

Searches for additional Higgs bosons

Meng Xiao (Johns Hopkins University) on behalf of the CMS and ATLAS collaborations

The Fifth Annual Conference on Large Hadron Collider Physics Shanghai, May 15th, 2017

Introduction

There is a H (125), all the measured properties consistent with the SM. Why bother?

Short answer: the SM is not perfect

A lot of BSM models, some come with the solution by extending the Higgs sector

- Additional singlet \Rightarrow one more Higgs boson
- Additional doublets \Rightarrow 5 Higgs bosons (h, H, A, H^{\pm}): 2HDM
- Additional singlet+doublet \Rightarrow 7 Higgs bosons (h_{1,2,3}, a_{1,2}, H[±]): NMSSM
- Additional triplets ...

Run2 Higgs searches so far

Luminosity used in each analysis (fb⁻¹)

		CMS	ATLAS
	bbWW	36.9	
	bbtt	36.9	
X→ hh	bbyy	2.7	3.2
	bbbb	2.3	13.3
	γγWW		13.3
	llqq	12.9	13.3
X→ ZZ	1111	12.9	13.3
	llvv	2.3	13.3
	lvlv	2.3	13.2
X→ WW	lvqq	12.9	13.2
	qqqq	36.9	15.5
X→ Zγ	llγ	12.9	13.3
	qqy	12.9	3.2
Х→ үү		12.9	15.4

X: general resonances including H

	> 30 fb ⁻¹	fb ⁻¹ 13-15 fb ⁻¹		2-3 fb ⁻¹
			CMS	ATLAS
H/A-	→тт		12.9	13.3
H→b	b		2.69	
	יד	v	12.9	14.7
H±	ti	o		14.7
	W	z	15.2	
A→Z	h (اا/vv	/)bb		3.2
H→Z	A IIb	b	2.3	
h→a	a µµ	μμ	2.8	
Φ±±Φ	∓ 	II	12.9	13.9

Most of them model independent Some specific to 2HDM/NMSSM

Searches, and then? Run1 example: interpretation with a specific 2HDM model: hMSSM

Run2 Higgs searches so far

I will focus on a subset of analyses

L. Morvaj: Diboson searches, 18/05 H. Fox: Results on di-Higgs with ATLAS, 17/05 D. M. Morse: Results on di-Higgs with CMS, 17/05

		CMS	ATLAS
Н/А→тт		12.9	13.3
H→bb		2.69	
H±	τν	12.9	14.7
	tb		14.7
	WZ	15.2	
A→Zh	(II/vv)bb		3.2
H→ZA	llbb	2.3	
h→aa	րիրի	2.8	
Φ±±Φ ∓	1111	12.9	13.9

S. Mukherjee: High mass searches, 18/05

$X \rightarrow VV$ searches

- Most BSM models allow $X \rightarrow VV$ decay
- Such searches usually look for
 - ggH and VBF : XVV coupling \rightarrow VBF production
 - spin0 scalar, narrow or wide: interference with SM background and H(125)

All final states matter, results from Run1

- $X \rightarrow ZZ$: $X \rightarrow WW$:
 - $< 500 \text{ GeV: } 4\ell$ $< 500 \text{ GeV: } \ell v \ell v$

500-600 GeV: $2\ell 2v$, $2\ell 2q > 500$ GeV: ℓvqq

>600 GeV 2**ℓ**2q

$X \rightarrow VV$ searches

- Most BSM models allow $X \rightarrow VV$ decay
- Such searches usually look for
 - $ggH and VBF : XVV coupling \rightarrow VBF production$

9

- 2 categories: ggH and VBF
- Parameterized signal shape for m_X and Γ_X
- $m_{4\ell}$ as observable

ATLAS

Z-mass constraint on both $\ell\ell$ pairs CMS

High-mass region selection optimization

Parameterization of any $(m_{X,}\Gamma_{X})$ from ggH/VBF with X, H(125) and background interference

10

- 2 categories: ggH and VBF
- Parameterized signal shape for m_X and Γ_X
- $m_{4\ell}$ as observable

