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Getting away from the lamp post

AdS/CFT
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DARK MATTER
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We have seen dark matter in the sky.

But not in the lab.
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D. B. Kaplan, Phys.Rev.Lett.B.68 (1992) 741-3. 

... 

D. E. Kaplan, M. A. Luty, K. M. Zurek, arXiv:0901.4117. 

Bai and Schwaller, arXiv:1306.4676. 

K. K. Boddy, et.al. arXiv:1402.362. 

For a review see K. Petraki and R. R. Volkas, Int.J.Mod.Phys.A 
28, 1330028 (2013) [arXiv:1305.4939 [hep-ph]]. 



DANIEL STOLARSKI     May 12, 2016      LLP Mini-Workshop

GENERAL PICTURE

6

GeV

TeV

asymmetry
sharing

annihilation

Xd

QCD Dark QCD

⇡ , K , . . .

p , n
decay

pd, nd, . . .

⇡d, �d, . . .

Figure 2: Graphical representation of
the dark QCD model. Baryon and
dark matter asymmetries are shared
via a mediator X

d

resulting in an
asymmetry in the stable dark baryons
p
d

, n
d

. The symmetric relic density
is annihilated e�ciently into dark pi-
ons, which eventually decay into SM
particles. The DM number density is
naturally of the same order as that of
baryons, so the correct DM relic den-
sity is obtained when the dark baryon
masses are in the 10 GeV range.

Field SU(3) ⇥ SU(2) ⇥ U(1) SU(3)
dark

Mass Spin

Q
d

(1, 1, 0) (3) m
d

O(GeV) Dirac Fermion
X

d

(3, 1, 1

3

) (3) M
X

d

O(TeV) Complex Scalar
Z
d

(1, 1, 0) (1) M
Z

d

O(TeV) Vector Boson

Table 1: Particle content relevant for phenomenology. We use the Z
d

as a toy model and leave
detailed study to future work.

model for studying dark sector properties, but we leave detailed studies of its phenomenology at

the LHC to future work. The full particle content is summarized in Tab. 1.

For the scalar mediator with the hypercharge assignment in Tab. 1, the only allowed Yukawa

type coupling is of the form [12]

L


= 
ij

Q̄
d

i

q
j

X
d

+ h.c. (2)

where q
j

are the right-handed down-type SM quarks and  is a n
f

⇥3 matrix of Yukawa couplings.

Such couplings could in general lead to large flavor violating processes, but can be brought into

agreement with experimental bounds if dark flavor originates from the same dynamics as the SM

flavor structure or certainly if flavor symmetries are imposed on the dark sector [43–45]. For

definiteness, the fundamental Lagrangian which defines the model at high scales is given by

L � Q̄
d

i

(D/ � m
d

i

)Q
d

i

+ (D
µ

X
d

)(DµX
d

)† � M2

X

d

X
d

X†
d

� 1

4
Gµ⌫

d

G
µ⌫,d

+ L


+ L
SM

, (3)

where Gµ⌫

d

is the dark gluon field strength tensor, and the covariant derivatives contain the

couplings to the gauge fields.

For the vector mediator, we assume that it couples vectorially to SM and dark quarks with

couplings g
q

and g
d

. While here we assume that Z
d

originates from a U(1) symmetry broken at

the TeV scale, it could in principle also originate from a non-abelian horizontal symmetry as in

Ref. [31], where the Sphaleron associated with this gauge interaction is used to connect the dark

matter with the baryon asymmetry.

5

DM
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Gauge hierarchy problem: 

Solved in composite Higgs (SUSY) with top-partners 
(stops) 

Do these partners need to be coloured?
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Now consider again the Z
2

symmetric top quark sector, Eq. 3. To quadratic order in h this

takes the form

i�thqAtA + �t

✓
f � 1

2f
h†h

◆
qBtB . (11)

From this Lagrangian, we can evaluate the radiative contributions to the Higgs mass pa-

rameter. The contributing diagrams are shown in Fig. 1.

qA

h

tA

h
�t �t

+
h

qB

h

tB

�tf

��t/(2f)

FIG. 1. Cancellation of quadratic divergences in the Mirror Twin Higgs model. The cancellation

holds when the top and its partner are charged under di↵erent SU(3)s.

