

Top pair cross-sections in ATLAS

Dimitris Varouchas

on behalf of the ATLAS collaboration

Shanghai, 18th May 2017

Top pair signatures

Rich topology allowing a plethora of studies

production cross-section production mechanism

Focus of this talk: tt-bar inclusive and differential cross-section measurements in ATLAS

at **13 TeV**

branching ratios (Wtb, rare decays) associated production (H, W, Z, γ)

Why the top quark cross-section?

- Strong tests of pQCD and SM
 - Sensitivity to **gluon PDF** at high p_T , α_s , **top quark mass**
- Measurement of QCD radiation (additional jets)
 produced with ttbar is crucial for tuning MC generator
 parameters

- → Improve overall top kinematics description
- tt(+X) is an important background of rare SM processes like ttH

- If new physics exists, likely to couple with the mass
 - **◆** Top quark sensitive to new physics searches
 - tt(+X) is important component of new physics signature (SUSY, exotics)
 - → Differential distributions more sensitive in probing such signals compared to inclusive

Inclusive ttbar cross-sections

- Measurements are in agreement with theory
- Inclusive measurements uncertainties are dominated by theory uncertainties
 - What can we (as experimentalists) do, to help improving theory uncertainties?
 - Do differential measurements

Cross-section ratio: $\sigma^{tot}(tt)/\sigma^{fid}(Z)$

JHEP 02 (2017) 117

- Use previously published ATLAS **measurements** of *ttbar* and $Z \rightarrow ll$
- Correlations for systematic uncertainties taken into account
- Important systematics cancel out
- Compared to predictions at NNLO precision made with six different PDF sets
- → ABM12 not compatible
 - \bullet Uses lower value of α_s

Many more ratios are studied

Jet multiplicity in eµ channel

- Clean signature, background < 5%
- Small background ratio

 Some discrepancy is observed at higher jet multiplicity bins

Jet multiplicity: results

E.P.J. C77 (2017) 220

- Reasonable compatibility between data and predictions
- Some sensitivity on QCD radiation scale variations

Lepton+jets resolved

- More background compared to di-lepton
- Medium branching ratio
- <u>ATLAS-CONF-2016-040</u>, analysis on **2015** dataset (**3.2 fb**-1)
- Unfold to the usual set of top and ttbar observables: p_T^t , $|y^t|$, $p_T^{t\bar{t}}$, $|y^{t\bar{t}}|$, $m^{t\bar{t}}$

Cross-section with boosted tops

• <u>ATLAS-CONF-2016-040</u>, analysis on **2015** dataset (**3.2 fb⁻¹**)

- ATLAS-CONF-2016-100, analysis on 2015+2016 dataset: 14.7 fb⁻¹
 - → Fore more details, M. Romano's talk on boosted objects

Control plots

Number of top-tagged large-R jets

Uncertainties

 MC generator modelling systematics important in all analyses

All-hadronic

Large-R jets	+18 / -15
Monte Carlo signal modelling	± 17
b-tagging	+13 / -12
Pileup	± 2.9
Luminosity	± 2.9
Small- R jets	± 1.0
Total Systematic Uncertainty	+29 / -24

Jet related systematics important as well

Top pt

- MC predicts harder p_T spectrum than the one observed in Data
- Similar slope in all channels

Top pt

- MC predicts harder p_T spectrum than this observed in Data
- Similar slope in all channels

Top pair mass

Sensitivity to MC generators and tunes

Top pair rapidity

- Low rapidity: good agreement
- High rapidity: Increasing discrepancy

Conclusions

- After Higgs boson discovery: biggest anomaly is the X750 GeV diphoton resonance the non-observation of new physics
- Attacking the TeV scale on the most important front: the top sector
 - ◆ Broad range of differential ttbar cross-section measurements, important for SM and BSM physics
 - Analysing 13 TeV to cover corners of phase space not accessible in Run1
 - * Larger uncertainties are often the MC modelling and jet energy scale
- Measurements provide discriminating power between MC models

◆ Use this information to improve MC modelling and thus reduce MC

modelling uncertainties

→ More elaborate results to come using the full 2015+2016 dataset

→ Stay tuned!

Back-up slides

PDF interpretations

Red = area accessible at LHC

Blue = area accessible using tt decays

Green = HERA measurements (mostly q)

How well do we know the gluon density

Impact of top cross sections on the gluon (NNPDF3.1)

Impact on the gluon

- Fig. The best precision in the large-x gluon is achieved by combining jets with top-pair and Z pt data
- ₽ In terms of constraining power at large-x, we find the hierarchy: jets > ttbar differential > Z pt

53

α_{s}

Top p_T

- MC predicts harder p_T spectrum than this observed in Data
- Similar slope in all channels

Top pt in Run 1

LHC Top Working Group

- Similar behaviour observed in Run 1
- Confirmed by ATLAS and CMS

MC Modelling studies

ATLAS-PUB-2016-020

- Comparison between unfolded ATLAS data and various MC generator predictions
 - ▶ 7,8,13 TeV RIVET routines
- Improve modelling of data through development of new MC generator configurations
 - Optimization of Powheg + {Pythia8, Herwig7}
 - Tune intrinsic merging and matching parameters

- Comparisons of
 - Variation of scales and tune
 - Different parton shower interfaces

h_{damp} parameter is used as a resummation damping factor, which is one of the parameters Different NLO generators including NLO multileg general controlling the ME/PS matching in Powheg and effectively regulates the high-pT radiation.

ttbar reco

Dilepton: neutrino weighting method

- Under-constrained of kinematics equation cannot be solved analytically
- Add constraints: mass of the top, mass of the W, eta of neutrinos

$$(\ell_{1,2} + \nu_{1,2})^2 = m_W^2 = (80.2 \text{ GeV})^2,$$

$$(\ell_{1,2} + \nu_{1,2} + b_{1,2})^2 = m_t^2 = (172.5 \text{ GeV})^2,$$

$$\eta(\nu), \ \eta(\bar{\nu}) = \eta_1, \ \eta_2,$$

- Scan on eta from -5 to 5
- The observed met value in each event is used to determine which solutions are more likely to be correct
- Two possible solutions for each assumption of $\eta(v)$ and $\eta(v)$. Only real solutions without an imaginary component are considered

Lepton+jet: pseudo-top algorithm

- Neutrinos 4-momentum
 - -x, -y from Met-x, Met-y
 - -z component calculated using the leptonic W boson mass constraint

Unfolding of detector-level measurements

Unfolding: making **detector** (reconstruction) measurements **comparable** to **theory**

Parton level:

directly probes the ME, PDFs, α_s , M_{top} , etc...

but, large model dependence and hence large uncertainties

Particle level: minimize theoretical uncertainties by matching

closely to detector phase space

suffers mostly by nonperturbative effects (parton shower, fragmentation, hadronisation, PDFs ...)

detector resolution and response

detector dependent modeling

The unfolding "journey"

(1) Event selection

(2) tt kinematic reconstruction

- Compare to theory predictions
- Test model of new **physics** that modify differential spectra

- (3) Bin-wise cross section measurement
 - Subtract background
 - Unfolding: correct for detector effects and acceptance

$$\frac{1}{\sigma}\frac{d\sigma^i}{d\mathbf{X}} = \frac{1}{\sigma}\frac{N_{\mathrm{Data}}^i - N_{\mathrm{BG}}^i}{\Delta_{\mathbf{X}}^i \epsilon^i L}$$

Migration matrix: correct effects related to detector resolution