
newyorker.com/
cartoons/a18624 

LHCP, Shanghai
May 18, 2017 

http://indico.cern.ch/e/517784 

University of 
Pittsburgh

Tae Min 
Hong

Dark matters at the LHC
This talk:
ATLAS
CMS

and their mediators



 

“Dark matter + LHC” is among the most popular topics

Dark matter at LHC is a hit
I wrote a macro to do scour the arXiv
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Objectives
• Complementarity
• Searches 
• Tools: trigger, boosted jets, …

Homework
• See parallel talks
• Visit websites

CMS [ see p24, 39 ]
ATLAS [ see p24, 40 ]

• Ask me! [ tmhong@pitt.edu ]

This talk
≥ ⅔ of attendees have “CERN” in registration,
so not introducing LHC, ATLAS, CMS.
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Theory DM simplified models

Exp’t    DM in CMS

Exp’t    DM in ATLAS

Theory LHC pheno. of DM coannih’n

M. Park

R. Khurana

C. Alpigiani

M. de Vries

Dark matter
• Mono-x  x = j, γ, Z, W, H,   b, t

Mediators
• Via di-jets
• Higgs

EW BOSONS H. FLAVORjet

F. Pandolfi

W. FedorkoExp’t    Other pheno. w/ lep.+γ at LHC

Exp’t    Heavy reson. w/ lep.+γ at LHC

mailto:tmhong@pitt.edu


Zen of dark matter
WIMP miracle is guide. Freeze out gives ~ relic density.

LHC designed to probe the weak scale, suitable here.
Complementary in approaches
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LHCnon-LHC

q

qχ

χ
Annihilation

Indirect

χ

χq

q
Production

Collider

q

χχ

q
Scattering

Direct

χ

χq

q q

qq

q

e.g., Z′, φ e.g., di-jet
mediatorDM + mediator

Run-1

“GF”
zoom in

x⃗

t

Simplified models
[1507.00966]

large q2

good for low mχ 



Neutral third party

5

Hong       
Pittsburgh

Complementary in channels

spin 0 spin 1

Charge Q Qmed = 0 for s-channel

Mass m unknown
Dark sector 

bosons similar to
H γ , Z , Z′

Lorentz structure scalar 1
pseudosc. γ5

vector γμ  
axial v. γμ γ5

Coupling “g” ∝ mass ∝ charge

Consequences mb ≫ md Qb = Qd

Example chan. mono-b di-jet

q

q̅

χ

χ̅

gq q̅qA           gDM χ̅χA
matter-mediator DM-mediator

gq mq mmed     gDM mDM mmed

known redundant➊ ➋ ➌ ➍

“A”
mediator

matrix element = 4 parameters
2d plots must assume 2 other param.

Lagrangian parameters

[1609.09079]

prompt, colorless, etc.
^

Features of mediator

http://arxiv.org/abs/1609.09079


Complementarity non-LHC v. LHC

exp’t limit 
≈ O(1) GeV

mmediator 
≈ O(100) GeV

No upper 
bound

No lower 
bound

LHC 
excludes

non-LHC 
excludesov

er
la

pσ

Cartoon of cross-section v. DM

Generic features for benchmark ( gDM = 1, gq = ¼ )

Also have complementarity 
among various LHC results
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Overlay Assumptions
Particle types

• Dirac DM
• Leptophobic

Axial vector
Coupling val.

• gq = 0.25
• qDM = 1

di-jet

mono-jet
mono-Vqq̅

From Mar. 2017, [CDS: 2256873]

CERN-LPCC-2016-001

http://cds.cern.ch/record/2256873
https://arxiv.org/abs/1603.04156


x objects notes

Jet PT ≳ 100
MET ≳ 200 classic

Photon PT ≳ 200
MET ≳ 200 low rate

Weak 
bosons

l+l– clean

qq̅ rate, 
boosted

Higgs 
boson

bb̅ 60%

γγ clean 0.5%
lower trig.

Heavy 
flavors

b, bb̅ Fermi-
LAT?

t, tt ̅ 3rd gen.

General
• Estimate with γ  and/or Wlν control sample

• “x” can be
• Single object or res., e.g., jet, γ, Wlv, Wqq̅, Zll, Hbb̅

• System of non-resonant objects, e.g., bb̅non-res

Much ado about “x”

7
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Drell-Yan
• Very high stats
• QCD produced

W - Z similarity
• Higher stats
• Can produce EW

Search pp → χχ̅ + “x”
• MET is recoil against “x”
• Zνν̅ ↔ Aχχ̅ indistinguishable“x”

q

q̅

χ
χ̅

A
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Figure 9: Observed Emiss
T distribution in the monojet (left) and mono-V (right) signal regions

compared with the post-fit background expectations for various SM processes. The last bin
includes all events with Emiss

T > 1250(750) GeV for the monojet (mono-V) category. The ex-
pected background distributions are evaluated after performing a combined fit to the data in
all the control samples, but not including the signal region. Expected signal distributions from
the 125 GeV Higgs boson decaying exclusively to invisible particles, and a 2 TeV axial-vector
mediator decaying to 1 GeV DM particles, are overlaid. Ratios of data with the pre-fit back-
ground prediction (red points) and post-fit background prediction (blue points) are shown for
both the monojet and mono-V signal regions. The gray bands in these ratio plots indicate the
post-fit uncertainty in the background prediction. Finally, the distribution of the pulls, defined
as the difference between data and the post-fit background prediction relative to the quadra-
ture sum of the post-fit uncertainty in the prediction, and statistical uncertainty in the data are
also shown in the lower panel.

the exclusion contours in the mmed–mDM plane for the scalar and pseudoscalar mediators. In330

the case of the scalar mediator limits are computed on the combined cross section from the331

monojet and mono-V signal processes. In the case of the pseudoscalar mediator limits are332

computed assuming only the monojet signal process. Pseudoscalar mediator masses up to333

400 GeV and DM masses up to 150 GeV are excluded at the 95% CL.334

The exclusion contours obtained from the simplified DM models are translated to 90% CL up-335

per limits on the DM-nucleon scattering cross sections using the approach outlined in Refs. [10,336

33, 87]. The results for the vector and axial-vector mediators are shown in Fig. 13. The sensi-337

tivity achieved in this search provide most stringent constraints for DM particle masses below338

5 GeV for vector mediators. For axial-vector mediators, sensitivity achieved in this search pro-339

vide stronger constraints up to 550 GeV DM particle masses. For pseudoscalar mediator, the340

90% CL upper limits are compared in Fig. 14 with the indirect detection results in terms of the341

velocity averaged DM annihilation cross section from the Fermi-LAT Collaboration [88], and342

provide stronger constraints for DM masses less than 200 GeV.343
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Figure 9: Observed Emiss
T distribution in the monojet (left) and mono-V (right) signal regions

compared with the post-fit background expectations for various SM processes. The last bin
includes all events with Emiss

T > 1250(750) GeV for the monojet (mono-V) category. The ex-
pected background distributions are evaluated after performing a combined fit to the data in
all the control samples, but not including the signal region. Expected signal distributions from
the 125 GeV Higgs boson decaying exclusively to invisible particles, and a 2 TeV axial-vector
mediator decaying to 1 GeV DM particles, are overlaid. Ratios of data with the pre-fit back-
ground prediction (red points) and post-fit background prediction (blue points) are shown for
both the monojet and mono-V signal regions. The gray bands in these ratio plots indicate the
post-fit uncertainty in the background prediction. Finally, the distribution of the pulls, defined
as the difference between data and the post-fit background prediction relative to the quadra-
ture sum of the post-fit uncertainty in the prediction, and statistical uncertainty in the data are
also shown in the lower panel.