ATLAS

Z-mass constraint on both $\ell\ell$ pairs CMS

High-mass region selection optimization

Parameterization of any $(m_{X,}\,\Gamma_{X})$ from ggH/VBF with X, H(125) and background interference

- No significant excess, ggH and VBF cross section limit
 - ATLAS: width $0\% \rightarrow 10\%$, CMS: width $0 \rightarrow 40$ GeV
- Similar sensitivity in ATLAS and CMS

- No significant excess, ggH and VBF cross section limit
 - ATLAS: width $0\% \rightarrow 10\%$, CMS: width $0 \rightarrow 40$ GeV
- Similar sensitivity in ATLAS and CMS

f_{VBF} floated 12

$X \rightarrow ZZ \rightarrow 2\ell 2q$ CMS-PAS-HIG-16-034 ATLAS-CONF-2016-082

- Categorization
 - resolved/merged jet: high mass boost topology
 - b-tag/non-tag: large $Z \rightarrow$ bb branching ratio
 - VBF/ggH: probe production
- Z mass constraint: improve resolution
- Look for narrow scalar

ATLAS: m_{ZZ} as observable

CMS: matrix element based discriminants (MELA) for:

-VBF/ggH category

- signal/Z+jet separation

 $m_{ZZ} vs D_{Zjj}$, as observables

$\begin{array}{c} \text{CMS-PAS-HIG-16-034} \\ \text{ATLAS-CONF-2016-082} \\ X \longrightarrow ZZ \longrightarrow 2\ell 2q \end{array}$

- No significant excess
 - CMS: total cross section limit, VBF/ggH ratio floated
 - ATLAS: ggH and VBF cross section limit

ATLAS also performed $ZZ \rightarrow vvqq$ search with similar sensitivity at high mass

$\begin{array}{c} \text{CMS-PAS-HIG-16-001} \\ \text{ATLAS-CONF-2016-056} \\ X \longrightarrow ZZ \longrightarrow 2\ell 2V \end{array}$

• Modified m_T as discriminant $M_T^2 = \left(\sqrt{p_T(\ell\ell)^2 + M(\ell\ell)^2} + \sqrt{E_T^{\text{miss}^2} + M_Z^2}\right)^2 - (\vec{p}_T(\ell\ell) + \vec{E}_T^{\text{miss}})^2$

ATLAS

CMS

More kinematic cuts to reduce backgroundsConsider EWK singlet modelConsider only narrow width ggHCategories to probe ggH and VBF

$\begin{array}{c} \text{CMS-PAS-HIG-16-001} \\ \text{ATLAS-CONF-2016-056} \\ X \longrightarrow ZZ \longrightarrow 2\ell 2V \end{array}$

- No significant excess
 - ATLAS: ggH narrow width limit
 - CMS: various EWK singlet scenarios, ggH and VBF cross section limit (interference effect neglected)

$\begin{array}{c} \text{CMS-PAS-HIG-16-023} \\ \text{ATLAS-CONF-2016-074} \\ \textbf{X} & \rightarrow \textbf{WW} & \rightarrow \ell_V \ell_V \end{array}$

- eµ final state
- ggH, 1 jet, VBF category
- Modified m_T as observable

ATLAS: ggH category inclusive, not only 0 jet events CMS: interference properly modeled

CMS-PAS-HIG-16-023 ATLAS-CONF-2016-074 $X \rightarrow WW \rightarrow \ell_V \ell_V$

- No significant excess
 - CMS: total cross section limit, VBF/ggH ratio floated, $\Gamma_{X:} 0.1 1 \text{ SM } \Gamma_X$
 - ATLAS: ggH cross section limit $\Gamma_{X:}$ 0% —15% $m_{X;}$ VBF narrow width

CMS-PAS-HIG-16-023 ATLAS-CONF-2016-074 $X \rightarrow WW \rightarrow \ell_V \ell_V$

