Theoretical aspects of **TOP** properties

Cen Zhang Brookhaven National Laboratory LHCP2017 Shanghai May 19

Top quark is unique in many ways:

- Heaviest, of course... but also:
- It's a bare quark, decaying before hadronization.

$$\begin{split} \tau_{had} &\approx h/\Lambda_{QC\,D} \approx 2 \cdot 10^{-24} \text{ s} \\ \tau_{flip} &\approx h \, m_t \, / \, \Lambda_{QC\,D}^2 >> \tau_{had} \\ \tau_{top} &\approx h/ \, \Gamma_{top} = 1 / (G_F \, m_t^3 \, |V_{tb}|^2 / 8 \pi \sqrt{2}) \approx 5 \cdot 10^{-25} \, \text{s} \end{split}$$

• Top Yukawa is the largest SM coupling. $m_{top} = y_t v/\sqrt{2} \approx 174 \text{ GeV} \Rightarrow y_t \approx 1$

and hence largest Higgs mass correction.

 There are many of them: 6 million from Run-I, ~2 orders of magnitude to go.

...and it determines the fate of our universe

Outline

associated production (H, W, Z, γ)

Outline

This talk

- Top-quark couplings, SM and anomalous.
- FCNC decay & production.
- Extracting/interpreting top couplings with SMEFT

Other interesting TH topics

- Top pair NNLO QCD + NLO EW, D. Pagani
- Resonance-aware matching, J. Lindert
- Single top + decay NNLO, J. Gao
- MC mass calibration, M. Preisser

The TH framework

for extracting/interpreting top-quark couplings

$$\mathcal{L}_{\mathrm{EFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{C_i O_i}{\Lambda^2}$$

The matter content of SM has been experimentally verified and evidence for light states is not present

Iook for deviations from the dim=4 SM Lagrangian predictions.

X ³		$arphi^6 ext{ and } arphi^4 D^2$		$\psi^2 arphi^3$		$] \qquad \qquad \mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum \frac{\mathcal{C}_{I} \mathcal{Q}_{I}}{\Lambda 2} $						
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{arphi}	$(arphi^\daggerarphi)^3$	Q_{earphi}	$(arphi^\dagger arphi) (ar l_p e_r arphi)$				-	i	11-	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{arphi \Box}$	$(arphi^\daggerarphi)\Box(arphi^\daggerarphi)$	Q_{uarphi}	$(arphi^\dagger arphi) (ar q_p u_r \widetilde arphi)$		$(\bar{L}L)(\bar{L}L)$	$(\bar{R}R)(\bar{R}R)$			$(\bar{L}L)(\bar{R}R)$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	Q_{darphi}	$(arphi^{\dagger}arphi)(ar{q}_{p}d_{r}arphi)$	Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{lc}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J ho}_{\nu}W^{K\mu}_{\rho}$					$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p\gamma_\mu u_r)(ar{u}_s\gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
2					(2.25	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$	
$X^2 \varphi^2$			$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r)(ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$	
$Q_{arphi G}$	$arphi^\dagger arphi G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(ar{l}_p \sigma^{\mu u} e_r) au^I arphi W^I_{\mu u}$	$Q^{(1)}_{arphi l}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{l}_p \gamma^\mu l_r)$	$Q_{lq}^{\left(3 ight) }$	$(ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar u_s \gamma^\mu u_t)$	
$Q_{\omega \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(ar{l}_p \sigma^{\mu u} e_r) arphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p} au^{I}\gamma^{\mu}l_{r})$			$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$			$Q_{ud}^{(o)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (d_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (d_s \gamma^\mu d_t)$ $(\bar{q} \sim T^A q_s) (\bar{d} \sim \mu T^A d_s)$	
$Q_{\omega \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	\mathbb{Q}_{qd} ating	$(q_p \ \mu I \ q_r)(u_s \ I \ u_t)$	
$Q_{\varphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}{}^{I}_{\mu} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$	Qledq	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$_{q} \qquad \qquad \varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{lpha} ight) ight.$		$\left[(q_s^{\gamma j})^T C l_t^k\right]$	
Q ≃	$(\alpha^{\dagger}(\alpha \widetilde{B}_{m})B^{\mu\nu})$	Qac	$(\bar{a}_{r}\sigma^{\mu\nu}T^{A}d_{r})\omega G^{A}$	Q	$(\varphi^{\dagger}i\overset{\leftrightarrow}{D},\varphi)(\bar{u}_{r}\gamma^{\mu}u_{r})$	$\begin{array}{ c c c c c } Q_{quqd}^{(1)} & (\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t) & Q_{qqu} & \varepsilon \end{array}$		$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j}) ight]$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^\gamma)^T C e_t ight]$		
$^{\mathcal{Q}}\varphi B$	$\varphi \varphi D_{\mu\nu}D$	& aG	$(q_p \circ - \omega_r) \varphi \circ \mu_{\mu\nu}$	$\mathcal{Q} \varphi u$	$(\varphi \circ D_{\mu} \varphi)(w_p + w_r)$	$Q_{quqd}^{(8)} (\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$		$Q_{qqq}^{\left(1 ight) }$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$		$\left[(q_s^{\gamma m})^T C l_t^n \right]$	
$Q_{\varphi WB}$	$arphi^{\prime} au^{\prime}arphi W^{\prime}_{\mu u}B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi d}$	$(\varphi' i D_{\mu} \varphi) (d_p \gamma^{\mu} d_r)$	$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	$Q_{qqq}^{\left(3 ight)}$	$arepsilon^{lphaeta\gamma}(au^{I}arepsilon)_{jk}(au^{I}arepsilon)_{mn}\left[(q_{p}^{lpha j})^{T}Cq_{r}^{eta k} ight]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n} ight]$		$\left[Cq_r^{\beta k}\right]\left[(q_s^{\gamma m})^T Cl_t^n\right]$	
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar{q}_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu u} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu u} u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight.$	Cu_r^{β}	$[(u_s^{\gamma})^T Ce_t]$	

