Long-lived Particles in SUSY(-like) Models

Jared A. Evans

jaredaevans@gmail.com

Department of Physics
University of Illinois, Urbana-Champaign

Where do they come from?

What is a SUSY-like LLPs?

- Typically heavy particles (above LEP)
- Usually pair-produced
- No strong couplings
- ► Approximate symmetry (**Z**₂) decouples production and decay

Where do they come from?

What is a SUSY-like LLPs?

- Typically heavy particles (above LEP)
- Usually pair-produced
- No strong couplings
- ▶ Approximate symmetry (Z₂) decouples production and decay

LLP signature can be...

Direct: Observe the object itself ($c\tau \gtrsim 10$ cm) Examples: disappearing tracks, HSCPs, R-hadrons

Indirect: Observe the decay products ($c\tau \lesssim$ 10 m)

Examples: displaced dijets, displaced photons, displaced X(s)

Candidate Particles

1) The NLSP in gauge mediated SUSY breaking (GMSB)

Particles couple to gravitino via higher-dimension operators sensitive to SUSY breaking scale $\mathcal{O}\sim F^{-1}\tilde{X}_{\alpha}\gamma^{\mu}\gamma^{\nu}\partial_{\nu}X\partial_{\mu}\tilde{G}_{\alpha}$

$$c au\left(ilde{X} o X ilde{G}
ight)pprox 100\,\mu ext{m}\left(rac{100 ext{ GeV}}{m_{ ilde{X}}}
ight)^5\left(rac{\sqrt{F}}{100 ext{ TeV}}
ight)^4$$

Candidate Particles

1) The NLSP in gauge mediated SUSY breaking (GMSB)

Particles couple to gravitino via higher-dimension operators sensitive to SUSY breaking scale $\mathcal{O}\sim F^{-1}\tilde{X}_{\alpha}\gamma^{\mu}\gamma^{\nu}\partial_{\nu}X\partial_{\mu}\tilde{G}_{\alpha}$

$$c au\left(ilde{X} o X ilde{G}
ight)pprox 100\,\mu\mathrm{m}\left(rac{100~\mathrm{GeV}}{m_{ ilde{X}}}
ight)^5\left(rac{\sqrt{F}}{100~\mathrm{TeV}}
ight)^4$$

2) The gauginos of mini-split SUSY

Mini-split: scalars heavy, gauginos light ⇒ unification, but tuned Integrating out heavy scalars gives higher-dimension operators

$$\mathcal{O} \sim rac{c}{m_{ ilde{q}}^2} ilde{g} ilde{\chi} ar{q} q \qquad c au \left(ilde{g}
ightarrow ilde{\chi} jj
ight) pprox 100 \, \mu ext{m} \left(rac{m_{ ilde{q}}}{ ext{PeV}}
ight)^4 \left(rac{ ext{TeV}}{m_{ ilde{g}}}
ight)^5$$

Candidate Particles

3) The LSP in R-parity violating (RPV) models

$$W = \frac{1}{2}\lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2}\lambda''_{ijk} U_i^c D_j^c D_k^c$$

RPV could introduce very small couplings

$$c au\left(ilde{X} o \mathit{SM}_1\mathit{SM}_2
ight)pprox 1\ \mathsf{cm}\left(rac{10^{-7}}{\lambda}
ight)^2\left(rac{100\ \mathsf{GeV}}{m_{ ilde{\chi}}}
ight)$$

Candidate Particles

3) The LSP in R-parity violating (RPV) models

$$W = \frac{1}{2}\lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2}\lambda''_{ijk} U_i^c D_j^c D_k^c$$

 \tilde{x} \lesssim SM

RPV could introduce very small couplings

$$c au\left(ilde{X} o \mathit{SM}_1\mathit{SM}_2
ight)pprox 1\ \mathsf{cm}\left(rac{10^{-7}}{\lambda}
ight)^2\left(rac{100\ \mathsf{GeV}}{m_{ ilde{X}}}
ight)$$