- No significant excess
 - CMS: total cross section limit, VBF/ggH ratio floated, $\Gamma_{X:}$ 0.1 –1 SM $\Gamma_{X:}$
 - ATLAS: ggH cross section limit $\Gamma_{X:}$ 0% —15% m_{X;} VBF narrow width

CMS-PAS-HIG-16-037 ATLAS-CONF-2016-085

$H/A \rightarrow \tau \tau$

- Particular sensitive to large $tan\beta$ in 2HDM
- Produced mainly by ggH and bbH (depend on $tan\beta$)
 - b tag/b veto categories
- (e, μ , $\tau_{\rm h}$) $\tau_{\rm h}$ final state
- $m_{\rm T}^{\rm tot}$ as observable $m_{\rm T}^{\rm tot} = \sqrt{m_{\rm T}(E_{\rm T}^{\rm miss}, \tau_1^{\rm vis})^2 + m_{\rm T}(E_{\rm T}^{\rm miss}, \tau_2^{\rm vis})^2 + m_{\rm T}(\tau_1^{\rm vis}, \tau_2^{\rm vis})^2}.$
- ATLAS: additional high E_T^{miss} category, fewer bkg

CMS: include eµ final state

CMS-PAS-HIG-16-037 ATLAS-CONF-2016-085

$H/A \rightarrow \tau \tau$

No significant excess, interpretation with MSSM models

CMS-PAS-HIG-16-031 ATLAS-CONF-2016-088

- Predicted by 2HDM, Higgs triplets
- Dominant production tHb $(m_{H^+} > m_t)$, $m_{H^+} < m_t$ excluded in Run1
- Full hadronic final state: τ_{had} , large E_T^{miss} , b-tag jet
- m_T as observable
- CMS: kinematic information to reduce multi-jet

$$R_{bb}^{\min} = \min_{j \in j_1 \dots j_3} \sqrt{\Delta \phi(\not \!\!E_T, j)^2 + (\pi - \Delta \phi(\tau^h, \not \!\!E_T))^2}$$

CMS-PAS-HIG-16-031 ATLAS-CONF-2016-088

Cross section limit and interpretation to MSSM models ATLAS and CMS interpretation in different scenarios

Additional slides

$$\begin{split} m_t &= 173.2 \; {\rm GeV}, \\ M_{\rm SUSY} &= 1000 \; {\rm GeV}, \\ \mu &= 200 \; {\rm GeV}, \\ M_2 &= 200 \; {\rm GeV}, \\ X_t^{\rm OS} &= 2 \; M_{\rm SUSY} \; ({\rm FD \; calculation}), \\ X_t^{\rm \overline{MS}} &= \sqrt{6} \; M_{\rm SUSY} \; ({\rm RG \; calculation}), \\ A_b &= A_\tau = A_t, \\ m_{\tilde{g}} &= 1500 \; {\rm GeV}, \\ M_{\tilde{l}_3} &= 1000 \; {\rm GeV} \; . \end{split}$$

$$\begin{split} m_t &= 173.2 \; {\rm GeV}, \\ M_{\rm SUSY} &= 1000 \; {\rm GeV}, \\ \mu &= 200 \; {\rm GeV}, \\ M_2 &= 200 \; {\rm GeV}, \\ X_t^{\rm OS} &= 1.5 \; M_{\rm SUSY} \; ({\rm FD \; calculation}), \\ X_t^{\rm \overline{MS}} &= 1.6 \; M_{\rm SUSY} \; ({\rm RG \; calculation}), \\ A_b &= A_\tau = A_t, \\ m_{\tilde{g}} &= 1500 \; {\rm GeV}, \\ M_{\tilde{l}_3} &= 1000 \; {\rm GeV} \; . \end{split}$$

$$\begin{split} & \text{m}_{h}^{\text{mod-}} \\ & m_{t} = 173.2 \text{ GeV}, \\ & M_{\text{SUSY}} = 1000 \text{ GeV}, \\ & \mu = 200 \text{ GeV}, \\ & M_{2} = -1.9 M_{\text{SUSY}} \text{ (FD calculation)}, \\ & M_{t}^{\overline{\text{MS}}} = -2.2 M_{\text{SUSY}} \text{ (RG calculation)}, \\ & M_{b} = A_{\tau} = A_{t}, \\ & m_{\tilde{g}} = 1500 \text{ GeV}, \\ & M_{\tilde{l}_{3}} = 1000 \text{ GeV} \text{ .} \end{split}$$