[W. Buchuller, D.Wyler 1986] [B. Grzadkowski et al, 2010] [L. Lehman, A. Marin, 2015] [B. Henning et al., 2015]

• Valid up to scale Λ .

- Extends the reach of NP search beyond LHC energy.
- Global approach: all measurements, top, Higgs, EW, B,... are accessing the same operators and can be combined.

C.O.

The global EFT fit

SMEFT makes sense only if a global strategy is used for extracting information from experiments.

- Assume all operator coefficients/couplings might not be zero at the scale of measurements.
- ▶ In practice, may not easy for EXP analyses.
- In practice theorists often take bottom-up approaches
- Fit to <u>observables</u> (xsec, distributions, polarizations,...) provided by SM measurements, typically unfolded.
- EXP uncertainties often treated in an approximated way.

First example: Global fit for (flavor conserving) couplings at Tevatron+LHC 7/8

[Buckley, Englert, Ferrando, Miller, Moore, Russell, White, 16]

Operators

	X^3		$arphi^6 ext{ and } arphi^4 D^2$		$\psi^2 arphi^3$							
Q_G	$f^{ABC}G^{A u}_\mu G^{B ho}_ u G^{C\mu}_ ho$	Q_{arphi}	$(arphi^\daggerarphi)^3$	Q_{earphi}	$(arphi^\dagger arphi) (ar l_p e_r arphi)$							
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{arphi \Box}$	$(arphi^\daggerarphi)\Box(arphi^\daggerarphi)$	Q_{uarphi}	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(ar{L}L)(ar{R}R)$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	Q_{darphi}	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{cc}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{lc}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J ho}_{\nu}W^{K\mu}_{ ho}$					$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
		(2.72		(2, 2, 5, -		$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$	
$X^2 \varphi^2$			$\psi^{2}X\varphi$		$\psi^2 \varphi^2 D$		$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r)(ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar q_p \gamma_\mu q_r) (ar e_s \gamma^\mu e_t)$	
$Q_{\varphi G}$	$arphi^\dagger arphi G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(ar{l}_p \sigma^{\mu u} e_r) au^I arphi W^I_{\mu u}$	$Q^{(1)}_{arphi l}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{l}_p \gamma^\mu l_r)$	$Q_{lq}^{(3)}$	$(ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar u_s \gamma^\mu u_t)$	
$Q_{\varphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(ar{l}_p \sigma^{\mu u} e_r) arphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(arphi^\dagger i \overleftrightarrow{D}^I_\mu arphi) (ar{l}_p au^I \gamma^\mu l_r)$			$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
$Q_{arphi W}$	$arphi^{\dagger} arphi W^{I}_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{arphi e}$	$(\varphi^{\dagger}i \overset{\dot{D}}{D}_{\mu} \varphi)(\bar{e}_{p} \gamma^{\mu} e_{r})$			$Q_{ud}^{(0)}$	$(u_p \gamma_\mu T^A u_r) (d_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$ $Q_{qd}^{(8)}$	$(ar{q}_p\gamma_\mu q_r)(d_s\gamma^\mu d_t) onumber \ (ar{q}_p\gamma_\mu T^A q_r)(ar{d}_s\gamma^\mu T^A d_t)$	
$Q_{arphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{q}_p \gamma^\mu q_r)$	$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	B-violating		
$Q_{\varphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$	Q _{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	$(\bar{d}_{s}q_{t}^{j}) = Q_{duq} = \varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(d_{p}^{lpha})\right]$		$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k ight]$	
$Q_{n\widetilde{p}}$	$arphi^{\dagger}arphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_{p}\sigma^{\mu u}T^{A}d_{r})\varphi G^{A}_{\mu u}$	Quan	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{n}\gamma^{\mu}u_{r})$	$Q_{quqd}^{(1)} \qquad (\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$		Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j})^TCq_r^{eta k} ight]\left[(u_s^{\gamma})^TCe_t ight]$		$\left[(u_s^\gamma)^T C e_t \right]$	
φ_{φ_B}			$(- \mu \mu) I \mu I$	0	$(1 + \frac{1}{2})$	$Q_{quqd}^{(8)} (\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$		$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$		$\left[(q_s^{\gamma m})^T C l_t^n\right]$	
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{*} \varphi W^{*}_{\mu \nu} B^{\mu \nu}$	Q_{dW}	$(q_p \sigma^{\mu\nu} d_r) \tau^* \varphi W^*_{\mu\nu}$	$Q_{arphi d}$	$(\varphi^{\imath} D_{\mu} \varphi) (d_p \gamma^{\mu} d_r)$	$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r)arepsilon_{jk}(ar{q}_s^k u_t)$	$Q_{qqq}^{\left(3 ight) }$	$\varepsilon^{lphaeta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}\left[(q_p^{lpha j})^TCq_r^{eta k} ight]\left[(q_s^{\gamma m})^TCl_t^n ight]$		$\left[Cq_{r}^{eta k} ight]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n} ight]$	
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar{q}_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu u} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu u} u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight.$	$Cu_r^{\beta}]$	$\left[(u_s^{\gamma})^T C e_t\right]$	

