

LHCP2017 May 15-20 2017 STONY BROKK UNIVERSITY

Motivation

Many BSM theories predict new heavy states that can decay into SM bosons

Heavy vector triplet (HVT)

- Simplified model used to describe the phenomenology of new resonances with a small number of parameters
- Contains heavy (spin 1) W'/Z' that couple to SM:
 - bosons: c_Hg_∨
 - fermions: $(g^2/g_V)c_F$

g: SM SU(2) coupling g_V: V' interaction strength c_H, c_F: interactions with bosons/fermions

- 2 scenarios [JHEP09(2014)060]
 - A (g_V=1): comparable couplings to fermions and bosons (e.g. Sequential SM; strongly constrained by searches in fermion final states)
 - B (g_V=3): fermionic couplings suppressed,
 decays to bosons dominate (e.g. Composite Higgs)

Warped extra dimensions

- Possible solution to the hierarchy problem & flavor structure
- Kaluza-Klein graviton G (spin 2)
- Bulk Randall-Sundrum scenario:
 - all SM fields propagate in the bulk

GRAVITYBRANE

- couplings to light fermions/γ suppressed

k: dimensionless coupling, the curvature of the extra dimension

Final sates

- Many searches in diboson channels in all possible final states
- In this talk will focus only on couple of recent results with 15-36 fb⁻¹ of the 13 TeV data (final states in red)
 - See also talks: Searches for additional Higgs bosons (M. Xiao), Latest results on di-Higgs production with ATLAS/CMS (H. Fox/D.M. Morse), High mass searches (S. Mukherjee), Searches for diboson resonances in ATLAS/CMS (A. Oh, H. Huang)...

ATLAS public results CMS public results

Boosted bosons

V/H

 $\Delta R \sim \frac{2m}{-}$

 p_T

Decay topology

- Decays of massive BSM states (m(BSM) >> m(V))
 - ➡ SM bosons are boosted
 - Their decay products are collimated
 - ➡ V/H→qq: SM boson reconstructed as a single fat jet (R=0.8-1.0)

Jet grooming

ATLAS

- Fat jets R=1.0 (topological clusters)
- Trimming [JHEP02(2010)084]:
 - recluster jet constituents into sub-jets with R=0.2
 - remove sub-jets with $\frac{p_T(\text{subjet})}{p_T(\text{jet})} < 0.05$

 Jet mass computed using a combination of calo information and tracks associated with the jet (so far used in VH→qqbb)

CMS

- Fat jets R=0.8 (particle-flow)
- **PUPPI** [JHEP10(2014)059]:
 - pile-up per particle identification
 - weight describing the likelihood for each particle to originate from pileup interactions, used to rescale their 4momenta
 - mass resolution ~10%
- Soft drop algorithm [JHEP09(2013)029, JHEP05(2014)146]
 - iteratively breaks the jet into 2 sub-jets dropping the softer one, until the softdrop condition is satisfied

Jet grooming

ATLAS

- Fat jets R=1.0 (topological clusters)
- Trimming [JHEP02(2010)084]:
 - recluster jet constituents into sub-jets with R=0.2
 - remove sub-jets with $\frac{p_T(subjet)}{p_T(jet)} < 0.05$

 Jet mass computed using a combination of calo information and tracks associated with the jet (so far used in VH→qqbb)

CMS

- Fat jets R=0.8 (particle-flow)
- **PUPPI** [JHEP10(2014)059]:
 - pile-up per particle identification
 - weight describing the likelihood for each particle to originate from pileup interactions, used to rescale their 4momenta
 - mass resolution ~10%
- Soft drop algorithm [JHEP09(2013)029, JHEP05(2014)146]
 - iteratively breaks the jet into 2 sub-jets dropping the softer one, until the softdrop condition is satisfied

Boosted boson tagging

ATLAS CMS $H(\rightarrow bb)$ tagging: — fat-jet mass consistent with H-mass 1 or 2 associated b-tagged track jets dedicated b-tagging discriminator to identify 2 b-quarks clustered in a single jet (R=0.2)W/Z tagging: — fat-jet mass consistent with V-mass within 30-40 GeV window Exclusive mass-windows Overlapping mass-windows **Substructure** • τ_N (N-subjetiness) - quantifies the **capability** • D2 (ratio of energy correlation functions) of clustering the jet constituents in compatibility with a two-prong decay exactly N subjets (using PUPPI inputs) topology $\tau_{21} = \tau_2 / \tau_1$