the exclusion contours in the mmed–mDM plane for the scalar and pseudoscalar mediators. In330

the case of the scalar mediator limits are computed on the combined cross section from the331

monojet and mono-V signal processes. In the case of the pseudoscalar mediator limits are332

computed assuming only the monojet signal process. Pseudoscalar mediator masses up to333

400 GeV and DM masses up to 150 GeV are excluded at the 95% CL.334

The exclusion contours obtained from the simplified DM models are translated to 90% CL up-335

per limits on the DM-nucleon scattering cross sections using the approach outlined in Refs. [10,336

33, 87]. The results for the vector and axial-vector mediators are shown in Fig. 13. The sensi-337

tivity achieved in this search provide most stringent constraints for DM particle masses below338

5 GeV for vector mediators. For axial-vector mediators, sensitivity achieved in this search pro-339

vide stronger constraints up to 550 GeV DM particle masses. For pseudoscalar mediator, the340

90% CL upper limits are compared in Fig. 14 with the indirect detection results in terms of the341

velocity averaged DM annihilation cross section from the Fermi-LAT Collaboration [88], and342

provide stronger constraints for DM masses less than 200 GeV.343
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Figure 9: Observed Emiss
T distribution in the monojet (left) and mono-V (right) signal regions

compared with the post-fit background expectations for various SM processes. The last bin
includes all events with Emiss

T > 1250(750) GeV for the monojet (mono-V) category. The ex-
pected background distributions are evaluated after performing a combined fit to the data in
all the control samples, but not including the signal region. Expected signal distributions from
the 125 GeV Higgs boson decaying exclusively to invisible particles, and a 2 TeV axial-vector
mediator decaying to 1 GeV DM particles, are overlaid. Ratios of data with the pre-fit back-
ground prediction (red points) and post-fit background prediction (blue points) are shown for
both the monojet and mono-V signal regions. The gray bands in these ratio plots indicate the
post-fit uncertainty in the background prediction. Finally, the distribution of the pulls, defined
as the difference between data and the post-fit background prediction relative to the quadra-
ture sum of the post-fit uncertainty in the prediction, and statistical uncertainty in the data are
also shown in the lower panel.

the exclusion contours in the mmed–mDM plane for the scalar and pseudoscalar mediators. In330

the case of the scalar mediator limits are computed on the combined cross section from the331

monojet and mono-V signal processes. In the case of the pseudoscalar mediator limits are332

computed assuming only the monojet signal process. Pseudoscalar mediator masses up to333

400 GeV and DM masses up to 150 GeV are excluded at the 95% CL.334

The exclusion contours obtained from the simplified DM models are translated to 90% CL up-335

per limits on the DM-nucleon scattering cross sections using the approach outlined in Refs. [10,336

33, 87]. The results for the vector and axial-vector mediators are shown in Fig. 13. The sensi-337

tivity achieved in this search provide most stringent constraints for DM particle masses below338

5 GeV for vector mediators. For axial-vector mediators, sensitivity achieved in this search pro-339

vide stronger constraints up to 550 GeV DM particle masses. For pseudoscalar mediator, the340

90% CL upper limits are compared in Fig. 14 with the indirect detection results in terms of the341

velocity averaged DM annihilation cross section from the Fermi-LAT Collaboration [88], and342

provide stronger constraints for DM masses less than 200 GeV.343
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Figure 9: Observed Emiss
T distribution in the monojet (left) and mono-V (right) signal regions

compared with the post-fit background expectations for various SM processes. The last bin
includes all events with Emiss

T > 1250(750) GeV for the monojet (mono-V) category. The ex-
pected background distributions are evaluated after performing a combined fit to the data in
all the control samples, but not including the signal region. Expected signal distributions from
the 125 GeV Higgs boson decaying exclusively to invisible particles, and a 2 TeV axial-vector
mediator decaying to 1 GeV DM particles, are overlaid. Ratios of data with the pre-fit back-
ground prediction (red points) and post-fit background prediction (blue points) are shown for
both the monojet and mono-V signal regions. The gray bands in these ratio plots indicate the
post-fit uncertainty in the background prediction. Finally, the distribution of the pulls, defined
as the difference between data and the post-fit background prediction relative to the quadra-
ture sum of the post-fit uncertainty in the prediction, and statistical uncertainty in the data are
also shown in the lower panel.

the exclusion contours in the mmed–mDM plane for the scalar and pseudoscalar mediators. In330

the case of the scalar mediator limits are computed on the combined cross section from the331

monojet and mono-V signal processes. In the case of the pseudoscalar mediator limits are332

computed assuming only the monojet signal process. Pseudoscalar mediator masses up to333

400 GeV and DM masses up to 150 GeV are excluded at the 95% CL.334

The exclusion contours obtained from the simplified DM models are translated to 90% CL up-335

per limits on the DM-nucleon scattering cross sections using the approach outlined in Refs. [10,336

33, 87]. The results for the vector and axial-vector mediators are shown in Fig. 13. The sensi-337

tivity achieved in this search provide most stringent constraints for DM particle masses below338

5 GeV for vector mediators. For axial-vector mediators, sensitivity achieved in this search pro-339

vide stronger constraints up to 550 GeV DM particle masses. For pseudoscalar mediator, the340

90% CL upper limits are compared in Fig. 14 with the indirect detection results in terms of the341

velocity averaged DM annihilation cross section from the Fermi-LAT Collaboration [88], and342

provide stronger constraints for DM masses less than 200 GeV.343
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Figure 9: Observed Emiss
T distribution in the monojet (left) and mono-V (right) signal regions

compared with the post-fit background expectations for various SM processes. The last bin
includes all events with Emiss

T > 1250(750) GeV for the monojet (mono-V) category. The ex-
pected background distributions are evaluated after performing a combined fit to the data in
all the control samples, but not including the signal region. Expected signal distributions from
the 125 GeV Higgs boson decaying exclusively to invisible particles, and a 2 TeV axial-vector
mediator decaying to 1 GeV DM particles, are overlaid. Ratios of data with the pre-fit back-
ground prediction (red points) and post-fit background prediction (blue points) are shown for
both the monojet and mono-V signal regions. The gray bands in these ratio plots indicate the
post-fit uncertainty in the background prediction. Finally, the distribution of the pulls, defined
as the difference between data and the post-fit background prediction relative to the quadra-
ture sum of the post-fit uncertainty in the prediction, and statistical uncertainty in the data are
also shown in the lower panel.

the exclusion contours in the mmed–mDM plane for the scalar and pseudoscalar mediators. In330

the case of the scalar mediator limits are computed on the combined cross section from the331

monojet and mono-V signal processes. In the case of the pseudoscalar mediator limits are332

computed assuming only the monojet signal process. Pseudoscalar mediator masses up to333

400 GeV and DM masses up to 150 GeV are excluded at the 95% CL.334

The exclusion contours obtained from the simplified DM models are translated to 90% CL up-335

per limits on the DM-nucleon scattering cross sections using the approach outlined in Refs. [10,336

33, 87]. The results for the vector and axial-vector mediators are shown in Fig. 13. The sensi-337

tivity achieved in this search provide most stringent constraints for DM particle masses below338

5 GeV for vector mediators. For axial-vector mediators, sensitivity achieved in this search pro-339

vide stronger constraints up to 550 GeV DM particle masses. For pseudoscalar mediator, the340

90% CL upper limits are compared in Fig. 14 with the indirect detection results in terms of the341

velocity averaged DM annihilation cross section from the Fermi-LAT Collaboration [88], and342

provide stronger constraints for DM masses less than 200 GeV.343
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Figure 9: Observed Emiss
T distribution in the monojet (left) and mono-V (right) signal regions

compared with the post-fit background expectations for various SM processes. The last bin
includes all events with Emiss