[Cao, Wudka, Yuan, 07] [Aguilar-Saavedra, 08] [CZ, Willenbrock, 10]

Measurements

Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.	Dataset	\sqrt{s} (TeV)	Measurements	arXiv ref.	
Top pair production								
Total cross-s	sections:			Differential	cross-sections	:		
ATLAS	7	lepton+jets	1406.5375	ATLAS	7	$p_T(t), M_{tar{t}}, y_{tar{t}} $	1407.0371	
ATLAS	7	dilepton	1202.4892	CDF	1.96	$M_{tar{t}}$	0903.2850	
ATLAS	7	lepton+tau	1205.3067	CMS	7	$p_T(t), M_{tar{t}}, y_t, y_{tar{t}}$	1211.2220	
ATLAS	7	lepton w/o b jets	1201.1889	CMS	8	$p_T(t), M_{tar{t}}, y_t, y_{tar{t}}$	1505.04480	
ATLAS	7	lepton w/ b jets	1406.5375	DØ	1.96	$M_{tar{t}}, p_T(t), y_t $	1401.5785	
ATLAS	7	tau+jets	1211.7205					
ATLAS	7	$tar{t},Z\gamma,WW$	1407.0573	Charge asyn	nmetries:			
ATLAS	8	dilepton	1202.4892	ATLAS	7	$A_{ m C}~({ m inclusive}{+}M_{tar{t}},y_{tar{t}})$	1311.6742	
\mathbf{CMS}	7	all hadronic	1302.0508	CMS	7	$A_{ m C}~({ m inclusive}{+}M_{tar{t}},y_{tar{t}})$	1402.3803	
CMS	7	dilepton	1208.2761	CDF	1.96	$A_{ m FB}~({ m inclusive}{+}M_{tar{t}},y_{tar{t}})$	1211.1003	
CMS	7	lepton+jets	1212.6682	DØ	1.96	$A_{ m FB}~({ m inclusive}{+}M_{tar{t}},y_{tar{t}})$	1405.0421	
\mathbf{CMS}	7	lepton+tau	1203.6810					
CMS	7	tau+jets	1301.5755	Top widths:				
CMS	8	dilepton	1312.7582	DØ	1.96	$\Gamma_{\rm top}$	1308.4050	
$\mathrm{CDF} + \mathrm{D} \emptyset$	1.96	Combined world average	1309.7570	CDF	1.96	$\Gamma_{ m top}$	1201.4156	
Single top p	roduction			W-boson hel	licity fraction	s:		
ATLAS	7	t-channel (differential)	1406.7844	ATLAS	7		1205.2484	
CDF	1.96	s-channel (total)	1402.0484	CDF	1.96		1211.4523	
CMS	7	t-channel (total)	1406.7844	CMS	7		1308.3879	
CMS	8	t-channel (total)	1406.7844	DØ	1.96		1011.6549	
DØ	1.96	s-channel (total)	0907.4259					
DØ	1.96	t-channel (total)	1105.2788					
Associated production		Run II data						
ATLAS	7	$tar{t}\gamma$	1502.00586	CMS	13	$t\bar{t}$ (dilepton)	1510.05302	
ATLAS	8	$t\bar{t}Z$	1509.05276					
CMS	8	$t\bar{t}Z$	1406.7830					

