

Progress on the measurement of m_w

M. Boonekamp (IRFU) on behalf of the ATLAS and CMS Collaborations

ATLAS : arXiv:1701.07240

CMS : CMS-PAS-SMP-14-007

Motivation

- The electroweak gauge sector of the Standard Model is constrained by three precisely know parameters:
 - The electromagnetic coupling constant :
 - The muon decay constant :
 - The Z boson mass :

 $\alpha = 1 / 137.035999139(31)$

- G_{μ} = 1.16637 (1) × 10⁻⁵ GeV⁻²
- **m**_z = 91.1876 (21) GeV

• At leading order, m_w is expressed as

$$m_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_{\mu}}, \quad \sin^2 \theta_W = 1 - m_W^2 / m_Z^2$$

Higher-order corrections, dominantly W and γ self-energies,

Motivation

• Δr incorporates higher-order corrections from the SM and beyond:

 \rightarrow Consistency test of the SM, and a probe of BSM physics

Motivation

 \rightarrow m_w has strongest constraining power. Slow progress!

TeVatron results and LHC prospects

arXiv:1203.0293

Source	m_T	p_T^e	₿ _T
Experimental			
Electron Energy Scale	16	17	16
Electron Energy Resolution	2	2	3
Electron Shower Model	4	6	7
Electron Energy Loss	4	4	4
Recoil Model	5	6	14
Electron Efficiencies	1	3	5
Backgrounds	2	2	2
\sum (Experimental)	18	20	24
W Production and Decay Model			
PDF	11	11	14
QED	7	7	9
Boson p_T	2	5	2
\sum (Model)	13	14	17
Systematic Uncertainty (Experimental and Model)	22	24	29
W Boson Statistics	13	14	15
Total Uncertainty	26	28	33

D0 5.3 fb⁻¹ 1.7×10⁶ events, $W \rightarrow ev$

$$M_W = 80.375 \pm 0.011 \text{ (stat.)} \pm 0.020 \text{ (syst.)} \text{ GeV}$$

= 80.375 ± 0.023 GeV.

Expected W samples at ATLAS and CMS (W \rightarrow ev+ μ v) :

arXiv:1203.0275

Source	Uncertainty
Lepton energy scale and resolution	7
Recoil energy scale and resolution	6
Lepton tower removal	2
Backgrounds	3
PDFs	10
$p_T(W)$ model	5
Photon radiation	4
Statistical	12
Total	19

CDF 2.2 fb⁻¹ 1.1×10⁶ events, $W \rightarrow ev, \mu v$

 $M_W = 80387 \pm 12 \text{ (stat)} \pm 15 \text{ (syst)}$ = 80387 ± 19 MeV/c²

7 TeV	8 TeV	13 TeV
~4.5 fb ⁻¹	~20.3 fb ⁻¹	~30 fb ⁻¹
15×10 ⁶	80×10 ⁶	190×10 ⁶

• Derived quantities : $\vec{p}_{\rm T}^{\rm miss} = -\left(\vec{p}_{\rm T}^{\ell} + \vec{u}_{\rm T}\right)$ $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\rm miss}(1 - \cos\Delta\phi)}$

Event selections

- Kinematic requirements
 - $p_{T} > 30 \text{ GeV}$ $p_{T} > 30 \text{ GeV}$ _
 - $m_{T} > 60 \text{ GeV}$ $u_{T} < 30 \text{ GeV}$ _
- Measurement categories :

	$ \eta_\ell $ range	0 - 0.8	0.8 - 1.4	1.4 - 2.0	2.0 - 2.4	Inclusive	
W sample	$\begin{array}{c} W^+ \rightarrow \mu^+ \nu \\ W^- \rightarrow \mu^- \bar{\nu} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{769} \frac{063}{876}$	$\frac{1}{916} \frac{377}{163}$	$\begin{array}{c} 885 \ 582 \\ 547 \ 329 \end{array}$	$\frac{4\ 609\ 818}{3\ 234\ 960}$	7.8 M events
	$ \eta_\ell $ range	0 - 0.6	0.6 - 1.2		1.8 - 2.4	Inclusive	
	$ \begin{array}{c} W^+ \rightarrow e^+ \nu \\ W^- \rightarrow e^- \bar{\nu} \end{array} $	$\frac{1}{969} \frac{233}{170}$	$\frac{1\ 207\ 136}{908\ 327}$		$\begin{array}{c} 956 \ \ 620 \\ 610 \ \ 028 \end{array}$	$\begin{array}{c} 3 \ 397 \ 716 \\ 2 \ 487 \ 525 \end{array}$	5.9 M events

W-like sample (from $Z \rightarrow \mu\mu$, CMS) W-like muon : $|\eta| < 0.9$, $p_{\tau}^{-1} > 30 \text{ GeV}$ W-like "neutrino" : $|\eta| < 2.1$, $p_{\tau}^{-1} > 10$ GeV $u_{\tau} < 15 \text{ GeV}$

 \rightarrow 181 k events for each charge

- Lepton calibration : exploit known resonances; typically Z, $J/\psi \rightarrow II$
 - "known" == precisely known mass + accurate theoretical modeling of the resonance (FSR!)