T > 1250(750) GeV for the monojet (mono-V) category. The ex-
pected background distributions are evaluated after performing a combined fit to the data in
all the control samples, but not including the signal region. Expected signal distributions from
the 125 GeV Higgs boson decaying exclusively to invisible particles, and a 2 TeV axial-vector
mediator decaying to 1 GeV DM particles, are overlaid. Ratios of data with the pre-fit back-
ground prediction (red points) and post-fit background prediction (blue points) are shown for
both the monojet and mono-V signal regions. The gray bands in these ratio plots indicate the
post-fit uncertainty in the background prediction. Finally, the distribution of the pulls, defined
as the difference between data and the post-fit background prediction relative to the quadra-
ture sum of the post-fit uncertainty in the prediction, and statistical uncertainty in the data are
also shown in the lower panel.

the exclusion contours in the mmed–mDM plane for the scalar and pseudoscalar mediators. In330

the case of the scalar mediator limits are computed on the combined cross section from the331

monojet and mono-V signal processes. In the case of the pseudoscalar mediator limits are332

computed assuming only the monojet signal process. Pseudoscalar mediator masses up to333

400 GeV and DM masses up to 150 GeV are excluded at the 95% CL.334

The exclusion contours obtained from the simplified DM models are translated to 90% CL up-335

per limits on the DM-nucleon scattering cross sections using the approach outlined in Refs. [10,336

33, 87]. The results for the vector and axial-vector mediators are shown in Fig. 13. The sensi-337

tivity achieved in this search provide most stringent constraints for DM particle masses below338

5 GeV for vector mediators. For axial-vector mediators, sensitivity achieved in this search pro-339

vide stronger constraints up to 550 GeV DM particle masses. For pseudoscalar mediator, the340

90% CL upper limits are compared in Fig. 14 with the indirect detection results in terms of the341

velocity averaged DM annihilation cross section from the Fermi-LAT Collaboration [88], and342

provide stronger constraints for DM masses less than 200 GeV.343
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Mono-jet
• Signal models

Higgs invisible
Axial-vector
mmed = 2 TeV
(more later)

• MET ≳ 200 GeV v. 
largest processes
• Kills di-jet, multi-jet
• Kills tt ̅
• Kills W, Z, γ

Dark matter + mono-jet
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MET
954 GeV

jet
973 GeV transverse 

view
longitudinal 

view

unrolled 
cylinder

jetMET

March 2016,
http://cern.ch/Atlas/GROUPS/

PHYSICS/PAPERS/EXOT-2015-03/ 
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MET + mono-jet

jet



Exclude in (mmed v. mDM) 2d plane, must fix (gDM , gq)

Complementary coverage regions

Dark matter + mono-(jet, photon) Hong       
Pittsburgh
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slope = ½

mediator is
off-shell

   mediator 
is on-shell

mono-photon
mono-jet

region
excluded

Cartoon of mediator v. DM 

March 2017, http://cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/
EXOTICS/ATLAS_DarkMatter_Summary

Overlay of mediator v. DM 

0 1 TeV 2 TeV

ATLAS Prelim. Mar. 2017
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Legend for
6 results

http://cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/ATLAS_DarkMatter_Summary


Dark matter + mono-photon
Exclude in (σDM-proton v. mDM) 2d plane [see also p34]

• σ is function of mmed, see right
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LHC sensitive overlap non-LHC

    on-
shell

cross-section v. DM

�SD
DM-p ⇠
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ΔR = 2mH
          PT 

Dark matter + mono-Higgs
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Challenges
• σHiggs ~ O(pb)
• Gap in mA - mZ′

• Large par. space

Solutions
• Channels: boosted…
• MET trigger threshold
• Fix tan β (mA v. mZ′ )
• Consider DM sector
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dark matteryour analysis

Once you have a collider,

every problem starts to look like a particle.  



Mediator via di-jet
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A
mediatorq

q̅

q

q̅

Challenges
• Di-jets high rate
• mjet-jet threshold

Solutions
• ISR jet / photon
• Boosted jet-jet
• Save trig.-level 

(more later)

Display of event 
here next slide
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From August 2016, [CDS: 2203615]
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Di-jet (no MET!)

15

Invariant mass
• mjet-jet = 7.7 TeV
• among the highest recorded

3.4 TeV
η = –0.6

3.6 TeV
η = 0.3



trigger

full data buffer
storage

save?

reduced data

detector
save reduced data

Trigger-level

Μ
mediator

q

q̅

q

q̅

Full event, 1 MB
• Rate increase

Jet info, 1 kB
• CMS scouting
• ATLAS trigger-level

http://cern.ch/Atlas/GROUPS/PHYSICS/
CONFNOTES/ATLAS-CONF-2016-030/ 

similar to p14

New tools, reach lower
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Exclude in (mmed v. mDM) 2d plane, must fix (gDM , gq)

Vertical lines: qq̅ →A →qq̅ is independent of mDM
 Below diagonal:  A → χχ̅ allowed, wider Γmed due to phase space
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Alternate ( gDM , gq , glep ) alters conclusions [also see p36, 37]

             Overlapping coverages important for robustness

Fine print       is very important!
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unitarity curve shown in this plot are not applicable to other choices of coupling values or model.

– 6 –

1 TeV 2 TeV0 TeV  [GeV] medMediator mass M
0 500 1000 1500 2000 2500 3000 3500 4000 4500

 [G
eV

]
 D

M
Da

rk
 m

at
te

r m
as

s 
m

0

200

400

600

800

1000

1200

1400

1600

1800

2000
LHCP 2017 PreliminaryCMS

Vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.01
l

g

Exclusion at 95% CL

Observed

Expected

[EXO-16-031]
)-1 / 13.0 fb-1 (12.4 fbDilepton

[EXO-16-056]
)-1 (35.9 fbDijet

[EXO-17-001]
)-1 (35.9 fbBoosted dijet

 DM = 2 x mMedM

 0.12≥ 2 hcΩ

LHCP 2017 PreliminaryCMS

Vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.01
l

g

Figure 6. 95% CL observed and expected exclusion regions in Mmed � mDM plane for di-jet and
di-lepton searches from CMS in the Vector model. Following the recommendation of the LHC DM
working group [1, 2], the exclusions are computed for a universal quark coupling g

q

= 0.1, lepton
coupling g

l

= 0.01, and for a DM coupling of gDM = 1.0. It should also be noted that the absolute
exclusion of the di↵erent searches as well as their relative importance, will strongly depend on the
chosen coupling and model scenario. Therefore, the exclusion regions, relic density contours, and
unitarity curve shown in this plot are not applicable to other choices of coupling values or model.

– 6 –

 [GeV] medMediator mass M
0 500 1000 1500 2000 2500 3000 3500 4000 4500

 [G
eV

]
 D

M
Da

rk
 m

at
te

r m
as

s 
m

0

200

400

600

800

1000

1200

1400

1600

1800

2000
LHCP 2017 PreliminaryCMS

Axial-vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.1
l

g

Exclusion at 95% CL

Observed

Expected

[EXO-16-031]
)-1 / 13.0 fb-1 (12.4 fbDilepton

[EXO-16-056]
)-1 (35.9 fbDijet

[EXO-17-001]
)-1 (35.9 fbBoosted dijet

 DM = 2 x mMedM

 0.12≥ 2 hcΩ

LHCP 2017 PreliminaryCMS

Axial-vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.1
l

g

Figure 5. 95% CL observed and expected exclusion regions in Mmed � mDM plane for di-jet and
di-lepton searches from CMS in the Axial-vector model. Following the recommendation of the LHC
DM working group [1, 2], the exclusions are computed for a universal quark coupling g

q

= 0.1, lepton
coupling g

l

= 0.1, and for a DM coupling of gDM = 1.0. It should also be noted that the absolute
exclusion of the di↵erent searches as well as their relative importance, will strongly depend on the
chosen coupling and model scenario. Therefore, the exclusion regions, relic density contours, and
unitarity curve shown in this plot are not applicable to other choices of coupling values or model.