Evaluating these diagrams we find that the quadratic divergence arising from the first

diagram is exactly canceled by that of the second. The first and second diagrams have been

colored di↵erently to emphasize that the particles running in the two loops carry di↵erent

SU(3) charges. The first loop has the SM top quarks which carry SM color. The particles

running in the second loop, however, are twin top quarks charged under twin color, not SM

color.

8

nential we obtain

H =

0

BBBBBBB@

h
ifp
h†h

sin

 p
h†h

f

!

0

f cos

 p
h†h

f

!

1

CCCCCCCA

(8)

where h = (h
1

, h
2

)T is the Higgs doublet of the SM

HA = h
ifp
h†h

sin

 p
h†h

f

!
= ih+ . . . , (9)

HB =

0

@ 0

f cos
⇣p

h†h
f

⌘

1

A =

0

@
0

f � 1

2f
h†h+ . . .

1

A . (10)

Now consider again the Z
2

symmetric top quark sector, Eq. 3. To quadratic order in h this

takes the form

i�thqAtA + �t

✓
f � 1

2f
h†h

◆
qBtB . (11)

From this Lagrangian, we can evaluate the radiative contributions to the Higgs mass pa-

rameter. The contributing diagrams are shown in Fig. 1.

qA

h

tA

h
�t �t

+
h

qB

h

tB

�tf

��t/(2f)

FIG. 1. Cancellation of quadratic divergences in the Mirror Twin Higgs model. The cancellation

holds when the top and its partner are charged under di↵erent SU(3)s.

Evaluating these diagrams we find that the quadratic divergence arising from the first

diagram is exactly canceled by that of the second. The first and second diagrams have been

colored di↵erently to emphasize that the particles running in the two loops carry di↵erent

SU(3) charges. The first loop has the SM top quarks which carry SM color. The particles

running in the second loop, however, are twin top quarks charged under twin color, not SM

color.

8

relatively light charginos and neutralinos in the superpartner spectrum. (Of course, after

EWSB, these physical states may also contain admixtures of electroweak gauginos.)

hu hut hu hu

t̃

FIG. 1. Higgs mass corrections

Next, we turn to quantum loops. We assume that q̃L, t̃R have approximately the same

mass, mt̃, for simplicity, and we also neglect the µ and A-terms. We work pre-EWSB since we

are concerned with sensitivity to parametrically higher scales. By evaluating the diagrams

in figure 1, we find that the m2
hu

parameter receives the following correction:

δm2
hu

= −
3y2t
4π2

m2
t̃ ln

(

ΛUV

mt̃

)

(5)

Naturalness therefore requires, very roughly,

mt̃ ! 400GeV. (6)

There are also electroweak gauge/gaugino/Higgsino one-loop contributions to Higgs mass-

squared. Again, working before electroweak symmetry breaking (gaugino-Higgsino mixing)

and just looking at the stronger SU(2)L coupling, the Higgs self-energy diagrams are in

figure 2.
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FIG. 2. Higgs mass correction

The Higgs mass correction is then given by

δm2
hu

=
3g2

8π2
(m2

W̃
+m2

h̃
) ln

ΛUV

mW̃

. (7)
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No! But still need factor of 3.  

Most models have twin colour which confines  
around GeV scale (or slightly higher).  

nential we obtain

H =

0

BBBBBBB@

h
ifp
h†h

sin

 p
h†h

f

!

0

f cos

 p
h†h

f

!

1

CCCCCCCA

(8)

where h = (h
1

, h
2

)T is the Higgs doublet of the SM

HA = h
ifp
h†h

sin

 p
h†h

f

!
= ih+ . . . , (9)

HB =

0

@ 0

f cos
⇣p

h†h
f

⌘

1

A =

0

@
0

f � 1

2f
h†h+ . . .

1

A . (10)

Now consider again the Z
2

symmetric top quark sector, Eq. 3. To quadratic order in h this

takes the form

i�thqAtA + �t

✓
f � 1

2f
h†h

◆
qBtB . (11)

From this Lagrangian, we can evaluate the radiative contributions to the Higgs mass pa-

rameter. The contributing diagrams are shown in Fig. 1.

qA

h

tA

h
�t �t

+
h

qB

h

tB

�tf

��t/(2f)

FIG. 1. Cancellation of quadratic divergences in the Mirror Twin Higgs model. The cancellation

holds when the top and its partner are charged under di↵erent SU(3)s.