$$\begin{array}{l} O^{(3)}_{\varphi Q} = i \frac{1}{2} y_t^2 \Big(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \Big) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ \\ \textbf{Charged} \quad O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W^{I}_{\mu\nu} \\ \\ O_{\varphi \varphi} = i y_t^2 \left(\varphi^{\dagger} D_{\mu} \tilde{\varphi} \right) (\bar{b} \gamma^{\mu} t) \\ \\ O_{bW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} b) \varphi W^{I}_{\mu\nu} \end{array}$$

Non-negligible effects from O_{tG} to ttH: [Maltoni, Vryonidou, CZ, 16] see also constraining O_{G} from multi-jets: [Krauss, Kuttimalai, Plehn, 16]

Decay & distribution

Operators differ in shapes, e.g.

- Energy dependence: E²/Λ² => high sensitivity at tail
- Angular dependence: Lorentz structure
- Asymmetries (A_{FB}, A_C): lifting four-fermion degeneracies.

[Rosello, Vos, 16]

Most sensitivity in the tails

Extracting global bounds

[Buckley, Englert, Ferrando, Miller, Moore, Russell, White, 16]

Are we (theorists) done?

Towards a global EFT "search"

- The ideal approach goes in a top-down way:
 - No SM assumption. No unfolding.
 - Use all information of events (MVA analyses) => maximize sensitivity.
- However, it assumes several conditions:
 - EXP analyses are fully coordinated and can be combined.
 - TH setup is final (basis, calculation, tools...), dependence on additional TH assumptions is minimal.
- Still early, but should start to prepare.

Towards a global EFT "search"

- This can be done by using the bottom-up approach.
- Fit with (continuously extendable) set of observables.
- Results should be provided with the minimal systematic uncertainty breakdown.
- The advantage is that <u>TH progresses</u>, such as improved predictions, evaluation of uncertainties, combination of more channels/ observables, can be constantly and continuously added. (see examples)

Progresses in the past ~5 years

- Operator running/mixing
- Extension to dim-7/8
- Re-parametrization invariance
- One-loop matching with functional approach

HEFT tools

[Alonso, Jenkins, Manohar, Trott, 13] [Jung, Ko, Yoon, Yu, 14]

[Elias-Miro, Grojean, Gupta, Marzocca, 13]

[Lehman, Martin, 15] [Henning, Lu, Melia, Murayama, 15a] [Liao, Ma, 16] [Henning, Lu, Melia, Murayama, 15b]

[Passarino, 16] [Brivio, Trott, 17]

[Henning, Lu, Murayama, 14] [Henning, Lu, Murayama, 16] [Drozd, Ellis, Quevillon, You, 15] [Ellis, Quevillon, You, Zhang, 16] [Zhang, 16]

II.3.1	High-e	nergy physics tools for the study of the Higgs boson properties in EFT 373
	II.3.1.a	Introduction
	II.3.1.b	HIGLU: Higgs boson production via gluon fusion
	II.3.1.c	HAWK: vector boson fusion and Higgs-strahlung channels
	II.3.1.d	HPAIR: Higgs boson pair production via gluon fusion
	II.3.1.e	EHDECAY, Higgs boson decays in the effective Lagrangian approach 378
	II.3.1.f	Higgs Pseudo-Observables in the universal FEYNRULES output
	II.3.1.g	Higgs and BSM characterization in the MADGRAPH5_aMC@NLO framework382
	II.3.1.h	Higgs boson properties with the JHUGEN / MELA framework
	II.3.1.i	Higgs boson pair production in HERWIG 7
	II.3.1.j	Anomalous couplings in VBFNLO
	II.3.1.k	Event generation with WHIZARD
	II.3.1.1	Constraints on non-standard Higgs boson couplings with HEPFIT
	II.3.1.m	ROSETTA

Handbook of LHC Higgs Cross Sections: 4

NLO top EFT

In EFT, predictions can be systematically improved.