– 5 –

 [GeV] medMediator mass M
0 500 1000 1500 2000 2500 3000 3500 4000 4500

 [G
eV

]
 D

M
Da

rk
 m

at
te

r m
as

s 
m

0

200

400

600

800

1000

1200

1400

1600

1800

2000
LHCP 2017 PreliminaryCMS

Axial-vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.1
l

g

Exclusion at 95% CL

Observed

Expected

[EXO-16-031]
)-1 / 13.0 fb-1 (12.4 fbDilepton

[EXO-16-056]
)-1 (35.9 fbDijet

[EXO-17-001]
)-1 (35.9 fbBoosted dijet

 DM = 2 x mMedM

 0.12≥ 2 hcΩ

LHCP 2017 PreliminaryCMS

Axial-vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.1
l

g

Figure 5. 95% CL observed and expected exclusion regions in Mmed � mDM plane for di-jet and
di-lepton searches from CMS in the Axial-vector model. Following the recommendation of the LHC
DM working group [1, 2], the exclusions are computed for a universal quark coupling g

q

= 0.1, lepton
coupling g

l

= 0.1, and for a DM coupling of gDM = 1.0. It should also be noted that the absolute
exclusion of the di↵erent searches as well as their relative importance, will strongly depend on the
chosen coupling and model scenario. Therefore, the exclusion regions, relic density contours, and
unitarity curve shown in this plot are not applicable to other choices of coupling values or model.

– 5 –

 [GeV] medMediator mass M
0 500 1000 1500 2000 2500 3000 3500 4000 4500

 [G
eV

]
 D

M
Da

rk
 m

at
te

r m
as

s 
m

0

200

400

600

800

1000

1200

1400

1600

1800

2000
LHCP 2017 PreliminaryCMS

Axial-vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.1
l

g

Exclusion at 95% CL

Observed

Expected

[EXO-16-031]
)-1 / 13.0 fb-1 (12.4 fbDilepton

[EXO-16-056]
)-1 (35.9 fbDijet

[EXO-17-001]
)-1 (35.9 fbBoosted dijet

 DM = 2 x mMedM

 0.12≥ 2 hcΩ

LHCP 2017 PreliminaryCMS

Axial-vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.1
l

g

Figure 5. 95% CL observed and expected exclusion regions in Mmed � mDM plane for di-jet and
di-lepton searches from CMS in the Axial-vector model. Following the recommendation of the LHC
DM working group [1, 2], the exclusions are computed for a universal quark coupling g

q

= 0.1, lepton
coupling g

l

= 0.1, and for a DM coupling of gDM = 1.0. It should also be noted that the absolute
exclusion of the di↵erent searches as well as their relative importance, will strongly depend on the
chosen coupling and model scenario. Therefore, the exclusion regions, relic density contours, and
unitarity curve shown in this plot are not applicable to other choices of coupling values or model.

– 5 –

1 TeV 2 TeV0 TeV
0

400

800
GeV

1.2

1.6
TeV

See left 
box for 
legends

May 2017, http://cern.ch/twiki/pub/CMSPublic/PhysicsResultsEXO/DM_summary_plots_LHCP_2017.pdf 
 [GeV] medMediator mass M

0 500 1000 1500 2000 2500 3000 3500 4000 4500

 [G
eV

]
 D

M
Da

rk
 m

at
te

r m
as

s 
m

0

200

400

600

800

1000

1200

1400

1600

1800

2000
LHCP 2017 PreliminaryCMS

Vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.01
l

g

Exclusion at 95% CL

Observed

Expected

[EXO-16-031]
)-1 / 13.0 fb-1 (12.4 fbDilepton

[EXO-16-056]
)-1 (35.9 fbDijet

[EXO-17-001]
)-1 (35.9 fbBoosted dijet

 DM = 2 x mMedM

 0.12≥ 2 hcΩ

LHCP 2017 PreliminaryCMS

Vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.01
l

g

Figure 6. 95% CL observed and expected exclusion regions in Mmed � mDM plane for di-jet and
di-lepton searches from CMS in the Vector model. Following the recommendation of the LHC DM
working group [1, 2], the exclusions are computed for a universal quark coupling g

q

= 0.1, lepton
coupling g

l

= 0.01, and for a DM coupling of gDM = 1.0. It should also be noted that the absolute
exclusion of the di↵erent searches as well as their relative importance, will strongly depend on the
chosen coupling and model scenario. Therefore, the exclusion regions, relic density contours, and
unitarity curve shown in this plot are not applicable to other choices of coupling values or model.

– 6 –

 [GeV] medMediator mass M
0 500 1000 1500 2000 2500 3000 3500 4000 4500

 [G
eV

]
 D

M
Da

rk
 m

at
te

r m
as

s 
m

0

200

400

600

800

1000

1200

1400

1600

1800

2000
LHCP 2017 PreliminaryCMS

Vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.01
l

g

Exclusion at 95% CL

Observed

Expected

[EXO-16-031]
)-1 / 13.0 fb-1 (12.4 fbDilepton

[EXO-16-056]
)-1 (35.9 fbDijet

[EXO-17-001]
)-1 (35.9 fbBoosted dijet

 DM = 2 x mMedM

 0.12≥ 2 hcΩ

LHCP 2017 PreliminaryCMS

Vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.01
l

g

Figure 6. 95% CL observed and expected exclusion regions in Mmed � mDM plane for di-jet and
di-lepton searches from CMS in the Vector model. Following the recommendation of the LHC DM
working group [1, 2], the exclusions are computed for a universal quark coupling g

q

= 0.1, lepton
coupling g

l

= 0.01, and for a DM coupling of gDM = 1.0. It should also be noted that the absolute
exclusion of the di↵erent searches as well as their relative importance, will strongly depend on the
chosen coupling and model scenario. Therefore, the exclusion regions, relic density contours, and
unitarity curve shown in this plot are not applicable to other choices of coupling values or model.

– 6 –

 [GeV] medMediator mass M
0 500 1000 1500 2000 2500 3000 3500 4000 4500

 [G
eV

]
 D

M
Da

rk
 m

at
te

r m
as

s 
m

0

200

400

600

800

1000

1200

1400

1600

1800

2000
LHCP 2017 PreliminaryCMS

Vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.01
l

g

Exclusion at 95% CL

Observed

Expected

[EXO-16-031]
)-1 / 13.0 fb-1 (12.4 fbDilepton

[EXO-16-056]
)-1 (35.9 fbDijet

[EXO-17-001]
)-1 (35.9 fbBoosted dijet

 DM = 2 x mMedM

 0.12≥ 2 hcΩ

LHCP 2017 PreliminaryCMS

Vector mediator
Dirac DM

 = 1.0
DM

g
  = 0.1

q
g

 = 0.01
l

g

Figure 6. 95% CL observed and expected exclusion regions in Mmed � mDM plane for di-jet and
di-lepton searches from CMS in the Vector model. Following the recommendation of the LHC DM
working group [1, 2], the exclusions are computed for a universal quark coupling g

q

= 0.1, lepton
coupling g

l

= 0.01, and for a DM coupling of gDM = 1.0. It should also be noted that the absolute
exclusion of the di↵erent searches as well as their relative importance, will strongly depend on the
chosen coupling and model scenario. Therefore, the exclusion regions, relic density contours, and
unitarity curve shown in this plot are not applicable to other choices of coupling values or model.

– 6 –



H

q’

q’q

q
W,Z
W,Z

best sensitivity

      VBF     

Higgs mediator

19

Hong       
Pittsburgh

Solutions
• Background est. imp’t
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From [1404.1344], also Mar. 2017 [1610.09218]

6 5 Search for H(inv) in vector boson fusion
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Search for invisible or measure Higgs decays

Prog. Part. Nucl. Phys. 85 (2015) 1

General area of 
disputed signals 

(?)

