

LEPTON FLAVOUR UNIVERSALITY TESTS

Francesco Polci on behalf of the LHCb collaboration

TESTS OF LEPTON FLAVOR UNIVERSALITY

- In the SM, electroweak couplings of gauge bosons to leptons are independent from their flavor => Lepton Flavor Universality
- Observation of sizeable LFU violation would be a clear sign of New Physics
- Many tests performed in the past, comparing decays to different lepton families, with strongest limits in the EW sector:

$$\begin{array}{lll} Z \to \ell \ell & J/\psi \to \ell \ell & \tau \to \ell \nu \nu \\ W \to \ell \nu & \psi(2s) \to \ell \ell & \pi \to \ell \nu \\ & \Upsilon \to \ell \ell & K \to \pi \ell \nu \end{array}$$

Now LHC is allowing a new bunch of LFU tests to be performed!

OUTLINE

- Lepton universality tests in b->sll
- Lepton universality tests in b->clv
- Lepton universality test in W->lv
- Conclusion

OUTLINE

- Lepton universality tests in b->sll
- Lepton universality tests in b->clv
- Lepton universality test in W->lv
- Conclusion

b->sll **AS PROBES FOR NP**

- *b->sll* transitions are powerful probe of New Physics:
 - FCNC proceeding via loop diagrams only;
 - suppressed in the SM, so more sensitive to NP;
 - rich phenomenology and many precise SM predictions available;
 - explore higher mass scales than the current collider energies.

- New particles in the loop could enhance/suppress decay rates, introduce new sources of CP violation, modify angular distributions.
- NP could couple differently to different lepton families

EFFECTIVE THEORY APPROACH

Francesco Polci

THE LU TEST R_H

$$R_{H} = \frac{\int_{q_{min}^{2}}^{q_{max}^{2}} dq^{2} \frac{d\Gamma(B \rightarrow H\ell^{+}\ell^{-})}{dq^{2}}}{\int_{q_{min}^{2}}^{q_{max}^{2}} dq^{2} \frac{d\Gamma(B \rightarrow H\ell^{\prime+}\ell^{\prime-})}{dq^{2}}} \quad (\text{H = any hadronic system})$$

- Expected to be 1 in the Standard Model, apart from precisely predictable phase space effects and helicity-suppressed contributions.
- Theoretical uncertainty at 10⁻³, QED effects at % level (arXiv:1605.07633)
- Not affected by QCD effects (ex: charm loops)
- Different ratios provide complementary information:

THE R_{K*} MEASUREMENT

• In LHCb we use the double ratio of the rare to the J/ψ channel to reduce systematic uncertainities:

$$\mathcal{R}_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))} / \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}$$

- The measurement boils down to precisely determining:
 - yields for each channel
 - efficiencies for each channel
- All other factors (luminosity, cross section) cancel in the ratio
- Most of difficulties are on the electron channel side

MUON RECONSTRUCTION

Francesco Polci

ELECTRON RECONSTRUCTION

• Identified through the electromagnetic calorimeter:

$$ECAL: \frac{\sigma_E}{E} \sim 1\% \otimes \frac{10\%}{\sqrt{E(GeV)}}$$
 (Int. J. Mod. Phys. A 30 (2015) 1530022)

- Resolution degraded by energy loss from **bremsstrahlung**:
 - recovery of bremsstrahlung photons can not be 100% efficient
 - significant **degradation of the** *B* **mass resolution** with a tail on the left
 - large contribution from partially reconstructed backgrounds

Francesco Polci

TRIGGER FOR ELECTRON CHANNELS

- High occupancy of calorimeters
 => hardware thresholds on electron E_T higher than on muon p_T
- Use different triggers to increase the yields:

LOE: trigger fired by one of the electrons $(E_T > 2.5 GeV)$

LOH: trigger fired by the K or the π (E_T>3.5GeV)

LOI: trigger fired by particles not associated to the signal candidate

- Study in exclusive trigger categories:
 - different resolutions
 - different purities

Francesco Polci

R_{K*} DATASET AFTER PRESELECTION

- All run1 (3fb⁻¹)
- Analysis in two q² bins:
 - $low-q^2$ [0.045, 1.1] GeV^{2/}c⁴
 - central-q² [1.1, 6] GeV^{2/}c⁴