 $\mathcal{O}(1) + \mathcal{O}(\alpha_s) + \mathcal{O}(1/\Lambda^2) + \mathcal{O}(\alpha_s/\Lambda^2) + \cdots$

- FCNC [Degrande, Maltoni, Wang, CZ, 15] [G. Durieux, F. Maltoni, CZ, 14]
- tt [D. B. Franzosi, CZ, 15]
- single t [CZ, 16]
- tt+H [Maltoni, Vryonidou, CZ, 16]
- tt+Z/γ [Bylund, Maltoni, Tsinikos, Vryonidou, CZ, 16]

Process	O_{tG}	O_{tB}	O_{tW}	$O_{\varphi Q}^{(3)}$	$O_{\varphi Q}^{(1)}$	$O_{\varphi t}$	$O_{t\varphi}$	<i>0</i> 4f	$O_{\varphi G}$
$t \rightarrow bW \rightarrow bl^+ v$	\checkmark		\checkmark	\checkmark				\checkmark	
$pp \rightarrow t\bar{q}$	\checkmark		\checkmark	\checkmark				\checkmark	
$pp \rightarrow tW$	\checkmark		\checkmark	\checkmark					
$pp \rightarrow t\bar{t}$	\checkmark							\checkmark	
$pp \rightarrow t\bar{t}\gamma$	\checkmark	\checkmark	\checkmark					\checkmark	
$pp \rightarrow t\gamma j$	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	
$pp \rightarrow t\bar{t}Z$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
$pp \rightarrow tZj$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
$pp \rightarrow t\bar{t}W$	\checkmark							\checkmark	
$pp \rightarrow t\bar{t}H$	\checkmark						\checkmark	\checkmark	\checkmark
$pp \rightarrow tHj$	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
$e^+e^- \rightarrow t\bar{t}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
$(LO)gg \rightarrow H, HH, Hj$	\checkmark						\checkmark		\checkmark
$(LO)gg \rightarrow HZ$	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		✓

NLO motivation

- Same for SM (Dim=4)
 - Accuracy: corrections relevant for total rate and shapes
 - Precision: control uncertainties from scale/PDF
- Specific issues for EFT (Dim>=6), i.e. when NLO is the first order where non-trivial EFT structure manifests
 - Operator mixing (and RG induced constraints, see [Degrande et al. 12] [Elias-Miro et al.
 13] [Jung et al. 14] [Blas, Chala, Santiago, 15] [Cirigliano, Dekens, de Vries, Mereghetti, 16]...)
 - EFT scale uncertainty (see [Maltoni, Vryonidou, CZ, 16])
 - New operators arise!

Probing Higgs self coupling via single Higgs

[Degrassi, Giardino, Maltoni, Pagani, 16]

The trilinear coupling appears in Single Higgs processes at NLO

- tt
 t H receives sizeable positive corrections.
- The other σ receive very small positive corrections.
- The corrections have a parabolic shape around the SM.

See also [Gorbahn, Haisch, 16] [Degrassi, Fedele, Giardino, 17]

An NLO fit example: Global fit for the top FCNC sector

[G. Durieux, F. Maltoni, CZ, 14]

Operators

Two-quark operators: $\mathbf{10} \times \mathbf{2}_{(u,c)}$ complex coefficients Scalar: $O_{u\varphi} \equiv -y_t^3 \quad \bar{q} u \tilde{\varphi} \quad (\varphi^{\dagger} \varphi - v^2/2),$ Vector: $[O_{\varphi q}^+ + O_{\varphi q}^-]/2 \equiv y_t^2/2 \quad \bar{q} \gamma^{\mu} q \quad \varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi,$ $[O_{\varphi q}^+ - O_{\varphi q}^-]/2 \equiv y_t^2/2 \quad \bar{q} \gamma^{\mu} \tau^I q \quad \varphi^{\dagger} i \overrightarrow{D}_{\mu}^I \varphi,$ $O_{\varphi u} \equiv y_t^2/2 \quad \bar{u} \gamma^{\mu} u \quad \varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi,$ Tensor: $O_{uB} \equiv y_t g_Y \quad \bar{q} \sigma^{\mu\nu} \tau^I u \tilde{\varphi} \quad B_{\mu\nu},$ $O_{uW} \equiv y_t g_W \quad \bar{q} \sigma^{\mu\nu} \tau^I u \tilde{\varphi} \quad W_{\mu\nu}^I,$ $O_{uG} \equiv y_t g_s \quad \bar{q} \sigma^{\mu\nu} T^A u \tilde{\varphi} \quad G_{\mu\nu}^A.$

Two-quark–two-lepton operators: $\mathbf{8} \times \mathbf{2}_{(u,c)} \times \mathbf{3}^2$ complex coefficients

Four-quark operators: ...

$$\overleftrightarrow{D}_{\mu}^{(l)} \equiv (\tau')\overrightarrow{D}_{\mu} - \overleftarrow{D}_{\mu}(\tau')$$