Boosted boson tagging

ATLAS

CMS

- D2 (ratio of energy correlation functions) compatibility with a two-prong decay topology
- p_T dependent cut:
 - ▶ eff(V-tag) ~ 50%
 - ▶ eff (q/g) ~ 2%

- τ_N (N-subjetiness) quantifies the capability of clustering the jet constituents in exactly N subjets (using PUPPI inputs) $\tau_{21} = \tau_2/\tau_1$
 - eff(V-tag) ~ 50% (45%) high (low) purity
 - eff (1-prong) ~ 10% (60%) high (low) purity

number of b-tags

2

Two fat jets: mJJ>1 TeV

- Jet with larger mass assigned as H-candidate, the other one as V
- 4 signal regions defined:
 - I or 2 b-tagged track jets associated with H
 - V-jet mass consistent with W or Z
- Multijet events (~90% of the background)
 - Template extracted from the data in 0-tag "SR"
 - Corrected with kinematic reweighting (derived in the H-mass SB)
 - Normalized in the H-mass sidebands
 - Validated in V-mass sidebands (VR-SR, VR-SB)

ATLAS-CONF-2017-018

Search for a resonance

in m_{JJ} over a smoothly

falling background

WH/ZH→qqbb

ATLAS-CONF-2017-018

WH/ZH→qqbb

CMS-PAS-B2G-17-002

Searches for VV, VH, HH resonances

35.9 fb⁻¹ (13 TeV)

CMS-PAS-B2G-17-002

- Two fat jets: mJJ>985 GeV
- 8 exclusive categories of events depending on:
 - V-jet mass

Lj. Morvaj, LHCP2

H-jet b-tagging discriminator (tight & loose)

• $\tau_{21} = \tau_2 / \tau_1$ value for V-jets (high & low purity)

- Multijet events (>95% of the background)
 - Fit to the data with an analytic function

 $X \rightarrow VH \rightarrow q\overline{q}b\overline{b}$

Validated in V-mass sidebands (40<m_V<65 GeV)

WH/ZH→qqbb

• CMS doesn't see the 3.3 σ (local) excess ATLAS observed at ~3 TeV

CMS

- Two V-tagged jets: mJJ>1 TeV
- Analysis techniques very similar to previously shown VH:
 - ATLAS: WW/WZ/ZZ (3 overlapping categories of events)
 - CMS: WW/WZ/ZZ + low low/high purity based on τ_{21} (6 categories)
 - Background modelled with a parametric function and validated in m_V sidebands

<u>ATLAS-CONF-2016-055</u> <u>CMS-PAS-B2G-17-001</u>

- W' \rightarrow WZ: summary of limits from ATLAS
- Comparable limits with CMS combination (~2.5 fb⁻¹ (13 TeV) + 19.7 fb⁻¹ (8TeV), see backup)

- Large Br to IIvv final state + controllable backgrounds
- Discriminating variable: transverse mass M_T •
- **Z+jets production** (dominant background)
 - $E_{\rm T}^{\rm miss}$ comes from mismeasurements of jet/lepton pT
 - Estimated from y+jets data reweighted to reproduce the kinematics of Z+jets events

Lj. Morvaj, LHCP2017

Di-Higgs searches

CMS PAS B2G-16-026

- Two H-tagged fat jets: Mjj>750 GeV
- Reduced dijet mass (to improve dijet resolution): $M_{jj}^{red} = M_{jj} (M_{j_1} M_H) (M_{j_2} M_H)$
- 2 categories of events depending on the double-b-tag discriminator: LooseLoose & TightTight
- Multijet events (dominant background)
 - Estimated using data from the "anti-tag" region of the leading jet (inverted b-tag discriminator)
 - Normalisation constrained using the leading jet mass sidebands

- **Resolved** regime: reconstruct 4 jets R=0.4 (m_{HH}<1000 GeV & non-resonant production)
- **Boosted** regime: reconstruct 2 fat jets R=1.0 (m_{HH}>1000 GeV)

ATLAS-CONF-2016-049

Conclusion

- Presented several analyses using the 15-36 fb⁻¹ of 2015+2016 data
- Many other results with the full 36 fb⁻¹ dataset are expected to come out this summer
- New data coming soon!
 - Bringing factor ~5 increase in the luminosity
 - But also challenges in terms of pile-up...
 - ➡ Jet reconstruction, boosted boson tagging techniques, trigger... being continuously refined to cope with this challenge and improve the limits
- Stay tuned!

