	A
	KKM	J	NaN	D	J	A	A	A	A \swarrow
	ETM	A	E	D	A	С	С	G	G
	UEM	NaN	I	I	J	В	NaN	NaN	NaN
	PKM	J	E	E	J	A	A	A	A
	AAM	J	NaN	J	J	В	В	I	В
	ATM	NaN	I	NaN	G	С	С	NaN	NaN
	-IM	J	J	D	D	A	A	A	D
	-HM	D	J	G	С	A	A	NaN	NaN
	TEH	NaN	J	J	NaN	J	J	NaN	NaN
	EET	J	J	D	J	В	В	NaN	NaN
	EES	J	J	D	J	В	В	NaN	NaN
	EFS	J	J	D	J	J	J	NaN	NaN
	EGS	J	J	D	J	J	J	NaN	NaN
/	EGS	J	J	D	J	J	J	NaN	NaN_
/.	FHS	J	J	D	J	J	J	G	G
	OTT I	J	J	J.	.T	J	J	G	G
′	HFW	J	J	D	A	В	В	G	G

Reference configuration (k) covering new regime with mentioned margin

"NaN" – no reference regime to cover proposed new one with 10% (& 1.0 kA for delta) margin; additional consideration is necessary.

HFW regime is checked by FE global model analysis...

OP1.1: residual stress after unloading

Check of critical generalized forces and moments against Design Values at 3T

HFW regime above 2.5T design values (coefficient 1.13), but below 3T design values

Coil group commissioning: Type 5. Monitoring.

Commissioning of non-planar coil group 5 on 19 May 2015

Overview graph from developed software MIViewer [3] for mechanical instrumentation monitoring (in MATLAB).

OP1.1: FE/measurement typical asymmetry

Fragment of measurements monitoring on 08 March 2016

OP1.1: FE/measurement cycles

Check of measurement cycle repetition and deviations from FE predictions.

Non planar coil type 2 case von-Mises equivalent stress levels, MPa. Comparison of FE prediction (GM 6.01) with measurements for cycles of Case A: <u>Reliable</u>, <u>Questionable</u>, <u>NotReliable</u>

<u> </u>										
	FE	14-	-Jul-2015		14	-Jul-201				
Name	results	09:	07-09:39		10	10:36-13:40				
KKS	pure	pure	Diff	%	pure	Diff	%	R	Q	NotR
AAB32CY001	110	120	10	9	120	10	9	Х		[.]
AAB32CY002	127	152	24	19	152	25	19	Х		
AAB39CY001	109	84	-25	-23	84	-25	-23		Х	
AAB49CY001	110	176	66	60	<i>177</i>	67	61			X
AAB12CY001	109	102	-7	-6	103	-7	-6	Х		
AAB12CY002	129	226	97	75	226	97	75			X
AAB59CY001	110	738	628	571	738.	628	571			X

Non planar coil type 2 case von-Mises equivalent stress levels, MPa.

Comparison of FE prediction (GM 6.01) with measurements for cycles of Case J: Reliable, Questionable, NotReliable

			•	•							-				_	
	FE	06-	Jul-2015		07-Se	p-2015	5	13-	-Jan-2016		10)-Mar-201	.b			
Name	results	11::	13-11:50		09:5	5-16:29)	12:	:45-18:22		12	2:10-17:4	0	Sta	itus	
KKS	pure	pure	Diff	%	pure	Diff	%	pure	Diff	%	pure	Diff	%	R	Q	NotR
AAB32CY001	98	108.	10	11	108	10.3	11	104	6	6	103	5	5	Х		
AAB32CY002	133	161	28	21	157	23.8	18	<i>153</i>	20	15	153	20	15		Х	
AAB39CY001	98	<i>75</i>	-23	-24	<i>75</i>	-22.8	-23	72	-27	-27	71	-27	-28		Х	
AAB49CY001	98	158	59	61	157	58.9	60	151	53	54	150	52	53			Χ
AAB12CY001	98	92	-6	-6	91	-7.15	-7	<i>88</i>	-10	-10	<i>86</i>	-12	-12	Х		
AAB12CY002	135	242	107	80	233	98.1	73	229	94	69	228	93	69			Χ
AAB59CY001	98	118	20	21	727	629.0	642	722	625	637	723	625	638			Χ

Detailed analysis of bolt-preload loss

Detailed analysis of bolt-preload loss

Bolt	Avg. loss over all cycles	Avg. loss over all cycles Avg. loss over last 10 cycles	
BUIL	DPL , MPa DPL ₁₀ ,MPa		_
AAD10HG611CY7	0.0019	0.0197	
AAD10HG611CY8	0.0205	-0.0058	
AAD10HG611CY9	-0.0713	-0.1097	Expected max.
AAD20HG611CY7	-0.0109	-0.1192	loss for OP1.2a
AAD20HG611CY8	-0.0312	0.0155	~ 13 Mpa
AAD20HG611CY9	-0.0455	0.0068	+
AAD30HG611CY7	0.0247	0.0321	Cooldown/
AAD30HG611CY8	-0.0085	0.0077	•
AAD30HG611CY9	-0.0208	0.0234	Warming up

Bolt	D_{ы Темп}, Мра
AAD10HG611CY7	1.66
AAD10HG611CY8	-3.65
AAD10HG611CY9	-9.97
AAD20HG611CY7	-3.89
AAD20HG611CY8	-6.04
AAD20HG611CY9	-14.19
AAD30HG611CY7	1.99
AAD30HG611CY8	-3.41
AAD30HG611CY9	-6.96

MIVeiwer monitoring improvements

Strain

To be faster and user-friendly...