R_{K*} DATASET AFTER PRESELECTION

- All run1 (3fb⁻¹)
- Analysis in two q² bins:
 - $low-q^2$ [0.045, 1.1] GeV^{2/}c⁴
 - central-q² [1.1, 6] GeV^{2/}c⁴

R_{K*} DATASET AFTER PRESELECTION

- All run1 (3fb⁻¹)
- Analysis in two q² bins:
 - low-q² [0.045, 1.1] GeV^{2/}c⁴
 - central-q² [1.1, 6] GeV^{2/}c⁴

R_{K^*} ANALYSIS STRATEGY

• Blind analysis

- Selection as similar as possible for the electron and muon channels:
 - Quality of the candidates
 - Vetoes against peaking backgrounds
 - Particle identification
 - Multivariate classifier using quality of the candidates and kinematics
 - Kinematic discriminant to reduce partially reconstructed backgrounds
 - Random rejection of multiple candidates (1-2%)
- Efficiencies determined using simulations, tuned with data
- Separate exclusive trigger categories and bremsstrahlung categories
- Simultaneous fit to resonant and non-resonant channels

R_{K*} YIELDS

Francesco Polci

LHCP, Shanghai, 15-21 May 2017

R_{K*} CROSSCHECKS

• $r_{J/\psi}$ ratio : compatible with 1 and flat as function of kinematics and event multiplicity => very stringent test! (not a double ratio)

$$r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))} = 1.043 \pm 0.006 \text{ (stat)} \pm 0.045 \text{ (syst)}$$

• $\mathbf{R}_{\psi(2s)}$ and r_{γ} ratios : consistent with expectations

$$\mathcal{R}_{\psi(2S)} = \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))} \left/ \frac{\mathcal{B}(B^0 \to K^{*0}\psi(2S)(\to e^+e^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))} \right.$$
$$r_{\gamma} = \frac{\mathcal{B}(B^0 \to K^{*0}\gamma(\to e^+e^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))}$$

- $BR(B \rightarrow K^* \mu \mu)$: in agreement with published LHCb result [arXiv:1606.04731].
- No corrections to MC : less than 5% variation on R_{K^*} .
- **Population of bremsstrahlung categories** : consistent between data and MC.
- Kinematic distributions : consistent among MC/background subtracted data.

Francesco Polci

- The double ratio cancels a lot of systematics
- The measurement is statistically dominated (15%)

	$\Delta R_{K^{*0}}/R_{K^{*0}}$ [%]					
	$low-q^2$			central- q^2		
Trigger category	L0E	LOH	LOI	L0E	LOH	LOI
Corrections to simulation	2.5	4.8	3.9	2.2	4.2	3.4
Trigger	0.1	1.2	0.1	0.2	0.8	0.2
PID	0.2	0.4	0.3	0.2	1.0	0.5
Kinematic selection	2.1	2.1	2.1	2.1	2.1	2.1
Residual background	_	_	_	5.0	5.0	5.0
Mass fits	1.4	2.1	2.5	2.0	0.9	1.0
Bin migration	1.0	1.0	1.0	1.6	1.6	1.6
$r_{J\!/\psi}$ ratio	1.6	1.4	1.7	0.7	2.1	0.7
Total	4.0	6.1	5.5	6.4	7.5	6.7

Francesco Polci

R_{K*} RESULTS

Francesco Polci

R_{K*} RESULTS

Compatibility with the SM:

- 2.1-2.3 standard deviations (low- q^2)
- 2.4-2.5 standard deviations (central-q²)

JC arXiv:1412.3183

See G. Andreassi's talk (Heavy Flavors III)

arXiv:1705.05802

Francesco Polci

R_K RESULT

- Analysis on the run1 dataset: 3 fb⁻¹
- Performed in the q^2 range [1, 6] GeV^{2/c⁴}

Compatible with Standard Model at 2.6 σ

PRL 113, 151601 (2014)

REMINDER OF OTHER b->sll RESULTS

Measured **BR** with muons are consistently lower than predicted in SM

REMINDER OF OTHER b->sll RESULTS

Angular observables in B-> $K^*\mu\mu$ show about 3.4 σ discrepancy

- Adding BRs and angular observables of $b \rightarrow \mu\mu$, $b \rightarrow sll$, $b \rightarrow s\gamma =$ up to 5σ deviation from the SM
- Mostly affecting $C_{9\mu}$ and $C_{10\mu}$ Wilson coefficients