HH→bblvlv

Select events with 2 b-tagged jets and 2 leptons of opposite charge

CMS PAS HIG-17-006

- Search for a resonant-like excess compatible with M_{H} in M_{bb} distribution
- Use deep neural network (DNN) to improve signal-to-background separation

HH→bblvlv

CMS PAS HIG-17-006

- Select events with 2 b-tagged jets and 2 leptons of opposite charge
- Search for a resonant-like excess compatible with M_H in M_{bb} distribution
- Use deep neural network (DNN) to improve signal-to-background separation

	Source	Signal	Z+jets	Reson.	Non-Reso
	Luminosity	2.5%	2.5%	2.5%	2.5%
	PDF on cross-section	-	1.7%	1.7%	-
	QCD on cross-section	-	2.3%	3.0%	
	EW NLO correction	-		3.0%	
Electron	PDF on acceptance	1.0%	3.4%	1.0%	-
channel	QCD on acceptance	(-)	22.7%	2.9%	-
	Trigger eff.	0.1%		(-)	
	Lepton ID eff.	0.5%	/ -/	(-)	- \
	$Z p_{T}$ reweighting	- <	2.1%	-	<u> </u>
	Non-reson. scale fact.	-	\setminus \downarrow	-	10.0%
$E_{\rm T}^{\rm miss}$ modeling	Muon scale	0.1%	-	10.1%	-
uncertainties	Elec. scale	1.8%	<u> </u>	0.4%	_ \
	Photon scale	2.9%	-	0.5%	-
	Jet energy scale	1.5%	_ \	0.4%	-
	Jet energy resolution	1.5%	-	0.5%	-
	Unclustered E	2.3%	_	0.5%	-
	Hadronic recoil	-	0.1%	-	-
Muon	PDF on acceptance	1.0%	3.4%	1.0%	-
channel	QCD on acceptance	(-)	13.1%	2.9%	-
	Trigger eff.	0.2%	-	(-)	-
	Lepton ID eff.	0.9%	-	(-)	-
	Tracking eff.	1.0%	1.0%	1.0%	1.0%
	$Z p_{T}$ reweighting	-	0.5%	-	-
	Non-reson. scale fact.	-	-	-	2.4%
$E_{\rm T}^{\rm miss}$ modeling	Muon scale	10.9%	-	1.8%	-
uncertainties	Elec. scale	(-)	-	(-)	-
	Photon scale	0.1%	-	(-)	-
	Jet energy scale	1.2%	-	0.1%	-
	Jet energy resolution	1.9%	-	0.2%	-
	Unclustered E	1.8%	-	0.3%	-
	Hadronic recoil	_	0.1%	_	_

<u>CMS PAS B2G-16-023</u>

WH/ZH→qqbb

Lj. Morvaj, LHCP2017

Searches for VV, VH, HH resonances

ATLAS: Combined jet mass

 $\Delta R \sim \frac{2m}{--}$

 p_T

- For a high Lorentz boost ΔR comparable with the calorimeter granularity
- Use track-assisted mass (TA) to maintain performance:

$$m^{\mathrm{TA}} = \frac{p_{\mathrm{T}}^{\mathrm{calo}}}{p_{\mathrm{T}}^{\mathrm{track}}} \times m^{\mathrm{track}}$$

• Combined jet mass:

$$m_J \equiv w_{\text{calo}} \times m_{\text{J}}^{\text{calo}} + w_{\text{track}} \times \left(m_{\text{J}}^{\text{track}} \frac{p_{\text{T}}^{\text{calo}}}{p_{\text{T}}^{\text{track}}} \right)$$
[ATLAS-CONF-2017-018]

- w_{calo} and w_{track} are p_T-dependent functions of the calorimeter and track-based jet mass resolutions used to optimize the combined mass resolution

Lj. Morvaj, LHCP2017

 \rightarrow the observed limit is a limit on the on-shell cross section only and does not include contributions from interference or PDF effects

PILAC

 $\sigma(pp \to Z' \to WW) ~[pb]$

1

10-

 10^{-2}

 10^{-3}

[qd] (ZM \leftarrow ,M \leftarrow dd)₀

 10^{-2}

 10^{-3}

IU

Lj.

m(M') [Co//]

0

Observed Limit

Expected Limit

Expected \pm 1 σ

Expected \pm 2 σ

HVT Model A, g_=1-

4000 4500 m_{w'} [GeV]

500 1000 1500 2000 2500 3000 m_{Scalar} [GeV] – limits

<u>ATLAS-CONF-2016-062</u> <u>CMS PAS B2G-16-020</u>

STNY