Evaluating these diagrams we find that the quadratic divergence arising from the first

diagram is exactly canceled by that of the second. The first and second diagrams have been

colored di↵erently to emphasize that the particles running in the two loops carry di↵erent

SU(3) charges. The first loop has the SM top quarks which carry SM color. The particles

running in the second loop, however, are twin top quarks charged under twin color, not SM

color.

8

relatively light charginos and neutralinos in the superpartner spectrum. (Of course, after

EWSB, these physical states may also contain admixtures of electroweak gauginos.)

hu hut hu hu

t̃

FIG. 1. Higgs mass corrections

Next, we turn to quantum loops. We assume that q̃L, t̃R have approximately the same

mass, mt̃, for simplicity, and we also neglect the µ and A-terms. We work pre-EWSB since we

are concerned with sensitivity to parametrically higher scales. By evaluating the diagrams

in figure 1, we find that the m2
hu

parameter receives the following correction:

δm2
hu

= −
3y2t
4π2

m2
t̃ ln

(

ΛUV

mt̃

)

(5)

Naturalness therefore requires, very roughly,

mt̃ ! 400GeV. (6)

There are also electroweak gauge/gaugino/Higgsino one-loop contributions to Higgs mass-

squared. Again, working before electroweak symmetry breaking (gaugino-Higgsino mixing)

and just looking at the stronger SU(2)L coupling, the Higgs self-energy diagrams are in

figure 2.

hu hu

h̃u

W̃

W

huhu hu hu hu

W hu

huhu

FIG. 2. Higgs mass correction

The Higgs mass correction is then given by

δm2
hu

=
3g2

8π2
(m2

W̃
+m2

h̃
) ln

ΛUV

mW̃

. (7)

11

�2
t

Chacko, Goh, Harnik, hep-ph/0506256.  
Burdman, Chacko, Goh, Harnik, hep-ph/0609152. 
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pp ! QQ

Schwaller, 
DS, Weiler, 
arXiv:
1502.05409.
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pp ! QQ

Look for jets with 
no/few tracks in 
the circle.
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How does the SM talk to the hidden sector? 

Example 1:       is a scalar charged under both colour and 

dark colour.
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�

�

�

g

How does the SM talk to the hidden sector? 

Example 1:       is a scalar charged under both colour and 

dark colour.

q

q̄

QD

QD

Jet

Jet

Emerging jet

Emerging jet
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How does the SM talk to the hidden sector? 

Example 2:        is a vector that couples to quarks and 

dark quarks.

Zd

Strassler, Zurek, PLB 07. 

q

q
Zd

Qd

Qd

Emerging jet

Emerging jet
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How does the SM talk to the hidden sector? 

Example 2a: The mediator is the h(125).                                                  

q

q

Qd

Qd

Emerging jet

Emerging jet

h
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Available on the CERN CDS information server CMS PAS EXO-12-038

CMS Physics Analysis Summary

Contact: cms-pag-conveners-exotica@cern.ch 2013/07/23

Search for long-lived neutral particles decaying to dijets

The CMS Collaboration

Abstract

A search is performed for long-lived massive neutral particles decaying to quark-
antiquark pairs. The experimental signature is a distinctive topology of a pair of jets
originating at a secondary vertex. Events were collected by the CMS detector at the
LHC during pp collisions at

p
s = 8 TeV, and selected from data samples correspond-

ing to 18.6 fb�1 of integrated luminosity. No significant excess is observed above
standard model expectations and an upper limit is set with 95% confidence level on
the production cross section of a heavy scalar particle, H0, in the mass range 200 to
1000 GeV, decaying into a pair of long-lived neutral X0 particles in the mass range 50
to 350 GeV, which each decay to quark-antiquark pairs. For X0 mean proper lifetimes
of 0.1 to 200 cm the upper limits are typically 0.3�300 fb.

CMS Collaboration, Phys.Rev.D.91, 
012017 (2015) [arXiv:1411.6530].