EFT predictions

 $C_{lq}^{-(a+3)}$ $C_{lq}^{-(a+3)}$ $-0.053 - \underset{-5\%}{0.1} \underset{-8\%}{i}$ +0.069 -0.052 + 0.34i+0.014 - 0.013i0 -0.02 - 0.2 i -9% +6%-16%-9% -8% $C_{eq}^{(a+3)}$ $C_{eq}^{(a+3)}$ -0.007 + 0.017+0.069+0.017 + 0.18i -0.053 + 0.09i-0.054 - 0.3 *i* -9% -10% -8% +0%+6%-8% $C_{\varphi q}^{-(a+3)}$ +1.7 - 0.0095i-5.7 - 0.0095i+0.27 + 0.2*i* $C_{\varphi q}^{-(a+3)}$ +1.7-8% -9% -8%Re -3.9 - 0.029*i* $C_{uB}^{(a3)}$ +0.16 + 0.14i $C_{uB}^{(a3)}$ +0.64-9% _9% -0.53 - 0.47i+6.6 $C_{uW}^{(a3)}$ $C_{uW}^{(a3)}$ +0.002 $C_{uG}^{(a3)}$ $C_{uG}^{(a3)}$ $C_{lu}^{(a+3)}$ $C_{lu}^{(a+3)}$ $-0.053 - 0.1_{-5\%}i$ $-\underset{-16\%}{0.052} + \underset{-8\%}{0.34}i$ +0.069-0.02 - 0.2i-0.002 + 0.013i0 +6%-9% $C_{eu}^{(a+3)}$ $C_{eu}^{(a+3)}$ +0.069+0.017 + 0.18*i* -0.053 + 0.09i-0.054 - 0.3i+0.0067 - 0.0067-10% -8%+0%-9% $C_{\varphi u}^{(a+3)}$ $C_{\varphi u}^{(a+3)}$ +1.7 - 0.0095i- 5.7 - 0.0095i -0.17 - 0.09*i* +1.7-9% -8% -8% +Re $C_{uB}^{(3a)*}$ -0.098 - 0.068i $C_{uB}^{(3a)*}$ +0.64- 3.9 - 0.029*i* +0.31 + 0.21i+6.6 $C_{uW}^{(3a)*}$ $C_{\mu W}^{(3a)*}$ +0.00066 $C_{uG}^{(3a)*}$ C^(3a)* $+0.02 \left(|C_{lequ}^{1(13)}|^{2} + |C_{lequ}^{1(31)}|^{2} \right) + 0.81 \left(|C_{lequ}^{3(13)}|^{2} + |C_{lequ}^{3(31)}|^{2} \right)$

Higher orders can be consistently included. In practice, top FCNC @ NLO in QCD is available in the form of UFO models, and can be directly used by NLO event generator e.g. MG5_aMC@NLO

http://feynrules.irmp.ucl.ac.be/wiki/TopFCNC

[Degrande, Maltoni, Wang, CZ, 15]

your_shell> ./bin/mg5								
MG5_aMC>	import model Top_FCNC							
MG5_aMC>	<pre>generate p p > t h [QCD</pre>							
MG5_aMC>	output some_DIR							
MG5_aMC>	launch							

See also:

[Y. Wang et al. 2012][B. H. Li et al. 2011] [Y. Zhang et al. 2011][J. Gao et al. 2011]

Higher orders can be consistently included. In practice, top FCNC @ NLO in QCD is available in the form of UFO models, and can be directly used by NLO event generator e.g. MG5_aMC@NLO

 $+0.02\left(|C_{lequ}^{1(13)}|^{2}+|C_{lequ}^{1(31)}|^{2}\right)+0.81\left(|C_{lequ}^{3(13)}|^{2}+|C_{lequ}^{3(31)}|^{2}\right)$

~(3a)*

http://feynrules.irmp.ucl.ac.be/wiki/TopFCNC

[Degrande, Maltoni, Wang, CZ, 15]

+0.00066

your_shell> ./bin/mg5								
MG5_aMC>	import model Top_FCNC							
MG5_aMC>	generate $p p > t h$ [QCD							
MG5_aMC>	output some_DIR							
MG5_aMC>	launch							

C^(3a)* uG

See also:

[Y. Wang et al. 2012][B. H. Li et al. 2011] [Y. Zhang et al. 2011][J. Gao et al. 2011]

Global limits

Global limits

More NLO

SMEFT@NLO:

- H decay: [Ghezzi, Gomez-Ambrosio, Passarino, Uccirati, 15a] [Hartmann, Trott, 15] [Ghezzi, Gomez-Ambrosio, Passarino, Uccirati, 15b] [Gauld, Pecjak, Scott, 15] [Gauld, Pecjak, Scott, 16]
- Z decay: [Hartmann, Shepherd, Trott, 16]
- top decay: [CZ, 14] [CZ, Maltoni, 13]
- Higgs EW production: [Degrande, Fuks, Mawatari, Mimasu, Sanz, 16]
- tt+Z/γ: [Rontsch, Schulze, 14] [Rontsch, Schulze, 15]

and many more

Sub-sets of operators, where NLO predictions are complete, can be continuously studied and added to the program.