4) Charginos in anomaly mediated SUSY breaking (AMSB)

LSP Wino can have $\Delta m \sim m_{{ ilde \chi}^+} - m_{{ ilde \chi}^0} \sim \mathcal{O}\left(m_\pi
ight)$

Suppressed phase-space leads to long lifetimes

Just EW 1-loop splitting can give the disappearing track signature

Long-lived / Displaced in SUSY

Many displaced decays are well-covered: Most RPV

Liu, Tweedie - 2015

Csaki, Kuflik, Lombardo, Slone, Volansky – 2015 Zwane – 2015

Long-lived / Displaced in SUSY

Many displaced decays are well-covered: Most GMSB

Liu. Tweedie - 2015

Long-lived / Displaced in SUSY

Many displaced decays are well-covered: Mini-Split

Liu, Tweedie - 2015 Coverage exceeds prompt signatures!

Searches

0201	j	b	γ	e	μ $ au$	₽ _T
$oldsymbol{j}$ $oldsymbol{b}$ γ $oldsymbol{e}$ μ $ au$	X X X X	X X X	X X X	X X	X	
	Sea	rch		arXiv	Symbol	Comments

- ► Focused on pair produced, heavy decays inside the detector
- Only a selection of searches used, but fairly representative
- Cavalier about lifetime ranges and triggers; ignoring tops
- ▶ **Bold** is where searches are really optimized

Searches

Search arXiv Symbol Comments

CMS Displaced Dijets 1411.6530 jj

Searches

0201	j	b	γ	e	μ	au	₽т
j	jj/dv	jj/dv	jj/dv	jj/ dv	jj/ dv	jj/dv	jj/ dv
b	X	jj/dv	jj/dv	jj/ dv	jj/ dv	jj/dv	jj/ dv
γ	X	Χ					
ė	X	X	Χ	dv	dv	dv	
μ	X	X	Χ	Χ	dv	dv	
$\dot{ au}$	X	X	Χ	Χ	X	dv	

Search	arXiv	Symbol	Comments
CMS Displaced Dijets	1411.6530	jj	
ATLAS Displaced Vertex	1504.05162	dv	$m_X > 10 \text{ GeV}$

Searches

0201	j	b	γ	e	μ	au	Ęτ
j	jj/dv	jj/dv	jj/dv	jj/ dv	jj/ dv	jj/dv	jj/ dv
b	X	jj/dv	jj/dv	jj/ dv	jj/ dv	jj/dv	jj/ dv
γ	X	X					
ė	X	Χ	Χ	dv/II	dv	dv/II	
μ	X	Χ	Χ	Χ	dv/II	dv/ll	
au	Χ	X	Χ	Χ	X	dv/II	

Search	arXiv	Symbol	Comments
CMS Displaced Dijets	1411.6530	jj	
ATLAS Displaced Vertex	1504.05162	dv	$m_X > 10 \text{ GeV}$
CMS Displaced Dilepton	1411.6977	Ш	$m_X > 15 \text{ GeV}$

Searches

0201	j	b	γ	e	μ	au	Ęτ
j	jj/dv	jj/dv	jj/dv/dA	jj/ dv	jj/ dv	jj/dv	jj/ dv
b	X	jj/dv	jj/dv/dA	jj/ dv	jj/ dv	jj/dv	jj/ dv
γ	X	Χ	dA	dA	dA	dA	dA
ė	X	X	Χ	dv/II	dv	dv/II	
μ	X	X	Χ	X	dv/II	dv/ll	
au	Χ	X	Χ	Χ	X	dv/ll	

Search	arXiv	Symbol	Comments
CMS Displaced Dijets	1411.6530	jj	
ATLAS Displaced Vertex	1504.05162	dv	$m_X > 10 \text{ GeV}$
CMS Displaced Dilepton	1411.6977	II	$m_X > 15 \text{ GeV}$
ATLAS Delayed Photon	1409.5542	dA	$m_X \gtrsim 100~{ m GeV}$