- Production and decay : theory + support measurements
 - EW corrections :
 - Baseline simulation : "improved Born" : use physical values for G_{μ} , m_z , m_w , $\alpha_{QED}(m_z)$, $\sin^2\theta_w$

+ FSR (multiple photon emissions)

• Optimal theory : NLO EW + FSR (multiple photon emissions)

Full difference taken as systematic uncertainty

- Production and decay : theory + support measurements
 - EW corrections :
 - Baseline simulation : "improved Born" : use physical values for G_{μ} , m_z , m_w , $\alpha_{QED}(m_z)$, $sin^2\theta_w$

+ FSR (multiple photon emissions)

• Optimal theory : NLO EW + FSR (multiple photon emissions)

Full difference taken as systematic uncertainty

- Sensitive final state distributions : p_T^{I} , m_T , p_T^{miss}
- Signal distributions contructed from a single Monte Carlo sample, reweighting the boson invariant mass distribution, and compared to data. Mass determination by $\chi^{_2}$ minimization
- Resonance parametrisation : $\frac{d\sigma}{dm} \propto \frac{m^2}{(m^2 m_V^2)^2 + m^4 \Gamma_V^2/m_V^2}$

Mass-sensitive distributions

 \mathbf{p}_{T}

14

Cross checks using the Z sample

Z boson events can be used to test the analysis techniques, calibration procedures, ... Idea : reconstruct a Z event as a W, ie remove one lepton from the event and reconstruct transverse mass, missing E_{τ} as in W production

Very useful exercise, but does not address several significant sources of uncertainty:

- experimental (W backgrounds; extrapolation of Z-based calibrations to W)
- W production model

Results

 $m_w = 80.370 \pm 0.007 \text{ (stat.)} \pm 0.011 \text{ (exp.syst.)} \pm 0.014 \text{ (mod.syst.)} GeV$ = 80.370 ± 0.019 GeV

 δm_w (mod.syst) ~ 6 (EW) \oplus 8 (QCD) \oplus 9 (PDF) MeV

Results

 $m_{W^+} - m_{W^-} = -29 \pm 13 \text{ (stat.)} \pm 7 \text{ (exp.syst.)} \pm 24 \text{ (mod.syst.) MeV}$ = -29 ± 28 MeV

Standard Model consistency

SM prediction for $m_w vs m_t$, assuming $m_{\mu} = 125.09 \pm 0.24 \text{ GeV}$ SM prediction for m_w , assuming $m_H = 125.09 \pm 0.24 \text{ GeV}$ $m_t = 172.84 \pm 0.70 \text{ GeV}$

Selected topic : boson p_{τ} distribution

- Traditional approach : fit predictions to Z data, apply to W
 - Pythia8 parton shower describes data best
 - $Z \rightarrow W$ extrapolation uncertainty : mostly heavy-quark mass effects and PDFs
 - For a more detailed discussion, cf talk by O.Arnaez tomorrow

Boson p_{τ} distribution

- Traditional approach : fit predictions to Z data, apply to W
 - Pythia8 parton shower describes data best
 - $Z \rightarrow W$ extrapolation uncertainty : mostly heavy-quark mass effects and PDFs
 - Highlight in particular the role of the strange quark density, probed via W/Z cross section ratios and W+c production

Alternative : direct masurement

Unfolded measurement of the recoil p_{τ} distribution. CMS : 18.4 +- 0.5 pb⁻¹ ; μ ~4

Repeating these measurements would be useful: Target : ~1% accuracy in ~5 GeV bins Ideal sample : 100 pb⁻¹ ; μ ~1