[Rontsch, Schulze, 15]

- First prediction for pp→ttZ/γ→ttll including off-shell Z/photon, at NLO in QCD.
- Projected constraints derived from Δφ_{II}.
- CP-even/odd ttZ couplings included.

- Projections at future lepton colliders are being investigated.
- Full NLO prediction for <u>ee→WbWb</u> available, i.e. <u>top</u> <u>pair</u> (tt) and <u>single t</u> (tWb).
- Cross section, FB asymmetry, and Helicity angle, at 2 beam energies and 2 polarizations are used. More to come.

Towards a top-down global fit

Towards a top-down global fit

[Lemaître, Brochet, Wertz]

- ttbar analyzed with 7 operators in a top-down way.
- MEM based on full kinematic information.
- Sensitivity improved w.r.t rates and distributions.

liminal		Uncertainty on $c_i \Lambda^{-2}$ (TeV ⁻²)							
Pre	crator	Yields only $\Delta \phi(I^+, I^-)$		Variable D_i					
	\mathcal{O}_{tG}	0.0057	0.0057	0.0057					
	\mathcal{O}_{G}	0.072	0.071	0.049					
	$\mathcal{O}_{\phi G}$	0.19	0.18	0.17					
	$\mathcal{O}_{qq}^{(8,1)}$	0.32	0.31	0.24					
	$\mathcal{O}_{qq}^{(8,3)}$	2.23	2.06	1.29					
	$\mathcal{O}_{ut}^{(8)}$	0.55	0.46	0.36					
	$\mathcal{O}_{dt}^{(8)}$	0.73	0.63	0.50					

13 TeV, 100 fb⁻¹

Summary

- "Top couplings" are interpreted and extracted within the SMEFT framework. Global bottom-up approach has been followed by theorists. First results based on Run-I data are ready.
- In the meantime, the TH framework continues to evolve, with improved predictions and non-trivial higher-order effects. Tools are being developed. These progresses are constantly and continuously being added to the fitting program.
- For the future, both top-down and bottom-up approaches are possible. More joint TH/EXP discussions are still needed concerning the best fitting/searching strategy.

Backups

Wtb

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_L P_L + V_R P_R) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{m_W} (g_L P_L + g_R P_R) t W_{\mu}^{-} + \text{h.c.}$$

$$\frac{g}{\sqrt{2}M_W} \bar{b} [i \sigma^{\mu\nu} k_{\nu} (f_{1L} P_L + f_{1R} P_R) - (m_b f_{1L} - m_t f_{1R}) \gamma^{\mu} P_L - (-m_t f_{1L} + m_b f_{1R}) \gamma^{\mu} P_R - q^{\mu} (f_{1L} P_L + f_{1R} P_R)] t W_{\mu}^{-} + \text{H.c.},$$

$$- \frac{g}{\sqrt{2}M_W} \bar{b} [k^{\mu} (f_{2L} P_L + f_{2R} P_R) - i \sigma^{\mu\nu} q_{\nu} (f_{2L} P_L + f_{2R} P_R) - (m_b f_{2L} + m_t f_{2R}) \gamma^{\mu} P_L - (m_t f_{2L} + m_b f_{2R}) \gamma^{\mu} P_R] t W_{\mu}^{-} + \text{H.c.},$$

$$(J.A. Aguilar-Saavedra]$$

- <u>Anomalous Coupling</u>: no SM symmetry => 4 more "off-shell" coupling constants.
- <u>Gauge-invariant operators</u>: gauge symmetry leads to contact interactions cancelling the "off-shell" contribution => back to 4 d.o.f
- The widely-used V_{L,R}/g_{L,R} parametrization is good only when they are understood as being derived from a the EFT framework.

RG-induced constraints

TABLE VI. An overview of the dominant contributions of the real parts of the anomalous top-Higgs couplings to high- and low-energy observables. \checkmark indicates a direct (tree-level) contribution, × a negligible contribution, $\gamma_{t\to X}$ a contribution induced by the RG flow, and "Threshold" a threshold contribution with the numbers indicating the corresponding equations.

For RG induced constraints see also [Degrande et al. 12] [Elias-Miro et al. 13] [Jung et al. 14] [Blas, Chala, Santiago, 15], ...