1

Displaced Di-Jet Emerging Jet

Figure 5: Di↵erence between a displaced dijet signature from the decay of a heavy long-lived
particle and the emerging jet signature.

are required and are fitted to the same displaced vertex. This di↵ers qualitatively from the

emerging jets scenario as shown in Fig. 5, and this can be seen from the specific analysis strategy

employed in [62]. In order to reduce background from pile up, this search requires one good vertex

with at least 4 GeV invariant mass and 8 GeV p
T

. Once that vertex is constructed, it eliminates

tracks which do not pass through that vertex. Most emerging jet events will already fail the

requirement of having two displaced jets that originate from the same vertex, as illustrated in

Fig 5. Furthermore, in the emerging jet scenario with many di↵erent displaced vertices, this

algorithm will have di�culty choosing a vertex and then will throw out the majority of the

tracks, drastically reducing the signal e�ciency. While this search is di�cult to accurately recast,

it is clearly not optimal, and it is unlikely to be sensitive to the emerging jet signal.

ATLAS displaced event triggers: ATLAS has published a description of triggers [63]

that can be used for displaced events. As we will see below, triggering is not a problem for our

signal because of the energy deposited in the calorimeters. The main ATLAS trigger for objects

that decay before reaching the calorimeter requires zero tracks reconstructed using the standard

algorithm within the jet cone. It also requires a muon inside that cone with p
T

> 10 GeV, and

neither of these requirements are generic in emerging jet scenarios. There are also triggers for

long-lived particles decaying in the calorimeters or muon system, but we do not focus on that

region of parameter space here.

ATLAS long lived neutral particle search: ATLAS has also published a search of long

lived neutral particles [64] and one for lepton jets [65]. In our case, we generically have pair

production of a long lived object which then decays to two or four states, so as with the CMS

search, the models considered only has one displaced vertex for each exotic object. Both searches

require the EM fraction, the fraction of energy in the electromagnetic calorimeter relative to

the hadronic calorimeter, to be smaller than 0.1.5 This requirement is designed to select objects

decaying in the hadronic calorimeter and thus leaving very little energy in the electromagnetic

one. Because of the emerging nature of the signal considered here, there will be energy in all

segments of the calorimeter and this cut would generally cut out the majority of our signal. It

could be sensitive to regions of parameter space with longer lifetimes, but then there will be

5The lepton jet search only requires this for their hadronic category, but the categories that require muons will
also not be sensitive.
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Require di-jets all coming 
from a single displaced vertex. 

Throw away energy of tracks 
not reconstructed from vertex. 

Unlikely to be sensitive to 
emerging phenomenology.
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Figure 4: The 95% CL expected and observed upper limits.
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3 Lepton-jet models

It is important to evaluate the performance of the LJ search criteria by setting limits on
models that predict LJs in the final state. Of particular relevance are models which predict
non-SM Higgs boson decays to LJs. Indeed, the phenomenology of the Higgs boson is
extremely susceptible to new couplings, and new decay channels may thus easily exist.
Since the structure of the unknown hidden sector may greatly influence the properties of
the LJ, a simplified-model approach is highly beneficial. The two Falkowski–Ruderman–
Volansky–Zupan (FRVZ) models [6, 37], which predict non-SM Higgs boson decays to LJs
are considered. Figure 1 shows diagrams for the decay of the Higgs boson to LJs in the two
models. The Higgs boson, H, decays to pairs of hidden fermions, fd2 . In the first model
(left in figure 1) fd2 decays to a dark photon, �d, and to a lighter hidden fermion, HLSP
(Hidden Lightest Stable Particle). In the second model (right in figure 1) fd2 decays to a
HLSP and to a hidden scalar, sd1 that in turn decays to pairs of dark photons. For the �d
decays, only electron, muon and pion final states are considered. In general, radiation in
the hidden sector may occur, resulting in additional hidden photons. The number of such
radiated photons, however, varies on an event-by-event basis and depends on unknown
model-dependent parameters such as the hidden gauge coupling ↵d.2 Therefore such a
possibility is not considered here.