Francesco Polci

LHCP, Shanghai, 15-21 May 2017

21

- Adding BRs and angular observables of $b \rightarrow \mu\mu$, $b \rightarrow sll$, $b \rightarrow s\gamma =$ up to 5σ deviation from the SM
- Mostly affecting C_{9u} and C_{10u} Wilson coefficients
- Global fits of LFU only shows about 3σ discrepancy from SM
- Remember: LFU tests are not affected by QCD effects (ex: charms loops)

- Adding BRs and angular observables of $b \rightarrow \mu\mu$, $b \rightarrow sll$, $b \rightarrow s\gamma$ => up to 5σ deviation from the SM
- Mostly affecting C_{9u} and C_{10u} Wilson coefficients
- Global fits of LFU only shows about 3σ discrepancy from SM
- Remember: LFU tests are not affected by QCD effects (ex: charms loops)

arXiv:1704.05435

Francesco Polci

- Adding BRs and angular observables of $b \rightarrow \mu\mu$, $b \rightarrow sll$, $b \rightarrow s\gamma =$ up to 5σ deviation from the SM
- Mostly affecting C_{9u} and C_{10u} Wilson coefficients

Francesco Polci

- Adding BRs and angular observables of *b->μμ*, *b->sll*, *b->sγ* => up to 5σ deviation from the SM
- Mostly affecting $C_{g_{\mu}}$ and $C_{1O_{\mu}}$ Wilson coefficients
- Global fits of LFU only shows about 3σ discrepancy from SM
- Remember: LFU tests are not affected by QCD effects (ex: charms loops)

PROSPECTS FOR LFU IN b->sll

- $\mathbf{R}_{\mathbf{K}}, \mathbf{R}_{\mathbf{K}*}, \mathbf{R}\phi$ and similar ratios need to be measured using the full run1+run2 statistics, and in all the q^2 bins.
- Perform LFU angular tests [as from Belle: Phys.Rev.Lett.118, 111801 (2017)].

• Also search for LFV decays:

$$\begin{split} B_{(s)} & \to \tau \, \mu, \quad B_{(s)} \to e \, \mu, \\ B^+ & \to K^+ \, \tau \, \mu, \quad B^0 \to K^{*0} \, \tau \, \mu, \\ B^+ & \to K^+ \, e \, \mu, \quad B^0 \to K^{*0} \, e \, \mu, \\ B_s & \to \phi \, \tau \, \mu, \quad B_s \to \phi \, e \, \mu, \, etc... \end{split}$$

OUTLINE

- Lepton universality tests in b->sll
- Lepton universality tests in b->clv
- Lepton universality test in W->lv
- Conclusion

THE R_D * MEASUREMENT

$$R_{D^*} = \frac{\Gamma(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu_{\tau}})}{\Gamma(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu_{\mu}})}$$

- SM expectation: 0.252+/-0.003 [PRD85 (2012) 094025]
- Sensitive, for ex., to charged Higgs or non minimal flavor violating couplings favoring the tau

RECONSTRUCTION OF τ

- Taus reconstructed through their decay products.
- Tau decay vertex not always identified.
- Neutrinos => missing energy and degradation of the mass resolution.
- Traditional and new reconstruction techniques based on the kinematics are explored.

• Approximations:
$$(p_B)_z = \frac{m_B}{m_{reco}} (p_{reco})_z$$

Leptonic: • BR($\tau^{-} \rightarrow \mu^{-}\nu\nu$) = 17.41 ± 0.04 % • BR($\tau^{-} \rightarrow e^{-}\nu\nu$) = 17.83 ± 0.04 %	
Hadronic: • BR $(\tau^{-} \rightarrow \pi^{-} \nu) = 10.83 \pm 0.06 \%$ • BR $(\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu) = 25.52 \pm 0.09 \%$ • BR $(\tau^{-} \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu) = 9.30 \pm 0.11 \%$ • BR $(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu) = 9.31 \pm 0.06 \%$ • BR $(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{0} \nu) = 4.62 \pm 0.06 \%$,

R_{D*} WITH LEPTONIC τ IN LHCb

- Neutrinos => **no narrow peak to fit in any distribution**
- 3D template fit. Use discriminating variables calculated in the B rest frame:
 - the missing mass squared: $m^2_{
 m miss}=(p^\mu_B-p^\mu_D-p^\mu_\mu)^2$
 - the muon energy in c.o.m. frame: E_{μ} *
 - the squared four momentum transferred to the di-lepton system: $q^{\mbox{\scriptsize 2}}$