-0.8

-0.2

-0.1

0.0

 $v^2 c_{\mathrm{Wt}}$

0.1

-0.005

EFT scale uncertainty

EFT scale uncertainty

- EFT scale uncertainties are very much reduced at NLO.
- RG is sometimes thought to be an approximation for full NLO, but it's often not the case.

chromo-dipole $O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G_{\mu\nu}$ **Yukawa** $O_{t\phi} = y_t^3 (\phi^{\dagger} \phi) \bar{Q} t \tilde{\phi}$ **gluon-Higgs** $O_{\phi G} = y_t^2 (\phi^{\dagger} \phi) G^A_{\mu\nu} G^{A\mu\nu}$ $O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu}$

13 TeV	σ LO	σ/σ_{SM} LO
σ_{SM}	$0.0256\substack{+0.00904+0.000\\-0.00625-0.000}$	$1.000\substack{+0.000+0.000\\-0.000-0.000}$
$\sigma_{t\phi}$	$0.00580\substack{+0.00209+0.000297\\-0.00144-0.000259}$	$0.227\substack{+0.00114+0.0116\\-0.000918-0.0101}$
$\sigma_{\phi G}$	$-1.208\substack{+0.231+0.0948\\-0.291-0.113}$	$-47.3_{-6.14-4.42}^{+6.18+3.707}$
σ_{tG}	$-0.0347^{+0.00804+0.0041}_{-0.0113-0.0013}$	$-1.356^{+0.0271+0.161}_{-0.0225-0.051}$
$\sigma_{t\phi,t\phi}$	$0.000748^{+0.000290+0.000079}_{-0.000194-0.000065}$	$0.0293\substack{+0.000727+0.0031\\-0.000584-0.0026}$
$\sigma_{\phi G,\phi G}$	$73.02_{-6.48-10.9}^{+7.54+14.1}$	$2856.2_{-628.5-425}^{+743.3+552}$
$\sigma_{tG,tG}$	$0.0496\substack{+0.0198+0.00505\\-0.01305-0.0126}$	$1.940\substack{+0.0650+0.198\-0.0477-0.493}$
$\sigma_{t\phi,\phi G}$	$-0.303^{+0.0506+0.0362}_{-0.0641-0.0453}$	$-11.83^{+1.39+1.42}_{-1.41-1.77}$
$\sigma_{t\phi,tG}$	$-0.00870^{+0.00213+0.00163}_{-0.00309-0.00120}$	$-0.340^{+0.000238+0.064}_{-0.000438-0.047}$
$\sigma_{\phi G,tG}$	$3.77_{-0.681-0.802}^{+0.914+0.554}$	$147.5^{+20.83+20.7}_{-18.86-31.4}$

(Loop-induced) HH: top coupling can have large impact on the extraction of Higgs self coupling

FCNC

- Consider two kinds of flavor-changing couplings: tcZ and tcll
- LHC more sensitive to the former (2-body decay)
- LEP2 more sensitive to the latter (ee>tt cross section goes up quickly with energy)
- LEP bounds are still complementary to LHC

FCNC

G	authier Durieux [®]	er Durieux [®] T T T V,T					<i>tqℓℓ</i> S,V,T	<i>tqqq</i> S,V,T	tqh S
Th	ie broken-phase ef	fective Lagrangian:	1	✓ X ✓ ✓,✓ X X					1
	• $e^+e^- \rightarrow t j$ $e^-p \rightarrow e^-t$	OPAL, DELPHI, ALEPH, H1, ZEUS	L3		√ √	✓, × ×	×		
productior	• $p \stackrel{\leftarrow}{p} \stackrel{\rightarrow}{p} \rightarrow t$ $p \stackrel{\leftarrow}{p} \stackrel{\rightarrow}{p} \rightarrow t j$ • $p p \rightarrow t \gamma$ $p p \rightarrow t \ell^+ \ell^-$ $p p \rightarrow t \gamma \gamma$	CDF, ATLAS D0, CMS CMS CMS	✓ ✓ × ×	×	× ✓ ×	× ×,√	×	tqqq S,V,T X	×
decay	$t ightarrow j\gamma$ • $t ightarrow j\ell^+\ell^-$ • $t ightarrow j\gamma\gamma$	CDF, D0, ATLAS, CMS CDF, D0, ATLAS, CMS CMS, ATLAS			✓ × ×	√, ×	×		1

- EXP analysis often assume one particular type of coupling/operator.
- In particular 4-fermion operators have long been overlooked.
- Theorists could often "recast" to have a global EFT interpretation, if fiducial cross sections are provided, but statistical combination is difficult.

Distributions

Most sensitivity in the tails

Operators differ in shapes, e.g.

- Energy dependence: 4-fermion operators leads to E²/Λ² dependence => high sensitivity at tail
- Angular dependence: forward scattering suppressed by Lorentz structure of Otw
- Asymmetries (A_{FB}, A_C): lift four-fermion degeneracies. [Rosello, Vos, 16]

Figure 9: The t-channel $(\bar{d}b \to \bar{u}t)$ differential cross section at $\sqrt{s} = 2m_t$. [CZ, Willenbrock, 10]