γd 

H 

fd 2 

fd 2 

γd 

HLSP 

HLSP 

ℓ  + 

ℓ  - 

ℓ  + 

ℓ  - 

γd 

H 

fd 2 

fd 2 

γd 
HLSP 

HLSP 

γd 

γd sd 1 

sd 1 

ℓ  + 

ℓ  - 

ℓ  + 

ℓ  - 

ℓ  + 

ℓ  - 

ℓ  + 
ℓ  - 

Figure 1. Diagrams of the two FRVZ models used as benchmarks in the analysis. `+ `� corresponds
to electron/muon/pion pair decay in the final state.

4 Lepton-jet search

There are a large number of possible LJ topologies resulting from different possible hidden
sectors. For instance, the LJ shape is controlled, in part, by the typical boost of the hidden
particles, which in turn is determined by the ratio of the decaying visible-sector particle’s

2See equation 3.1 in ref. [40]
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EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2014-209

Submitted to: JHEP

Search for long-lived neutral particles decaying into lepton jets

in proton–proton collisions at

p
s = 8 TeV with the ATLAS

detector

The ATLAS Collaboration

Abstract

Several models of physics beyond the Standard Model predict neutral particles that decay into final
states consisting of collimated jets of light leptons and hadrons (so-called "lepton jets"). These parti-
cles can also be long-lived with decay length comparable to, or even larger than, the LHC detectors’
linear dimensions. This paper presents the results of a search for lepton jets in proton–proton colli-
sions at the centre-of-mass energy of

p
s = 8 TeV in a sample of 20.3 fb�1 collected during 2012 with

the ATLAS detector at the LHC. Limits on models predicting Higgs boson decays to neutral long-lived
lepton jets are derived as a function of the particle’s proper decay length.

c� 2014 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.
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3 Lepton-jet models

It is important to evaluate the performance of the LJ search criteria by setting limits on
models that predict LJs in the final state. Of particular relevance are models which predict
non-SM Higgs boson decays to LJs. Indeed, the phenomenology of the Higgs boson is
extremely susceptible to new couplings, and new decay channels may thus easily exist.
Since the structure of the unknown hidden sector may greatly influence the properties of
the LJ, a simplified-model approach is highly beneficial. The two Falkowski–Ruderman–
Volansky–Zupan (FRVZ) models [6, 37], which predict non-SM Higgs boson decays to LJs
are considered. Figure 1 shows diagrams for the decay of the Higgs boson to LJs in the two
models. The Higgs boson, H, decays to pairs of hidden fermions, fd2 . In the first model
(left in figure 1) fd2 decays to a dark photon, �d, and to a lighter hidden fermion, HLSP
(Hidden Lightest Stable Particle). In the second model (right in figure 1) fd2 decays to a
HLSP and to a hidden scalar, sd1 that in turn decays to pairs of dark photons. For the �d
decays, only electron, muon and pion final states are considered. In general, radiation in
the hidden sector may occur, resulting in additional hidden photons. The number of such
radiated photons, however, varies on an event-by-event basis and depends on unknown
model-dependent parameters such as the hidden gauge coupling ↵d.2 Therefore such a
possibility is not considered here.
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Figure 1. Diagrams of the two FRVZ models used as benchmarks in the analysis. `+ `� corresponds
to electron/muon/pion pair decay in the final state.

4 Lepton-jet search

There are a large number of possible LJ topologies resulting from different possible hidden
sectors. For instance, the LJ shape is controlled, in part, by the typical boost of the hidden
particles, which in turn is determined by the ratio of the decaying visible-sector particle’s

2See equation 3.1 in ref. [40]
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ATLAS Collaboration, JHEP.1411,88 
(2014) [arXiv:1409.0746].  
ATLAS Collaboration, [arXiv:1501.04020].
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Requires ECAL/HCAL < 0.1. 

Optimized for decays within 
HCAL, extremely low efficiency 
except possibly for long 
lifetimes.