Data taking would take about 1 week in Run2 conditions

Boson p_{τ} distribution : ways forward

$$\frac{\partial \sigma_{W}^{\text{True}}}{\partial p_{\text{T}}} \sim \frac{\partial \sigma_{W}^{\text{TH}}}{\partial p_{\text{T}}} \qquad 2-5\% \text{ (NNLO+NNLL)}$$

$$\sim \frac{\partial \sigma_{Z}^{\text{Exp}}}{\partial p_{\text{T}}} \times \frac{\partial \sigma_{W}^{\text{TH}} / \partial p_{\text{T}}}{\partial \sigma_{Z}^{\text{TH}} / \partial p_{\text{T}}} \qquad 0.5\% \oplus 1-2\% \text{ (NLL!)}$$

$$\sim \frac{\partial \sigma_{W}^{\text{Exp}}}{\partial p_{\text{T}}} \sim \frac{\partial \sigma_{W}^{\text{Exp}}}{\partial p_{\text{T}}} \sim -1\% \text{ (experimental)}$$

Need progress! (note : Tevatron counts no uncertainty here)

Need data – 100 pb⁻¹ before the end of Run 2?

Inputs to the ATLAS analysis

Summary

- Results
 - First measurement of m_w at the LHC, by ATLAS : m_w = 80.370 ± 0.019 GeV
 - A competitive measurement, dominated by physics modeling uncertainties as expected
 - One of the projects that ties the entire body of ATLAS data togethe
 - A result from CMS is eagerly awaited progressing well!
- Perspectives
 - World average : expect 11 13 MeV total uncertainty, depending on the correlations of PDF uncertainties at the Tevatron and LHC
 - Fantastic W and Z samples made available by the LHC at 8 and 13 TeV. Modelling uncertainties need to be reduced in order to fully exploit these data.
- The path to $\delta m_w \sim 5 \text{ MeV}$: modelling uncertainties
 - Electroweak corrections well understood; complete mixed QCDxEW corrections are the next theoretical milestone
 - Bottlenecks on PDF uncertainties, given always more constraints from data?
 - Boson p_T distribution : need dedicated theoretical studies and a direct measurement!

Back up

Main systematic uncertainties

	Channel	m_W	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EWK	PDF	Total	
	$m_{ m T} ext{-}{ m Fit}$	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	
	$W^+ ightarrow \mu u, \eta < 0.8$	80371.3	29.2	12.4	0.0	15.2	8.1	9.9	3.4	28.4	47.1	
Ţ	$W^+ \to \mu \nu, 0.8 < \eta < 1.4$	80354.1	32.1	19.3	0.0	13.0	6.8	9.6	3.4	23.3	47.6	
Ţ	$W^+ \to \mu \nu, 1.4 < \eta < 2.0$	80426.3	30.2	35.1	0.0	14.3	7.2	9.3	3.4	27.2	56.9	
I	$W^+ \to \mu \nu, 2.0 < \eta < 2.4$	80334.6	40.9	112.4	0.0	14.4	9.0	8.4	3.4	32.8	125.5	
	$W^- ightarrow \mu u, \eta < 0.8$	80375.5	30.6	11.6	0.0	13.1	8.5	9.5	3.4	30.6	48.5	
Ţ	$W^- \to \mu \nu, 0.8 < \eta < 1.4$	80417.5	36.4	18.5	0.0	12.2	7.7	9.7	3.4	22.2	49.7	
Ţ	$W^- \to \mu \nu, 1.4 < \eta < 2.0$	80379.4	35.6	33.9	0.0	10.5	8.1	9.7	3.4	23.1	56.9	
	$W^- \to \mu \nu, 2.0 < \eta < 2.4$	80334.2	52.4	123.7	0.0	11.6	10.2	9.9	3.4	34.1	139.9	
	$W^+ ightarrow e u, \eta < 0.6$	80352.9	29.4	0.0	19.5	13.1	15.3	9.9	3.4	28.5	50.8	
I	$W^+ \to e\nu, 0.6 < \eta < 1.2$	80381.5	30.4	0.0	21.4	15.1	13.2	9.6	3.4	23.5	49.4	
	$W^+ \to e\nu, 1, 8 < \eta < 2.4$	80352.4	32.4	0.0	26.6	16.4	32.8	8.4	3.4	27.3	62.6	
	$W^- ightarrow e u, \eta < 0.6$	80415.8	31.3	0.0	16.4	11.8	15.5	9.5	3.4	31.3	52.1	
I	$W^- \to e \nu, 0.6 < \eta < 1.2$	80297.5	33.0	0.0	18.7	11.2	12.8	9.7	3.4	23.9	49.0	
	$W^- \to e u, 1.8 < \eta < 2.4$	80423.8	42.8	0.0	33.2	12.8	35.1	9.9	3.4	28.1	72.3	
	$p_{\mathrm{T}} ext{-}\mathrm{Fit}$											
	$W^+ ightarrow \mu u, \eta < 0.8$	80327.7	22.1	12.2	0.0	2.6	5.1	9.0	6.0	24.7	37.3	
Ţ	$W^+ \to \mu \nu, 0.8 < \eta < 1.4$	80357.3	25.1	19.1	0.0	2.5	4.7	8.9	6.0	20.6	39.5	
Ţ	$W^+ \to \mu \nu, 1.4 < \eta < 2.0$	80446.9	23.9	33.1	0.0	2.5	4.9	8.2	6.0	25.2	49.3	
Ţ	$W^+ \to \mu \nu, 2.0 < \eta < 2.4$	80334.1	34.5	110.1	0.0	2.5	6.4	6.7	6.0	31.8	120.2	
	$W^- ightarrow \mu u, \eta < 0.8$	80427.8	23.3	11.6	0.0	2.6	5.8	8.1	6.0	26.4	39.0	
Ţ	$W^- ightarrow \mu u, 0.8 < \eta < 1.4$	80395.6	27.9	18.3	0.0	2.5	5.6	8.0	6.0	19.8	40.5	
Ţ	$W^- \to \mu \nu, 1.4 < \eta < 2.0$	80380.6	28.1	35.2	0.0	2.6	5.6	8.0	6.0	20.6	50.9	
Ţ	$W^- \to \mu \nu, 2.0 < \eta < 2.4$	80315.2	45.5	116.1	0.0	2.6	7.6	8.3	6.0	32.7	129.6	
	$W^+ \to e\nu, \eta < 0.6$	80336.5	22.2	0.0	20.1	2.5	6.4	9.0	5.3	24.5	40.7	
I	$W^+ \to e\nu, 0.6 < \eta < 1.2$	80345.8	22.8	0.0	21.4	2.6	6.7	8.9	5.3	20.5	39.4	
ĩ	$W^+ \to e\nu, 1, 8 < \eta < 2.4$	80344.7	24.0	0.0	30.8	2.6	11.9	6.7	5.3	24.1	48.2	
	$W^- ightarrow e u, \eta < 0.6$	80351.0	23.1	0.0	19.8	2.6	7.2	8.1	5.3	26.6	42.2	
I	$W^- \to e \nu, 0.6 < \eta < 1.2$	80309.8	24.9	0.0	19.7	2.7	7.3	8.0	5.3	20.9	39.9	
I	$W^- \to e\nu, 1.8 < \eta < 2.4$	80413.4	30.1	0.0	30.7	2.7	11.5	8.3	5.3	22.7	51.0	
η comb	$e \rightarrow \sim 15 \text{ MeV}$		Stron	gly		Stro	ngly		η (com).	→ ~14 MeV
	$\mu \rightarrow \sim 11 \text{ MeV}$	C	orre	lated		corr	elated	b	W+	/W- (comb	→ ~8 MeV