101

10–46

10–42

10–41

10–49

W
IM

P-
nu

cl
eo

n 
cr

os
s 

se
ct

io
n

ab

fb

zb

yb

(cm2)

100 mDM (GeV)

Hong       
Pittsburgh

20

J
H
E
P
1
1
(
2
0
1
5
)
2
0
6

WIMP mass [GeV]
1 10 210 310

]
2

W
IM

P
-n

u
cl

e
o
n
 c

ro
ss

 s
e
ct

io
n
 [
cm

57−10

55−10

53−10

51−10

49−10

47−10

45−10

43−10

41−10

39−10

DAMA/LIBRA (99.7% CL)
CRESST II (95% CL)
CDMS SI (95% CL)
CoGeNT (99% CL)
CRESST II (90% CL)
SuperCDMS (90% CL)
XENON100 (90% CL)
LUX (90% CL)

Scalar WIMP
Majorana WIMP
Vector WIMP

ATLAS

Higgs portal model:
ATLAS 90% CL in

-1 = 7 TeV,  4.5-4.7 fbs

-1 = 8 TeV, 20.3 fbs

Vis. & inv. Higgs boson decay channels

]
inv

, BR
γZκ, 

γ
κ, gκ, 

µ
κ, 

τ
κ, bκ, tκ, Zκ, Wκ[

<0.22 at 90% CL
inv

 assumption:  BRW,ZκNo 

Figure 9. ATLAS upper limit at the 90% CL on the WIMP-nucleon scattering cross section in
a Higgs portal model as a function of the mass of the dark-matter particle, shown separately for
a scalar, Majorana fermion, or vector-boson WIMP. It is determined using the limit at the 90%
CL of BRinv < 0.22 derived using both the visible and invisible Higgs boson decay channels. The
hashed bands indicate the uncertainty resulting from varying the form factor fN by its uncertainty.
Excluded and allowed regions from direct detection experiments at the confidence levels indicated
are also shown [119–127]. These are spin-independent results obtained directly from searches for
nuclei recoils from elastic scattering of WIMPs, rather than being inferred indirectly through Higgs
boson exchange in the Higgs portal model.

the mass of a pseudoscalar Higgs boson in the hMSSM of 370GeV. Results from direct

searches for heavy Higgs bosons are also interpreted in the hMSSM. In addition, direct

searches for invisible Higgs boson decays in the VBF, Z(ℓℓ)h, and V (jj)h production modes

are combined to set an upper bound at the 95% CL on the Higgs boson invisible decay

branching ratio of 0.25. Including the coupling measurements in visible decays further

improves the upper limit to 0.23. The limit on the invisible decay branching ratio is used

to constrain the rate of dark matter-nucleon scattering in a model with a Higgs portal to

dark matter.
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Many interesting topics not discussed here, e.g., 
• Scalars with color
• Dark γ / Z with loooooooooooooooooooooooooooooooooooooooong lifetime
• SUSY that conserves R parityR
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Figure 10. The blue and red lines show the current and projected 90% CL limits from the LHC
mono-jet and LUX searches in the mDM vs Mmed plane. The left and right panels show the limits
for vector and axial-vector mediators respectively for (gq, gDM) = (1, 1). The region to the left of
the various curves is excluded. The plot legend is the same for both panels. The short-dashed
green lines shows the direct detection discovery reach after accounting for the neutrino background.
While LUX has better sensitivity than mono-jet searches and approaches the neutrino limit for
vector mediators, the opposite is true for axial-vector mediators. Note that the left (right) panel
has log (linear) axes.

4.3 Projection for future searches

In this section we provide extrapolations of how the limits and complementarity between

the LHC and direct detection search avenues will continue to develop. Both the collider

and direct detection communities have plans for mid- and long-term projects that possess

the potential to significantly increase the sensitivity for DM searches.

For the LHC we provide projected limits for:

• LHC 13 TeV and 30 fb�1. This gauges the reach for the first year of LHC running

in 2015.

• LHC 14 TeV and 300 fb�1. This provides an estimate of the ultimate reach of the

LHC.

• HL-LHC 14 TeV and 3000 fb�1. This is the expected reach of a high-luminosity

upgrade of the LHC.

The basis for these extrapolations are the 8 TeV limits of the CMS mono-jet search pre-

sented in section 4. These limits are scaled to the di↵erent future scenarios assuming that

the underlying performances of the search in terms of signal e�ciency and background

suppression remains unchanged. These assumptions were also used in the Snowmass [119]

and ECFA [120–122] studies and form the basis of the Collider Reach [123] tool. Ref. [123]
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the potential to significantly increase the sensitivity for DM searches.

For the LHC we provide projected limits for:

• LHC 13 TeV and 30 fb�1. This gauges the reach for the first year of LHC running

in 2015.

• LHC 14 TeV and 300 fb�1. This provides an estimate of the ultimate reach of the
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• HL-LHC 14 TeV and 3000 fb�1. This is the expected reach of a high-luminosity
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The basis for these extrapolations are the 8 TeV limits of the CMS mono-jet search pre-

sented in section 4. These limits are scaled to the di↵erent future scenarios assuming that

the underlying performances of the search in terms of signal e�ciency and background

suppression remains unchanged. These assumptions were also used in the Snowmass [119]
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Table 9 Summary of 95 % CL
upper limits on
σ · B(H → inv)/σSM obtained
from the VBF search, the
combined ZH searches, and the
combination of all three
searches

mH (GeV) Observed (expected) upper limits on σ · B(H → inv)/σSM

VBF ZH VBF+ZH

115 0.63 (0.48) 0.76 (0.72) 0.55 (0.41)

125 0.65 (0.49) 0.81 (0.83) 0.58 (0.44)

135 0.67 (0.50) 1.00 (0.88) 0.63 (0.46)

145 0.69 (0.51) 1.10 (0.95) 0.66 (0.47)

200 0.91 (0.69) – –

300 1.31 (1.04) – –

and summarised in Table 9. Assuming the SM production
cross section and acceptance, the 95 % CL observed upper
limit on the invisible branching fraction for mH = 125 GeV
is 0.58, with an expected limit of 0.44. The correspond-
ing observed (expected) upper limit at 90 % CL is 0.51
(0.38). These limits significantly improve on the indirect
95 % CL limit of B(H → inv) < 0.89 obtained from vis-
ible decays [3].

9 Dark matter interactions

We now interpret the experimental upper limit on B(H →
inv), under the assumption of SM production cross section, in
the context of a Higgs-portal model of DM interactions [7–9].
In these models, a hidden sector can provide viable stable DM
particles with direct renormalizable couplings to the Higgs
sector of the SM. In direct detection experiments, the elastic
interaction between DM and nuclei exchanged through the
Higgs boson results in nuclear recoil which can be reinter-
preted in terms of DM mass, Mχ , and DM-nucleon cross sec-
tion. If the DM candidate has a mass below mH/2, the invisi-
ble Higgs boson decay width, Γinv, can be directly translated
to the spin-independent DM-nucleon elastic cross section,
as follows for scalar (S), vector (V), and fermionic (f) DM,
respectively [8]:

σ SI
S−N = 4Γinv

m3
Hv2β

m4
N f 2

N

(Mχ + mN)2 , (8)

σ SI
V−N =

16Γinv M4
χ

m3
Hv2β(m4

H − 4M2
χ m2

H + 12M4
χ )

m4
N f 2

N

(Mχ + m N )2 ,

(9)

σ SI
f−N =

8Γinv M2
χ

m5
Hv2β3

m4
N f 2

N

(Mχ + mN)2 . (10)

Here, mN represents the nucleon mass, taken as the aver-
age of proton and neutron masses, 0.939 GeV, while