 [mm]τDark photon c
1 10 210 310

) [
pb

]
X+ dγ

 2
→

H
BR

(
×
σ

95
%

 C
L 

Li
m

it 
on

 

1

10

210
ATLAS

 = 8 TeVs -120.3 fb

 model
d
γFRVZ 2

σ 2±expected 
σ 1±expected 

observed limit
expected limit

) = 100%X+
d
γ 2→HBR(

) = 10%X+
d
γ 2→HBR(

= 400 MeV
d
γm

 [mm]τDark photon c
1 10 210 310

) [
pb

]
X+ dγ

 4
→

H
BR

(
×
σ

95
%

 C
L 

Li
m

it 
on

 

1

10

210
ATLAS

 = 8 TeVs -120.3 fb

 model
d
γFRVZ 4

σ 2±expected 

σ 1±expected 
observed limit

expected limit

) = 100%X+
d
γ 4→HBR(

) = 10%X+
d
γ 4→HBR(

= 400 MeV
d
γm

Figure 15. The 95% upper limits on the �⇥BR for the processes H ! 2�d + X (left) and
H ! 4�d +X (right), as a function of the �d lifetime (c⌧) for the FRVZ benchmark samples. The
expected limit is shown as the dashed curve and the almost identical solid curve shows the observed
limit. The horizontal lines correspond to �⇥BR for two values of the BR of the Higgs boson decay
to dark photons.

from the simultaneous CLs ABCD method, can be compared with the expected background
from the ABCD method assuming no signal (see section 5.3). For the two-�d model the
estimated background is 13 ± 8 events and for the four-�d model it is 13 ± 7 events, to be
compared with 12 ± 9 events obtained by ABCD method assuming no signal (section 5.3).
The resulting exclusion limits on the �⇥BR, assuming the Higgs boson SM gluon fusion
production cross section �SM = 19.2 pb, are shown in figure 15 as a function of the �d mean
lifetime (expressed as c⌧) for the two models. The exclusion plots with the TYPE2-TYPE2
category of events removed are shown in figure 16. In figure 15 and figure 16 the observed
limit is slightly better than the expected one, because the number of events in the signal
region is slightly smaller than the expected background from cosmic rays and multi-jets. It
is seen that for these two models the search is more sensitive when excluding the TYPE2-
TYPE2 events. Table 10 shows the ranges in which the �d lifetime (c⌧) is excluded at the
95% CL for H ! 2�d +X and H ! 4�d +X assuming a BR of 10%. The corresponding
limits with TYPE2-TYPE2 events excluded are shown in table 11.
For the case of a hidden photon which kinetically mixes with the SM photon, these limits
can be converted into exclusion limits on the kinetic mixing parameter ✏ using the eqs. (4)
and (5) of ref. [9]. For more details see also refs. [2, 6]. For H ! 2�d +X with a �d mass
= 0.4 GeV excluding TYPE2-TYPE2 events, the interval that is excluded at 95% CL is
7.7⇥10�7  ✏  2.7⇥10�6.
These results are also interpreted in the context of the Vector portal model as exclusion
contours in the kinetic mixing parameter ✏ vs �d mass plane [26, 57] as shown in figure 17.
Assuming Higgs decay branching fractions into �d of 5/10/20/40% and the NNLO gluon
fusion Higgs production cross section, the lifetime limits can be converted into kinetic mixing
parameter ✏ limits. The resulting 90% CL exclusion regions for H ! 2�d + X are shown

– 24 –

See also ATLAS trigger paper: arXiv:1305.2204 [hep-ex].
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ATLAS Collaboration, Phys.Rev.D.92 
(2015) [arXiv:1504.03634].  
See also ATLAS [arXiv:1501.04020].

Similar isolation 
requirements as CMS 
search. 
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FIG. 10. (a) Observed 95% CL limits on � ⇥ BR/�SM for the scalar boson samples with mH = 125 GeV. Three horizontal
lines mark branching fractions for the Higgs boson decaying to ⇡

v

pairs at 15%, 5%, and 1%. Observed 95% CL limits on
� ⇥ BR for the scalar boson samples with (b) m� = 100 GeV, (c) m� = 140 GeV, and (d) m� = 300 GeV, 600 GeV, and
900 GeV. Observed 95% CL limits on � ⇥ BR for the (e) Z0samples and (f) Stealth SUSY samples.