Event Selection

Exactly one *ee* or $\mu\mu$ pair

 $p_{\rm T}(e/\mu) > 30(20)$ GeV for leading (sub-leading) lepton

Selection	High Mass	Low Mass	
$ m_{ll}-m_Z $	< 15 GeV		
$E_{ m T}^{ m miss}$	> 120 GeV	> 90 GeV	
$\Delta R_{\ell\ell}$	< 1.8		
$ \Delta \phi(\vec{p}_{\rm T}^{\ell\ell}, \vec{E}_{\rm T}^{\rm miss}) $	> 2	> 2.7	
$ p_{\mathrm{T}}^{\mathrm{miss,jet}} - p_{\mathrm{T}}^{\ell\ell} /p_{\mathrm{T}}^{\ell\ell}$	< 0.2		
$ \Lambda \phi(\vec{F}miss ints) $	> 0.4	> 0.7	
$ \Delta \psi(L_{\rm T}) $	$p_{\rm T}({\rm jet}) > 100 {\rm ~GeV}$	$p_{\rm T}({\rm jet}) > 25 { m GeV}$	
$p_{\mathrm{T}}^{\ell\ell}/m_{\mathrm{T}}$	< 0.7	< 0.9	
Number of <i>b</i> -jets	= 0		

CMS-PAS-HIG-16-037 ATLAS-CONF-2016-085

$H/A \rightarrow \tau \tau$

CMS-PAS-HIG-16-037 ATLAS-CONF-2016-085

1200

10³

 m_{ϕ} (GeV)

$H/A \rightarrow \tau \tau$ Cross section limit ATLAS Preliminary Observed Observed - - - Expected σ× BR(H/A→ττ)[pb] ATLAS Preliminary Observed 10 \vdash H/A $\rightarrow \tau\tau$, 95 % CL limits - Expected 10 \vdash H/A $\rightarrow \tau\tau$, 95 % CL limits ±1σ $\sqrt{s} = 13 \text{ TeV}, \le 13.3 \text{ fb}^{-1}$ ±2σ ±1σ $\sqrt{s} = 13 \text{ TeV}, \le 13.3 \text{ fb}^{-1}$ gluon-gluon fusion ±2σ] 2015, 3.2 fb⁻¹ (Obs.) b-associated production 2015, 3.2 fb⁻¹ (Obs.) 10-10 _{nad}τ_{had} (Exp.) $\tau_{had} \tau_{had}$ (Exp.) $_{\rm p}\tau_{\rm had}$ (Exp.) 10⁻² _{lep}τ_{had} (Exp.) 10⁻² 800 1200 400 600 1000 200 1000 200 400 600 800 m_A [GeV] m₄ [GeV] 12.9 fb⁻¹ (13 TeV) 12.9 fb⁻¹ (13 TeV) $\mu \tau_{h} + e \tau_{h} + \tau_{h} \tau_{h} + e \mu$ $\mu \tau_{h} + e \tau_{h} + \tau_{h} \tau_{h} + e \mu$ 10³ 95% CL limit on $\sigma(bb\phi) \cdot B(\phi \rightarrow \tau \tau)(pb)$ CMS - Observed CMS - Observed Expected Expected Preliminary Preliminary 10² ±1 o Expected ±1 o Expected 10² ±2σ Expected ±2σ Expected 10 10 10⁻¹ 10-

10⁻²

10²

σ× BR(H/A→ττ)[pb]

95% CL limit on $\sigma(gg\phi) \cdot B(\phi \rightarrow \tau \tau)(pb)$

 10^{-2}

10²

10³

 m_{ϕ} (GeV)