Fit ranges : $32 < p_T < 45$ GeV; $66 < m_T < 99$ GeV, minimizing total expected measurement uncertainty

Rapidity distribution

- Recent ATLAS and CMS results on W, Z cross section measurements:
 - arXiv:1612.03016
- Integrated and differential measurements with sub-% precision
- High sensitivity to PDFs; critical to validate the predictions used for the m_w analysis

Higher-order EW effects

- QED effects included in the simulation : ISR using Pythia8, and FSR using Photos
 - Negligible uncertainty
- Missing effects
 - NLO EW effects, evaluated in presence of QCD corrections. Available from Powheg-EW and Winhac (uncertainties from the latter).

Impact on p_T and m_T distributions calculated in two schemes (α_0 , G_μ); undertainty defined from the largest effect

 QED emission of pairs : formally of higher order, but a significant additional source of momentum loss

Decay channel	W -	$\rightarrow e\nu$	$W \rightarrow \mu \nu$		
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	
$\delta m_W [{ m MeV}]$					
FSR (real)	< 0.1	< 0.1	< 0.1	< 0.1	
Pure weak and IFI corrections	3.3	2.5	3.5	2.5	
FSR (pair production)	3.6	0.8	4.4	0.8	
Total	4.9	2.6	5.6	2.6	

Angular distributions

• Fully differential cross section for spin-1 boson production, to all orders:

$$\frac{d\sigma}{dmdy\,dp_Td\cos\theta\,d\,\varphi} = \frac{d\sigma}{dm\,dy\,dp_T} \Big[(1 + \cos^2\theta) + \sum_i A_i(m, p_T, y) f_i(\cos\theta, \varphi) \Big]$$

how accurate is the theoretical description of the A_i coefficients?

- eg. fixed-order and resummed calculations disagree, at least at NLO (ResBos)

• The data validate fixed-order perturbative QCD, within the measurement uncertainties

W candidate events

W candidate events