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Phys. Rev. D CERN-PH-EP-2015-071
April 17, 2015

Search for long-lived, weakly interacting particles that

decay to displaced hadronic jets in proton–proton collisions

at

p
s = 8 TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

A search for the decay of neutral, weakly interacting, long-lived particles using data collected
by the ATLAS detector at the LHC is presented. This analysis uses the full dataset recorded in
2012: 20.3 fb�1 of proton–proton collision data at

p
s = 8 TeV. The search employs techniques for

reconstructing decay vertices of long-lived particles decaying to jets in the inner tracking detector
and muon spectrometer. Signal events require at least two reconstructed vertices. No significant
excess of events over the expected background is found, and limits as a function of proper lifetime
are reported for the decay of the Higgs boson and other scalar bosons to long-lived particles and
for Hidden Valley Z 0and Stealth SUSY benchmark models. The first search results for displaced
decays in Z 0and Stealth SUSY models are presented. The upper bounds of the excluded proper
lifetimes are the most stringent to date.

c� 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.
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Search for long-lived particles
decaying to jet pairs

The LHCb collaboration†

Abstract

A search is presented for long-lived particles with a mass between 25 and 50GeV/c2

and a lifetime between 1 and 200 ps in a sample of proton-proton collisions at a
centre-of-mass energy of

p
s = 7TeV, corresponding to an integrated luminosity

of 0.62 fb�1, collected by the LHCb detector. The particles are assumed to be
pair-produced by the decay of a Standard Model-like Higgs boson. The experimental
signature of the long-lived particle is a displaced vertex with two associated jets.
No excess above the background is observed and limits are set on the production
cross-section as a function of the long-lived particle mass and lifetime.

arXiv:1412.3021v1  [hep-ex]  9 Dec 2014

Similar model to 
CMS search.
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Emerging jet search would be 

sensitive to other long-lived 

scenarios 

• Lepton jets 

• RPV neutralinos decay to jets 

• …

3 Lepton-jet models

It is important to evaluate the performance of the LJ search criteria by setting limits on
models that predict LJs in the final state. Of particular relevance are models which predict
non-SM Higgs boson decays to LJs. Indeed, the phenomenology of the Higgs boson is
extremely susceptible to new couplings, and new decay channels may thus easily exist.
Since the structure of the unknown hidden sector may greatly influence the properties of
the LJ, a simplified-model approach is highly beneficial. The two Falkowski–Ruderman–
Volansky–Zupan (FRVZ) models [6, 37], which predict non-SM Higgs boson decays to LJs
are considered. Figure 1 shows diagrams for the decay of the Higgs boson to LJs in the two
models. The Higgs boson, H, decays to pairs of hidden fermions, fd2 . In the first model
(left in figure 1) fd2 decays to a dark photon, �d, and to a lighter hidden fermion, HLSP
(Hidden Lightest Stable Particle). In the second model (right in figure 1) fd2 decays to a
HLSP and to a hidden scalar, sd1 that in turn decays to pairs of dark photons. For the �d
decays, only electron, muon and pion final states are considered. In general, radiation in
the hidden sector may occur, resulting in additional hidden photons. The number of such
radiated photons, however, varies on an event-by-event basis and depends on unknown
model-dependent parameters such as the hidden gauge coupling ↵d.2 Therefore such a
possibility is not considered here.

γd 

H 

fd 2 

fd 2 

γd 

HLSP 

HLSP 

ℓ  + 

ℓ  - 

ℓ  + 

ℓ  - 

γd 

H 

fd 2 

fd 2 

γd 
HLSP 

HLSP 

γd 

γd sd 1 

sd 1 

ℓ  + 

ℓ  - 

ℓ  + 

ℓ  - 

ℓ  + 

ℓ  - 

ℓ  + 
ℓ  - 

Figure 1. Diagrams of the two FRVZ models used as benchmarks in the analysis. `+ `� corresponds
to electron/muon/pion pair decay in the final state.

4 Lepton-jet search

There are a large number of possible LJ topologies resulting from different possible hidden
sectors. For instance, the LJ shape is controlled, in part, by the typical boost of the hidden
particles, which in turn is determined by the ratio of the decaying visible-sector particle’s

2See equation 3.1 in ref. [40]
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• More searches for distinct collider objects. 

• Searches for objects with many displaced vertices. 

• More general use of triggers, including  
multi-jet and VBF. 

• Keep searches as model-independent as possible. 