STATUS OF THE R_{D(*)} MEASUREMENTS

LHCb result: $R(D^*) = 0.336 \pm 0.027(stat) \pm 0.030(syst)$

- 2.1 σ larger than the SM expectation
- In combination with other experiments and $R_D => 3.9\sigma$ discrepancy

Francesco Polci

R_{D*} HADRONIC IN LHCb

$$\tau^{-} \rightarrow \pi^{-}\pi^{+}\pi^{-}(\pi^{0})v_{\tau}$$

$$R_{D^{*}}^{HAD} = \frac{BR(\overline{B}^{0} \rightarrow D^{*+}\tau^{-}\overline{v_{\tau}})}{BR(\overline{B}^{0} \rightarrow D^{*+}\pi^{-}\pi^{+}\pi^{-})} \frac{BR(\overline{B}^{0} \rightarrow D^{*+}\pi^{-}\pi^{+}\pi^{-})}{BR(\overline{B}^{0} \rightarrow D^{*+}\mu^{-}\overline{v_{\mu}})}$$

$$Same \text{ final state:} \\ systematics cancels}$$

$$External input$$

• Good vertex reconstruction, but large hadronic backgrounds. Specific tools needed to reduce it.

- Expected statistical precision: 7% with 3fb⁻¹ (competitive with world average)
- Other analysis ongoing: R_D , $R_{J/\psi}$, R_{Ds} , $R_{\Lambda c}$

Francesco Polci

OUTLINE

- Lepton universality tests in b->sll
- Lepton universality tests in b->clv
- Lepton universality test in W->lv
- Conclusion

R_w MEASUREMENTS

All experiments in agreement among them and with SM expectations

Francesco Polci

OUTLINE

- Lepton universality tests in b->sll
- Lepton universality tests in b->clv
- Lepton universality test in W->lv
- Conclusion

LFU tests are extremely clean probes for New Physics

Some intriguing discrepancies in the recent measurements:

• **R**_K, **R**_{K*}, **R**_{D*}

Follow the path!

- Repeat all measurements with the enlarged datasets and improved analysis techniques
- Explore new channels
- Test LFU in angular distributions
- Search for direct LFV

LHCb is on its way!

NEXT

R_{K*} FEYNMAN DIAGRAMS

Some NP hypotheses mentioned

R_{K*} YIELDS

	$B^0 \to K^{*0} \ell^+ \ell^-$		$R^0 \longrightarrow K^{*0} I/_2/_1 (\longrightarrow \ell^+ \ell^-)$
	$low-q^2$	central- q^2	$D \to \Pi J/\psi (\to \ell \ell)$
$\mu^+\mu^-$	$285 \ ^{+}_{-} \ ^{18}_{18}$	$353 \ ^+ {21}_{-\ 21}$	$274416 \ {}^+_{-} \ {}^{602}_{654}$
e^+e^- (L0E)	$55 \begin{array}{c} + & 9 \\ - & 8 \end{array}$	$67 {}^{+}_{-} {}^{10}_{10}$	$43468 \ {}^{+}_{-} \ {}^{222}_{221}$
e^+e^- (L0H)	$13 \ {}^+_{-} \ {}^5_{5}$	$19 \ {}^+ \ {}^6_5$	$3388 \ {}^+ \ {}^{62}_{61}$
e^+e^- (L0I)	$21 \ {}^+_{-} \ {}^5_{4}$	$25 \ {}^+ \ {}^7_6$	$11505 \ {}^{+}_{-} \ {}^{115}_{114}$

R_{K*} **BREMSSTRAHLUNG**

Francesco Polci

37

LHCP, Shanghai, 15-21 May 2017

W->lv IN LHCb

Forward W->ev (JHEP 10 (2016) 030) and W->µv (JHEP 01 (2016) 155) production cross section in 2012 at 8TeV (2 fb⁻¹)

- Sensitive to NP in trees and loops
- Measured in 8 bins of pseudo-rapidity, separately per lepton charges
- Binned template fits to the lepton p_{T}
- Data driven methods for fake electrons and heavy flavour decays

Francesco Polci