√
2v is

the Higgs vacuum expectation value of 246 GeV, and β =√
1 − 4M2

χ/mH2. The dimensionless quantity fN [8] param-
eterizes the Higgs-nucleon coupling; we take the central val-
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Fig. 13 Upper limits on the spin-independent DM-nucleon cross sec-
tion σ SI

χ−N in Higgs-portal models, derived for mH = 125 GeV and
B(H → inv) < 0.51 at 90 % CL, as a function of the DM mass. Lim-
its are shown separately for scalar, vector and fermion DM. The solid
lines represent the central value of the Higgs-nucleon coupling, which
enters as a parameter, and is taken from a lattice calculation, while
the dashed and dot-dashed lines represent lower and upper bounds
on this parameter. Other experimental results are shown for com-
parison, from the CRESST [71], XENON10 [72], XENON100 [73],
DAMA/LIBRA [74,75], CoGeNT [76], CDMS II [77], COUPP [78],
LUX [79] Collaborations

ues of fN = 0.326 from a lattice calculation [69], while
we use results from the MILC Collaboration [70] for the
minimum (0.260) and maximum (0.629) values. We convert
the invisible branching fraction to the invisible width using
B(H → inv) = Γinv/(%SM +Γinv), where %SM = 4.07 MeV.

Figure 13 shows upper limits at 90 % CL on the DM-
nucleon cross section as a function of the DM mass, derived
from the experimental upper limit on B(H → inv) for mH =
125 GeV, in the scenarios where the DM candidate is a scalar,
a vector, or a Majorana fermion.

10 Summary

A search for invisible decays of Higgs bosons has been per-
formed, using the vector boson fusion and associated ZH
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and summarised in Table 9. Assuming the SM production
cross section and acceptance, the 95 % CL observed upper
limit on the invisible branching fraction for mH = 125 GeV
is 0.58, with an expected limit of 0.44. The correspond-
ing observed (expected) upper limit at 90 % CL is 0.51
(0.38). These limits significantly improve on the indirect
95 % CL limit of B(H → inv) < 0.89 obtained from vis-
ible decays [3].
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particles with direct renormalizable couplings to the Higgs
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interaction between DM and nuclei exchanged through the
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tion. If the DM candidate has a mass below mH/2, the invisi-
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we use results from the MILC Collaboration [70] for the
minimum (0.260) and maximum (0.629) values. We convert
the invisible branching fraction to the invisible width using
B(H → inv) = Γinv/(%SM +Γinv), where %SM = 4.07 MeV.

Figure 13 shows upper limits at 90 % CL on the DM-
nucleon cross section as a function of the DM mass, derived
from the experimental upper limit on B(H → inv) for mH =
125 GeV, in the scenarios where the DM candidate is a scalar,
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cross section and acceptance, the 95 % CL observed upper
limit on the invisible branching fraction for mH = 125 GeV
is 0.58, with an expected limit of 0.44. The correspond-
ing observed (expected) upper limit at 90 % CL is 0.51
(0.38). These limits significantly improve on the indirect
95 % CL limit of B(H → inv) < 0.89 obtained from vis-
ible decays [3].
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age of proton and neutron masses, 0.939 GeV, while

√
2v is

the Higgs vacuum expectation value of 246 GeV, and β =√
1 − 4M2

χ/mH2. The dimensionless quantity fN [8] param-
eterizes the Higgs-nucleon coupling; we take the central val-
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Fig. 13 Upper limits on the spin-independent DM-nucleon cross sec-
tion σ SI

χ−N in Higgs-portal models, derived for mH = 125 GeV and
B(H → inv) < 0.51 at 90 % CL, as a function of the DM mass. Lim-
its are shown separately for scalar, vector and fermion DM. The solid
lines represent the central value of the Higgs-nucleon coupling, which
enters as a parameter, and is taken from a lattice calculation, while
the dashed and dot-dashed lines represent lower and upper bounds
on this parameter. Other experimental results are shown for com-
parison, from the CRESST [71], XENON10 [72], XENON100 [73],
DAMA/LIBRA [74,75], CoGeNT [76], CDMS II [77], COUPP [78],
LUX [79] Collaborations

ues of fN = 0.326 from a lattice calculation [69], while
we use results from the MILC Collaboration [70] for the
minimum (0.260) and maximum (0.629) values. We convert
the invisible branching fraction to the invisible width using
B(H → inv) = Γinv/(%SM +Γinv), where %SM = 4.07 MeV.

Figure 13 shows upper limits at 90 % CL on the DM-
nucleon cross section as a function of the DM mass, derived
from the experimental upper limit on B(H → inv) for mH =
125 GeV, in the scenarios where the DM candidate is a scalar,
a vector, or a Majorana fermion.

10 Summary

A search for invisible decays of Higgs bosons has been per-
formed, using the vector boson fusion and associated ZH
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CMS Run-2 VBF 
results with 2.3 fb–1

• Limit 69% (62%)
• Z norm’d w/ W

Run 2 target

Run 3+ target

ATLAS Run-1 VBF
• Limit 28% (31%)
• Z norm’d w/ W

Need 10 fb–1 of 13 TeV reach Run 1
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limit on Binv
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Di-jet (no MET!)
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From Mar. 26, 2017,
http://cern.ch/Atlas/GROUPS/

PHYSICS/PAPERS/EXOT-2016-21/ 

Jet
3.8 TeV

Jet
3.8 TeV

mjet-jet = 8.1 TeV 
highest recorded

http://cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2016-21/
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MET
268 GeV

Photon
265 GeV

Photon

MET + photon
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Run Number: 305811, Event Number: 1150484630

Date: 2016-08-08 22:56:19 CEST

From April 12, 2017, 
http://cern.ch/Atlas/GROUPS/

PHYSICS/PAPERS/EXOT-2016-32/
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Exclude in (σDM-proton v. mDM) 2d plane
• σ is function of mmed, see right
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FIG. 5. PICO-60 constraints (blue) on the effective spin-
dependent WIMP-proton and WIMP-neutron couplings, ap

and an, for a 50 GeV/c2 WIMP mass. Also shown are results
from PANDAX-II (cyan) [35], LUX (yellow) [40], PICO-2L
(purple) [9], and PICO-60 C3FI (red) [10].

The LHC has significant sensitivity to dark matter,
but to interpret LHC searches, one must assume a spe-
cific model to generate the signal that is then looked for
in the data. This can make it difficult to compare LHC
results with direct detection experiments, as the latter
tend to be more general. The LHC Dark Matter Work-
ing Group (LHCDMWG) has made recommendations on
a set of simplified models to be used in LHC searches
and the best way to present such results [29–31]. For a
given simplified model involving a mediator exchanged
via the s-channel, there are four free parameters: the
dark matter mass mDM, the mediator mass mmed, the
universal mediator coupling to quarks gq, and the me-
diator coupling to dark matter gDM. The LHCDMWG
recommends that results of simplified model searches be
presented by plotting confidence level limits as a function
of the two mass parametersmDM andmmed for a fixed set
of couplings gq and gDM. Here, we follow the example set
by the LHCDMWG to make a direct comparison of the
sensitivity of PICO to that of CMS [32, 33] by applying
our results to the specific case of a simplified dark mat-
ter model involving an axial-vector s-channel mediator.
Following Eq. 4.7-4.10 of Ref. [31], we find an expres-
sion for the spin-dependent cross section as a function of
those free parameters, and we invert this expression to
find mmed as a function of cross section. For this com-
parison, we assume gq = 0.25 and gDM = 1. With this
simple translation, we can plot our limits on the same
mDM −mmed plane, and the results are shown in Fig. 6.
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the Creighton mine site. We are grateful to Kristian
Hahn and Stanislava Sevova of Northwestern University
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FIG. 6. Exclusion limits at 95% C.L. in the mDM − mmed