Searches

0201	j	b	γ	e	μ	au	Ęτ
j	jj/dv	jj/dv	jj/dv/dA	jj/ dv	jj/ dv	jj/dv/em	jj/ dv
b	X	jj/dv	jj/dv/dA	jj/ dv	jj/ dv	jj/dv/em	jj/ dv
γ	X	Χ	dA	dA	dA	dA/em	dA
e	X	Χ	X	dv/II	dv	dv/II	
μ	X	X	X	X	dv/II	dv/II	
au	X	X	Χ	X	X	dv/ll/em	em

Search	arXiv	Symbol	Comments
CMS Displaced Dijets	1411.6530	jj	
ATLAS Displaced Vertex	1504.05162	dv	$m_X > 10 \text{ GeV}$
CMS Displaced Dilepton	1411.6977	II	$m_X > 15 \text{ GeV}$
ATLAS Delayed Photon	1409.5542	dA	$m_X \gtrsim$ 100 GeV
CMS Displaced $e\mu$	1409.4789	em	Best at LFU

Searches

0201	j	b	γ	e	μ	au	Ęτ
j	jj/dv	jj/dv	jj/dv/dA	jj/ dv	jj/ dv	jj/dv/em	jj/ dv
b	X	jj/dv	jj/dv/dA	jj/ dv	jj/ dv	jj/dv/em	jj/ dv
γ	X	Χ	dA	dA	dA	dA/em	dA
ė	X	X	X	dv/II	dv	dv/II	
μ	X	X	Χ	X	dv/II	dv/II	()
au	X	X	Χ	X	X	dv/ll/em	em

Search	arXiv	Symbol	Comments
CMS Displaced Dijets	1411.6530	jj	
ATLAS Displaced Vertex	1504.05162	dv	$m_X > 10 \text{ GeV}$
CMS Displaced Dilepton	1411.6977	II	$m_{X} > 15 { m GeV}$
ATLAS Delayed Photon	1409.5542	dA	$m_X \gtrsim 100~{ m GeV}$
CMS Displaced $e\mu$	1409.4789	em	Best at LFU

Models

0201	j	b	γ	е	μ	au	<i>Ę</i> ⊤
$egin{array}{c} oldsymbol{J} oldsymbol{b} \ \gamma \ oldsymbol{e} \ \mu \ au \end{array}$	X X X X	X X X	X X X	X	X		
	Models		Symbo	<u> </u>			

Models

0201	j	b	γ	e	μ	au	Ęτ
j	M						M
b	X	M					M
γ	X	X					
ė	X	X	X				
μ	X	Χ	Χ	Χ			
au	X	Χ	Χ	X	Χ		
	Madala		Cumbo	ı			

Models Symbol
Mini-Split M

Models

0201	j	b	γ	e	μ	au	Ęτ
j	MG						MG
b	X	MG					MG
γ	X	X					G
e	X	X	X	G			G
μ	Χ	X	X	X	G		G
au	X	X	X	X	Χ	G	G

Models	Symbol
Mini-Split	M
GMSB	G

Models

0201	j	b	γ	e	μ	au	Ęτ
j	MGR	R		R	R	R	MGR
b	X	MGR		R	R	R	MGR
γ	Χ	X					G
ė	Χ	X	Χ	GR	R	R	GR
μ	Χ	X	Χ	X	GR	R	GR
au	X	X	Χ	Χ	X	GR	GR

Models	Symbol
Mini-Split	M
GMSB	G
RPV/dRPV	R

0201	j	b	γ	e	μ	au	Ęτ
j	MGRS	R		R	R	R	MGR
b	Χ	MGRS		R	R	R	MGR
γ	Χ	X	S				G
ė	Χ	X	Χ	GR	R	R	GR
μ	Χ	X	Χ	X	GR	R	GR
au	X	Χ	Χ	X	Χ	GR	GR