- Change of strategy for storage; post-processing of raw data on request;
- Zeroing stream
 with possibility to have required offset;
- Easy review on selected sensor locations;
- Additional sensors to monitor in parallel (mainly temperature: in-vessel components, thermal insulations, etc);
- Ramping up with simultaneous monitoring and structural assessment;
- Temperature compensation with Kalman filter prediction.

Data collected during first operation phase, coefficients (a,b,c) defined for all strain gauges.

Throduction of the compensation in monitoring software is being implemented.

Model improvements part 1 [5]

Bolted lateral support element at module separation between each coil pair NPC5 / NPC5

Refined support model incorporated now in Global Model

Solder terminals

Wrong assumption

Active grid

as glued

Fragment of global model

Contact support at module interface

Model improvements part 2 (local)

Step 2: refinement of ANSYS global model at sensor locations

FE representation of bolted planar coil support B1

	Case J (2	.5T) <i>,</i> MPa	
Sensors	Original GM 6.01	Measure- ments	Refined GM 6.02
AAC52CY002	18.0	22 - 24;	20.0
AAD30HH930R	12.0	24.2	30.0
	Case A (2.5T) <i>,</i> MPa	
AAD10HH930	20.0	62.0	40.0
AAD11HH930	24.0	46.6	35.0
AAD31HH930	24.0	51.8	35.0

Post-processing improvements

Correction of inclination and extraction for mutual displacement prediction

Measuring wire defined originally

AATxxCG026 (small influence)

Mutual coil displacements, Case J (2.5T), mm

Namo	FE results		Measur	-	FE results	
Name	GM 6.01	1	2	3	4	GM 6.02
AAT10CG021	-1,67	-2,48	-1,62	-2,16	-2,64	-1,59
AAT10CG022	8,14	8,42	7,94	8,14	8,06	8,1
AAT10CG023	-1,6	-1,63	-1,76	-1,62	-1,39	-1,88
AAT10CG024	-3,41	-2,42	-2,57	-2,61	-2,52	-2,57
AAT20CG025	-10,81	-11,12	-10,33	-10,55	-10,59	-9,77
AAT10CG025r	-6	-3,96	-3,73	-3,86	-3,88	-4,04
AAT10CG026	-0,57	-1,27	-1,61	-1,24	-1,26	-0,52

> 2 mm (30%) difference

< 1.1 mm difference

Agreement for next phase operation

- Slow current ramping up to test monitoring procedure with simultaneous assessment.
- 2. Only EM regimes satisfying criteria without FE local analysis.
- 3. Temperature compensation for strain gauges is to be introduced and checked.
- 4. Level of current and number of fast discharges for test purposes are to be reduced.
- Regular assessment of the bolt preload degradation.

Conclusions

- Results of comparison between numerical modeling and mechanical instrumentation measurements show good agreement after introduced modification;
- Areas of most attention are defined;
- Temperature compensation procedure is developed and is to be tested in order to be fully functioning during most demanding operation phases;
- Approach for fast approval of an extension of physics program is developed.

Further technical challenges are ahead, BUT we are confident to face them and resolve.

References

- [1] V. Bykov et al, WENDELSTEIN 7-X MECHANICAL INSTRUMENTATION SYSTEM FOR COMMISSIONING AND OPERATION, Fusion Sci. Technol., vol. 68, no. 2, pp. 267–271, 2015.
- [2] V.Bykov et al., and "Structural Analysis at the Transition from W7-X Construction to Operation", Trans. on Plasma Science, vol. 44, no. 9, pp. 1722-1730, 2016.
- [3] A.Carls et al., "A structural integrity monitoring tool for Wendelstein 7-X," presented during SOFT 2016.
- [4] V. Bykov and e. al., "Specific Features of Wendelstein 7-X Structural Analyses," IEEE Trans. on Plasma Science, vol. 42, no. 3, pp. 690-697, 2014
- [5] V. BYKOV et al., "Engineering Challenges of W7-X: Improvement of Numerical Modelling and Mechanical Monitoring after Commissioning and First Phase of Operation," Fusion Science and Technology (to be published in 2017)

Thank you for you attention!

Q&A

Additional slides

Strategy

Prioritization, simplification [2]...

Experience gained during intensive parametric analyses of critical components... *Monitoring of mechanical instrumentation during commissioning and first operation...*

Benchmarking with mechanical instrumentation measurement results \checkmark

Reliable sensors

Areas for modeling improvements

Software tools [4] for

- easy signal monitoring
- new regime approval
- automatic reportgeneration

Identification of features to be neglected/ omitted

Fast analysis of new effects/issues

Confidence:

modeling is **mostly** reliable next more demanding step of **OP1.2** is safe

Mostly implemented...

OP1.1: residual stress after unloading

Bolted lateral support element at module separation between each coil pair NPC5 / NPC5 Few months of intensive analysis work:

EM unloading is added in standard operation FE model analysis

Residual displacements after unloading

Outwards movements of cryolegs after second unloading, m.

OP1.1: stable behavior

Bolted lateral support element at module separation between each coil pair NPC5 / NPC5

Warming up: Cryoleg sliding

Positions of cryolegs were not uniform before start of warming up. Final position is with some inclination.

Position of cryolegs after warming up

Position of cryolegs after warming up, mm.

Residual displacement of magnet system

Magnet system is back with < 0.5 mm accuracy

Position of cryolegs after warming up

Position of cryolegs after CP1.2 at the beginning of cooldown up, mm.

Sensors

908HH08044-L

ATTANKAN.

M6

Solder terminals

Active grid as glued

Sensors 2