plane. PICO-60 constraints (thick blue) are compared against
collider constraints from CMS for an axial-vector mediator
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ange) [33] channels. A similar analysis by ATLAS can be
found in [52].
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The LHC has significant sensitivity to dark matter,
but to interpret LHC searches, one must assume a spe-
cific model to generate the signal that is then looked for
in the data. This can make it difficult to compare LHC
results with direct detection experiments, as the latter
tend to be more general. The LHC Dark Matter Work-
ing Group (LHCDMWG) has made recommendations on
a set of simplified models to be used in LHC searches
and the best way to present such results [29–31]. For a
given simplified model involving a mediator exchanged
via the s-channel, there are four free parameters: the
dark matter mass mDM, the mediator mass mmed, the
universal mediator coupling to quarks gq, and the me-
diator coupling to dark matter gDM. The LHCDMWG
recommends that results of simplified model searches be
presented by plotting confidence level limits as a function
of the two mass parametersmDM andmmed for a fixed set
of couplings gq and gDM. Here, we follow the example set
by the LHCDMWG to make a direct comparison of the
sensitivity of PICO to that of CMS [32, 33] by applying
our results to the specific case of a simplified dark mat-
ter model involving an axial-vector s-channel mediator.
Following Eq. 4.7-4.10 of Ref. [31], we find an expres-
sion for the spin-dependent cross section as a function of
those free parameters, and we invert this expression to
find mmed as a function of cross section. For this com-
parison, we assume gq = 0.25 and gDM = 1. With this
simple translation, we can plot our limits on the same
mDM −mmed plane, and the results are shown in Fig. 6.
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Illustrative examples
Results depending on coupling assumptions
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Lepton couplings, complementarity
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Alternate ( gDM , gq , glep ) alters conclusions [also see p36]

Overlapping coverages important for robustness
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Same plot as p17
• ( gDM = 1, gq = ¼, glep = 0 )

Modify coupling assumptions
• Keep gDM = 1, decr. gq  = , incr. glep = 0

Lose overlap in on-shell regionOverlap in on-shell triangle

Mediator Mass [TeV]
0 0.5 1 1.5 2 2.5 3

DM
 M

as
s 

[T
eV

]

0.2

0.4

0.6

0.8

1

1.2
DM Simplified Model Exclusions Preliminary March 2017ATLAS 

 = 1
DM

 = 0.01, g
l

 = 0.1, g
q

g
Vector mediator, Dirac DM

All limits at 95% CL

Di
je

t

Dijet
Phys. Rev. D. 91 052007 (2015)

-1 = 8 TeV, 20.3 fbsDijet 8 TeV 

arXiv:1703.09127 [hep-ex]

-1 = 13 TeV, 37.0 fbsDijet 

ATLAS-CONF-2016-030

-1 = 13 TeV, 3.4 fbsDijet TLA 

+Xmiss
TE

+Xmiss
TE

CERN-EP-2017-044

-1 = 13 TeV, 36.4 fbs γ+miss
TE

Di
le

pt
on

ATLAS-CONF-2017-027

-1 = 13 TeV, 36.1 fbs
Dilepton

 DM M
as

s =
 M

ed
iat

or 
Mas

s

×2 

 = 0.
12

2hcΩ

The
rm

al R
elic

 

Mediator Mass [TeV]
0 0.5 1 1.5 2 2.5 3

DM
 M

as
s 

[T
eV

]

0.2

0.4

0.6

0.8

1

1.2
DM Simplified Model Exclusions Preliminary March 2017ATLAS 

 = 1
DM

 = 0.01, g
l

 = 0.1, g
q

g
Vector mediator, Dirac DM

All limits at 95% CL

Di
je

t

Dijet
Phys. Rev. D. 91 052007 (2015)

-1 = 8 TeV, 20.3 fbsDijet 8 TeV 

arXiv:1703.09127 [hep-ex]

-1 = 13 TeV, 37.0 fbsDijet 

ATLAS-CONF-2016-030

-1 = 13 TeV, 3.4 fbsDijet TLA 

+Xmiss
TE

+Xmiss
TE

CERN-EP-2017-044

-1 = 13 TeV, 36.4 fbs γ+miss
TE

Di
le

pt
on

ATLAS-CONF-2017-027

-1 = 13 TeV, 36.1 fbs
Dilepton

 DM M
as

s =
 M

ed
iat

or 
Mas

s

×2 

 = 0.
12

2hcΩ

The
rm

al R
elic

 

1 TeV 2 TeV
0

400
GeV

800
GeV

Mediator Mass [TeV]
0 0.5 1 1.5 2 2.5 3

DM
 M

as
s 

[T
eV

]

0.2

0.4

0.6

0.8

1

1.2
DM Simplified Model Exclusions Preliminary March 2017ATLAS 

 = 1
DM

 = 0, g
l

 = 0.25, g
q

g
Axial-vector mediator, Dirac DM

All limits at 95% CL

Pe
rtu

rb
at

ive
 U

nit
ar

ity

Dijet

Dijet
Phys. Rev. D. 91 052007 (2015)

-1 = 8 TeV, 20.3 fbsDijet 8 TeV 

arXiv:1703.09127 [hep-ex]

-1 = 13 TeV, 37.0 fbsDijet 

ATLAS-CONF-2016-030

-1 = 13 TeV, 3.4 fbsDijet TLA 

+Xmiss
TE

+Xmiss
TE

CERN-EP-2017-044

-1 = 13 TeV, 36.4 fbs γ+miss
TE DM M

as
s =

 M
ed

iat
or 

Mas
s

×2 

 = 
0.1

2
2hcΩ

The
rm

al 
Relic

 

Mediator Mass [TeV]
0 0.5 1 1.5 2 2.5 3

DM
 M

as
s 

[T
eV

]

0.2

0.4

0.6

0.8

1

1.2
DM Simplified Model Exclusions Preliminary March 2017ATLAS 

 = 1
DM

 = 0.01, g
l

 = 0.1, g
q

g
Vector mediator, Dirac DM

All limits at 95% CL

Di
je

t

Dijet
Phys. Rev. D. 91 052007 (2015)

-1 = 8 TeV, 20.3 fbsDijet 8 TeV 

arXiv:1703.09127 [hep-ex]

-1 = 13 TeV, 37.0 fbsDijet 

ATLAS-CONF-2016-030

-1 = 13 TeV, 3.4 fbsDijet TLA 

+Xmiss
TE

+Xmiss
TE

CERN-EP-2017-044

-1 = 13 TeV, 36.4 fbs γ+miss
TE

Di
le

pt
on

ATLAS-CONF-2017-027

-1 = 13 TeV, 36.1 fbs
Dilepton

 DM M
as

s =
 M

ed
iat

or 
Mas

s

×2 

 = 0.
12

2hcΩ

The
rm

al R
elic

 

Mediator Mass [TeV]
0 0.5 1 1.5 2 2.5 3

DM
 M

as
s 

[T
eV

]

0.2

0.4

0.6

0.8

1

1.2
DM Simplified Model Exclusions Preliminary March 2017ATLAS 

 = 1
DM

 = 0.01, g
l

 = 0.1, g
q

g
Vector mediator, Dirac DM

All limits at 95% CL

Di
je

t

Dijet
Phys. Rev. D. 91 052007 (2015)

-1 = 8 TeV, 20.3 fbsDijet 8 TeV 

arXiv:1703.09127 [hep-ex]

-1 = 13 TeV, 37.0 fbsDijet 

ATLAS-CONF-2016-030

-1 = 13 TeV, 3.4 fbsDijet TLA 

+Xmiss
TE

+Xmiss
TE

CERN-EP-2017-044

-1 = 13 TeV, 36.4 fbs γ+miss
TE

Di
le

pt
on

ATLAS-CONF-2017-027

-1 = 13 TeV, 36.1 fbs
Dilepton

 DM M
as

s =
 M

ed
iat

or 
Mas

s

×2 

 = 0.
12

2hcΩ

The
rm

al R
elic

 