Models	Symbol
Mini-Split	M
GMSB	G
RPV/dRPV	R
Stealth	S

0201	j	b	γ	e	μ	au	Ęτ
j	MGRS	R		R	R	R	MGR
b	Χ	MGRSH		R	R	R	MGR
γ	Χ	X	S				G
ė	Χ	X	Χ	GR	R	R	GR
μ	Χ	X	X	X	GRH	R	GR
au	Χ	X	Χ	X	Χ	GRH	GR

Models	Symbol
Mini-Split	M
GMSB	G
RPV/dRPV	R
Stealth	S
Higgs Mixed	Н

0201	j	b	γ	e	μ	au	Ęτ
j	$MGRS\gamma$	R		R	R	R	MGR
b	X	$MGRSH\gamma$		R	R	R	MGR
γ	Χ	X	S				G
ė	Χ	X	X	$GR\gamma$	R	R	GR
μ	Χ	X	X	X	$GRH\gamma$	R	GR
au	Χ	Χ	Χ	Χ	Χ	$GRH\gamma$	G R

Models	Symbol
Mini-Split	M
GMSB	G
RPV/dRPV	R
Stealth	S
Higgs Mixed	Н
Dark Photon	γ

Models

0201	j	b	γ	e	μ	au	Ęτ
j	$MGRS\gamma$	R		R	R	R	MGRD
b	Χ	$MGRSH\gamma$		R	R	R	MGRD
γ	Χ	X	S				G
ė	Χ	X	X	$GR\gamma$	R	R	GRD
μ	Χ	X	X	X	$GRH\gamma$	R	GRD
au	Χ	Χ	X	X	X	$GRH\gamma$	GRD

Models	Symbol
Mini-Split	M
GMSB	G
RPV/dRPV	R
Stealth	S
Higgs Mixed	Н
Dark Photon	γ
MD Freezein Dark Matter	D

Evans (UIUC)

Models

0201	j	b	γ	e	μ	au	Ęτ
j	$MGRS\gamma$	R		R	R	R	MGRD
b	Χ	$MGRSH\gamma$		R	R	R	MGRD
γ	Χ	X	S				G
ė	Χ	X	X	$GR\gamma$	R	R	GRD
μ	Χ	X	X	X	$GRH\gamma$	R	GRD
au	X	X	X	Χ	Χ	$GRH\gamma$	GRD

Models	Symbol	
Mini-Split	М	_
GMSB	G	
RPV/dRPV	R	Well-motivated Theoretically
Stealth	S	•
Higgs Mixed	Н	Weak Coverage Experimentally
Dark Photon	γ	
MD Freezein Dark Matter	D	

Evans (UIUC)

LLPs in SUSY

May 12, 2016

Displaced Leptons in Prompt Searches

Prompt lepton-based searches:

- Quality criteria drop displaced electrons
- Displaced muons veto events (cosmics)
- ▶ Vetoes range from 50 μ m−1 mm

Prompt jets+ \not E_T searches:

- Veto events with leptons
- Definition not always transparent

Displaced Leptons in Prompt Searches

Prompt lepton-based searches:

- Quality criteria drop displaced electrons
- Displaced muons veto events (cosmics)
- ▶ Vetoes range from 50 μ m−1 mm

Prompt jets+ \not E_T searches:

- Veto events with leptons
- Definition not always transparent

Very dangerous region!

$$pp \to \tilde{\ell}^+ \tilde{\ell}^- + X \to \{ \text{displaced muons} \} + X$$
 lives in a prompt search blind spot!

Displaced electrons and taus ⇒ reduced efficiency

Recast Limits on $\tilde{\tau}_R$ (JAE, Shelton – 2016)

Displaced leptons constrained by:

- ▶ Heavy stable charged particle searches (HSCP) CMS recast
- Disappearing tracks (DT) at ATLAS and CMS best limit shown
- ► CMS displaced e^{\pm} and μ^{\mp} search $(e\mu)$ constrain $\tilde{\tau}$ s only

Recast Limits on $\tilde{\tau}_R$ (JAE, Shelton – 2016)

Displaced leptons constrained by:

- ► Heavy stable charged particle searches (HSCP) CMS recast
- Disappearing tracks (DT) at ATLAS and CMS best limit shown
- ▶ CMS displaced e^{\pm} and μ^{\mp} search $(e\mu)$ constrain $\tilde{\tau}$ s only

Recast Limits on $\tilde{\tau}_R$ (JAE, Shelton – 2016)

Displaced leptons constrained by:

- ► Heavy stable charged particle searches (HSCP) CMS recast
- ▶ Disappearing tracks (DT) at ATLAS and CMS best limit shown
- ► CMS displaced e^{\pm} and μ^{\mp} search $(e\mu)$ constrain $\tilde{\tau}$ s only

But... $\tilde{\tau}_{R}$ is not expected in isolation

Near degenerate slepton limits

$$m_{ ilde{ heta}_R} = m_{ ilde{ au}_R} = m_{ ilde{ au}_R} + 10 \; {\sf GeV}$$
 $ilde{\ell}_R
ightarrow ilde{ au}_R + \{{\sf soft}\}$

Recast Limits on $\tilde{\tau}_R$ (JAE, Shelton – 2016)

Displaced leptons constrained by:

- ► Heavy stable charged particle searches (HSCP) CMS recast
- Disappearing tracks (DT) at ATLAS and CMS best limit shown
- ▶ CMS displaced e^{\pm} and μ^{\mp} search $(e\mu)$ constrain $\tilde{\tau}$ s only

But... $\tilde{\tau}_B$ is not expected in isolation

Higgsino production limits

Recast Limits on $\tilde{\tau}_R$ (JAE, Shelton – 2016)

Displaced leptons constrained by:

- ► Heavy stable charged particle searches (HSCP) CMS recast
- Disappearing tracks (DT) at ATLAS and CMS best limit shown
- ► CMS displaced e^{\pm} and μ^{\mp} search $(e\mu)$ constrain $\tilde{\tau}$ s only

But... $\tilde{\tau}_B$ is not expected in isolation

Stop production limits

$$m_{\tilde{H}}=m_{\tilde{t}}-50~{\rm GeV}$$

$$ilde{t}
ightarrow b ilde{\mathcal{H}}^+
ightarrow b
u ilde{ au}_{\mathcal{B}}^+$$

Recast Limits on $\tilde{\tau}_R$ (JAE, Shelton – 2016)

Displaced leptons constrained by:

- ► Heavy stable charged particle searches (HSCP) CMS recast
- Disappearing tracks (DT) at ATLAS and CMS best limit shown
- ► CMS displaced e^{\pm} and μ^{\mp} search $(e\mu)$ constrain $\tilde{\tau}$ s only

Lots of ways to improve region $c\tau \lesssim 5$ cm!

- ► Add SFℓ bins
- Add τ_h bins
- ▶ Lowered p_T thresholds
- ightharpoonup Extend $d_0 > 2$ cm

- ▶ Add SSℓ bins (CR contamination)
- ► Allow extra \(\ell \)s
- ▶ Relax isolation in high d_0 bins
- ▶ Add high $p_{T,\ell}$ bins

Hypothetical 13 TeV Same-Flavor Displaced Lepton Search (JAE, Shelton – 2016)

NLSP \tilde{e} or $\tilde{\mu}$ are unconstrained!!!

Hypothetical 13 TeV Same-Flavor Displaced Lepton Search (JAE, Shelton – 2016)

NLSP \tilde{e} or $\tilde{\mu}$ are unconstrained!!!