1 TeV 2 TeV0 TeV 0 TeV

Legend for
3 results

di-jet

mono

di-lep
400
GeV

800
GeV

Mediator Mass [TeV]
0 0.5 1 1.5 2 2.5 3

DM
 M

as
s 

[T
eV

]

0.2

0.4

0.6

0.8

1

1.2
DM Simplified Model Exclusions Preliminary March 2017ATLAS 

 = 1
DM

 = 0.01, g
l

 = 0.1, g
q

g
Vector mediator, Dirac DM

All limits at 95% CL

Di
je

t

Dijet
Phys. Rev. D. 91 052007 (2015)

-1 = 8 TeV, 20.3 fbsDijet 8 TeV 

arXiv:1703.09127 [hep-ex]

-1 = 13 TeV, 37.0 fbsDijet 

ATLAS-CONF-2016-030

-1 = 13 TeV, 3.4 fbsDijet TLA 

+Xmiss
TE

+Xmiss
TE

CERN-EP-2017-044

-1 = 13 TeV, 36.4 fbs γ+miss
TE

Di
le

pt
on

ATLAS-CONF-2017-027

-1 = 13 TeV, 36.1 fbs
Dilepton

 DM M
as

s =
 M

ed
iat

or 
Mas

s

×2 

 = 0.
12

2hcΩ

The
rm

al R
elic

 

Mediator Mass [TeV]
0 0.5 1 1.5 2 2.5 3

DM
 M

as
s 

[T
eV

]

0.2

0.4

0.6

0.8

1

1.2
DM Simplified Model Exclusions Preliminary March 2017ATLAS 

 = 1
DM

 = 0.01, g
l

 = 0.1, g
q

g
Vector mediator, Dirac DM

All limits at 95% CL

Di
je

t

Dijet
Phys. Rev. D. 91 052007 (2015)

-1 = 8 TeV, 20.3 fbsDijet 8 TeV 

arXiv:1703.09127 [hep-ex]

-1 = 13 TeV, 37.0 fbsDijet 

ATLAS-CONF-2016-030

-1 = 13 TeV, 3.4 fbsDijet TLA 

+Xmiss
TE

+Xmiss
TE

CERN-EP-2017-044

-1 = 13 TeV, 36.4 fbs γ+miss
TE

Di
le

pt
on

ATLAS-CONF-2017-027

-1 = 13 TeV, 36.1 fbs
Dilepton

 DM M
as

s =
 M

ed
iat

or 
Mas

s

×2 

 = 0.
12

2hcΩ

The
rm

al R
elic

 

mono



Pile-up dependence of MET trigger

38

Hong       
Pittsburgh

http://cern.ch/twiki/pub/AtlasPublic/MissingEtTriggerPublicResults/metxs_vs_mu.pdf
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Notice of new CMS results
Past week ( http://cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO )
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CMS PAS EXO-16-048  Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson 
using 35.9 fb-1 of data at √s = 13 TeV 

A search for dark matter and extra dimensions are presented using events containing an imbalance in transverse momentum and 
one or more energetic jets. The data of proton-proton collisions at the LHC were collected with the CMS detector, and corre- 
spond to an integrated luminosity of 35.9 fb-1. Results are presented in terms of limits on the dark matter production in 
association with jets or vector bosons in a simplified models, nonthermal dark matter models, and fermion portal dark matter 
models. Re- sults are also interpreted in terms of the decay of the standard model Higgs boson to invisible particles and as 
limits on the Planck scale in the ADD model with large extra spatial dimensions. 

CMS PAS EXO-16-052  Search for dark matter, invisible Higgs boson decays, and large extra dimensions in the ll + ETmiss 
final state using 2016 data

A search for new physics in events with a Z boson produced in association with large missing transverse momentum with the 
CMS experiment at the LHC is presented. The search is based on the 2016 data sample of proton-proton collisions at √s = 13 
TeV corresponding to an integrated luminosity of 35.9 fb-1. The results of this search are interpreted in terms of a simplified 
model of dark matter production with spin-0 or spin-1 mediators, a standard model Higgs boson decaying invisibly and 
produced in association with the Z boson, as well as a model with large extra spatial dimensions. For all models, no significant 
deviation from the background expectation is found, and limits are set with respect to relevant model parameters. 

CMS PAS EXO-16-054 Search for dark matter produced in association with a Higgs boson decaying to two photons 

A search for the associated production of dark matter with a Higgs boson which decays into two photons is presented. The 
search uses data from proton-proton col- lisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the 
LHC in 2016, corresponding to an integrated luminosity of 35.9 fb-1 Results are in- terpreted in the context of two dark matter 
models: a two-Higgs-doublet-Z’ model where the Z’ decays to a pseudoscalar and a standard model-like Higgs Boson and a 
baryonic Z’ simplified model. The search is performed categorizing the events based on the amount of missing transverse 
momentum in order to also be sensitive to hy- pothetical signals with small amounts of missing transverse momentum. After the 
final selection, no significant evidence for dark matter particle production has been observed. Two-Higgs-doublet-Z’ signals 
with a pseudoscalar mass of 300 GeV are excluded at 95% of CL for Z’ masses below 900 GeV. Baryonic Z’ models with a 
dark matter mass of 1 GeV are excluded at 95% of CL for Z’ masses below 800 GeV. 



Notice of new ATLAS results
Past month ( http://cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults )
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arXiv:1704.03848   Search for dark matter at √s=13 TeV in final states containing an energetic photon and large missing 
transverse momentum with the ATLAS detector 

Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing 
transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in 
data, corresponding to an integrated luminosity of 36.1 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV, is 
in agreement with the Standard Model expectations, exclusion limits in models where dark-matter candidates are pair-produced 
are determined. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes 
mediator masses below 750-1200 GeV for dark-matter candidate masses below 230-480 GeV at 95% confidence level, 
depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression 
scale M∗ to be above 790 GeV at 95% confidence level. A limit is also reported on the production of a high-mass scalar 
resonance by processes beyond the Standard Model, in which the resonance decays to Zγ and the Z boson subsequently decays 
into neutrinos.

ATLAS-CONF-2017-027    Search for new high-mass phenomena in the dilepton final state using proton-proton collisions √s=13 
TeV with the ATLAS detector 

A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon final states. The 
search uses 36.1 fb−1 of proton-proton collision data, collected at √s=13 TeV by the ATLAS experiment at the LHC in 2015 and 
2016. The dilepton invariant mass is used as the discriminating variable. No significant deviation from the Standard Model 
prediction is observed. Upper limits at 95% credibility level are set on the cross-section times branching ratio for resonances 
decaying to dileptons, which are converted into lower limits on the resonance mass, up to 4.1 TeV for the E6-motivated Z'χ χ . 
Lower limits on the ℓℓqq contact interaction scale are set between 23.5 TeV and 40.1 TeV, depending on the model.

ATLAS-CONF-2017-028   Search for Dark Matter Produced in Association with a Higgs Boson Decaying to bb̅ at √s=13 TeV 
with the ATLAS detector 

Several extensions of the Standard Model predict associated production of Dark Matter particles with a Higgs boson. Such 
processes are searched for in final states with missing transverse momentum and a Higgs boson decaying to a bb̅  pair with the 
ATLAS detector using 36.1 fb−1  of pp collisions at a center-of-mass energy of 13~TeV at the LHC. The observed data are in 
agreement with the Standard Model and limits are placed on the associated production of Dark Matter particles and a Higgs 
boson for a simplified Dark Matter model and without extra model assumptions.

http://arxiv.org/abs/1704.03848
http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-027/
http://cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-028/
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