Displaced $\tilde{\tau} \to \tau + \not\!\!\!E_T$ more common

$$\tilde{\ell} \rightarrow e + \not\!\!E_T \& \tilde{\ell} \rightarrow \mu + \not\!\!E_T$$
 can arise:

- ▶ Extended GMSB $\tilde{\ell}_R$ NLSP
- ► LLE RPV $\tilde{\tau}_L^+ \rightarrow \mu^+ \nu_\ell$
- Lepton Flavored Dark Matter

Hypothetical 13 TeV Same-Flavor Displaced Lepton Search (JAE, Shelton – 2016)

NLSP \tilde{e} or $\tilde{\mu}$ are unconstrained!!!

Displaced $\tilde{\tau} \to \tau + \not\!\!\!\!/ \tau$ more common

 $\tilde{\ell} \rightarrow e + \not\!\!\!E_T \& \tilde{\ell} \rightarrow \mu + \not\!\!\!E_T$ can arise:

- ▶ Extended GMSB $\tilde{\ell}_R$ NLSP
- ► LLE RPV $\tilde{\tau}_L^+ \rightarrow \mu^+ \nu_\ell$
- Lepton Flavored Dark Matter

 $\overline{450}$ Simple estimate at 13 TeV (20 fb⁻¹)

Known unknowns...

What more is wanted from theory?

Known unknowns...

What more is wanted from theory?

What is the status of displaced photons without ∉_T?
Is there a gap at ATLAS? Does CMS fill it?

Known unknowns...

What more is wanted from theory?

What is the status of displaced photons without ∉_T?
Is there a gap at ATLAS? Does CMS fill it?

Quirks

What regions of parameter space $(m_Q \text{ vs } \Lambda_{IC})$ are constrained?

What new search strategies could fill the gaps?

Known unknowns...

What more is wanted from theory?

- What is the status of displaced photons without ∉_T?
 Is there a gap at ATLAS? Does CMS fill it?
- Quirks

What regions of parameter space (m_Q vs Λ_{IC}) are constrained? What new search strategies could fill the gaps?

Hidden valleys (high mass and Higgs portal)
What classes of models are constrained by existing searches?
Can model-specific details be distilled to a simplified framework?

Minimal set of searches to cover all observable possibilities?

Known unknowns...

Known unknowns...

- Displaced same-flavor leptons
- Displaced taus
- ATLAS & LHCb displaced leptons
- Kinked tracks (modification to DT)

Known unknowns...

- Displaced same-flavor leptons
- Displaced taus
- ATLAS & LHCb displaced leptons
- Kinked tracks (modification to DT)
- Non-isolated leptons Brust, Maksimovic, Sady, Saraswat, Walters, Xin 1410.0362
- Photon jets Toro, Yavin 1202.6377

Known unknowns...

What more is wanted from **experiment**?

- Displaced same-flavor leptons
- Displaced taus
- ATLAS & LHCb displaced leptons
- Kinked tracks (modification to DT)
- ► Non-isolated leptons Brust, Maksimovic, Sady, Saraswat, Walters, Xin 1410.0362
- Photon jets Toro, Yavin 1202.6377
- ► Emerging jets Schwaller, Stolarski, Weiler 1502.05409
- Quirks (straight tracks & anomalous bending) Kang, Luty 0805.4642

Known unknowns...

- Displaced same-flavor leptons
- Displaced taus
- ATLAS & LHCb displaced leptons
- Kinked tracks (modification to DT)
- ► Non-isolated leptons Brust, Maksimovic, Sady, Saraswat, Walters, Xin 1410.0362
- Photon jets Toro, Yavin 1202.6377
- ► Emerging jets Schwaller, Stolarski, Weiler 1502.05409
- Quirks (straight tracks & anomalous bending) Kang, Luty 0805.4642
- ► Unknown unknowns {insert your paper here}