

Boosted production at ATLAS and CMS

M. Romano (INFN – Bologna) On behalf of the ATLAS and CMS collaborations

Introduction

- LHC is a 'top factory'
 - Large center-of-mass energy combined with high luminosity

un-merged

< 200 GeV

partially merged.

200 - 350 GeV

boosted W

O(10) increase in cross section passing from 8 to 13 TeV

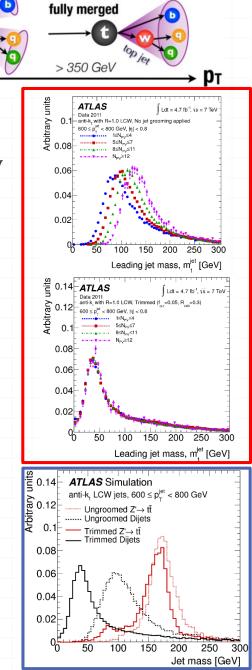
for $\Delta R \sim 1.0$

Access to phase space regions never explored before

Peasibility of differential measurements

- Stronger constraints to SM parameters
- Sensitivity to BSM processes

A challenging topology...


Individual top decay products cannot be resolved

- Ø Boosted tops appear as large-R jets
- Rule of thumb: $R \sim 2M/p_T$

Mitigate pileup contamination

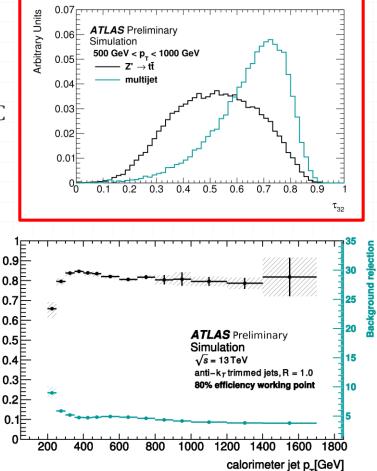
ø Jet grooming: remove soft particles coming from pileup

O Top-tagging: exploit substructure properties (like m_{jet}) to reject jets originated by light partons

Top tagging in ATLAS JHEP 1606 (2016) 093

Top tagging efficiency

Large-R jet reconstruction:


- Anti-*kt* with R = 1.0, $|\eta| < 2$, $p_T > 200$ GeV
- **Trimming**: subjets with R=0.3-0.2 (at 8 and 13 TeV) and $p_T > 0.05 \cdot p_T^J$ are **removed**
- O Trimmed jet mass corrected to particle top jet using MC

O Top tagging based on substructure variables:

- O Large-R jet mass
- N-subjettiness: shape variable related to the hypothesis of having N subjets:
 - *τ*₃₂ provides discrimination between jets originated by 3 body decays and 2 body decays
- **Kt splitting scale:** $\sqrt{d_{ij}} = \min(p_{T,i}, p_{T,j}) \cdot \Delta R_{ij}$

$$o \sqrt{d_{12}} \sim m_{top}/2$$

Used only at 8 TeV

ATL-PHYS-PUB-2015-053

Top tagging in CMS at 13 TeV CMS-PAS-IME-16-003

• Large-R jet reconstruction:

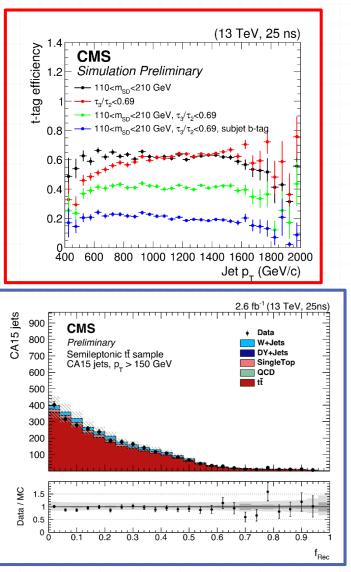
- Low p_T (~500 GeV): Cambridge/Aachen particle flow jets with R = 1.5 (CA15)
- High p_T : Anti-*kt* particle flow jets with R = 0.8 (AK8)

O High p_T top tagging:

• *N*-subjettiness and softdrop mass ($\beta = 0, z = 0.1$)

o Low p_T top tagging:

HEP Top tagger version 2. Discriminating variables:


 $^{o}m_{123}$: reconstructed top mass from three subjets obtained after a massdrop unclustering

o Reconstructed W to top mass double-ratio f_{Rec}

• *N*-subjettiness with AC15 jets after softdrop ($\beta = 1$, z = 0.2)

b-tagging: Multivariate CSV algorithm

- For CA15: use the three HTT subjets
- For AK8: use the subjets after the softdrop mass

18/05/17

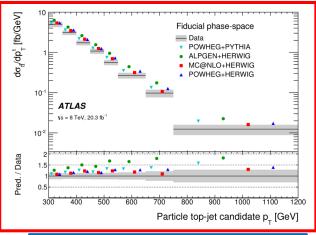
Top cross section measurements

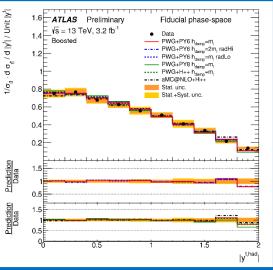
Differential cross section (l+jets) in ATLAS

Precisely measure differential cross-section of top pair at high pT:

- Oritical test of Standard Model.
- Monte Carlo generator tuning, constraints to the PDF of the proton.
- Sensitive to new physics search / background to BSM.
- 8 TeV: Parton and particle level *absolute* differential cross

section $\left(\frac{d\sigma}{dp_T^t}\right)$

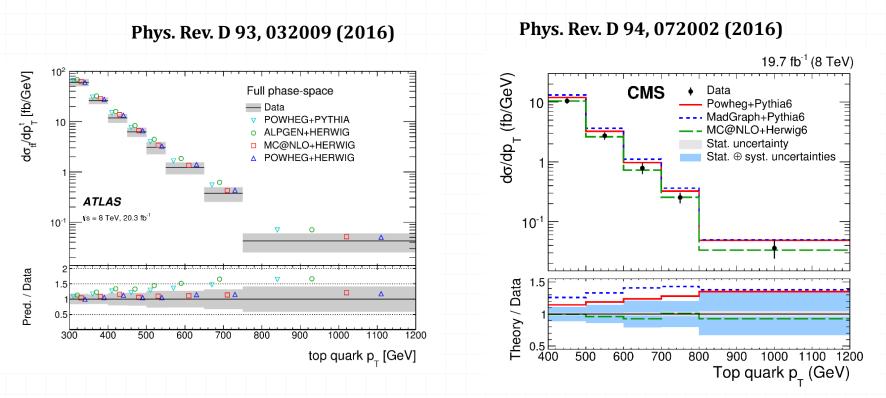

- **13 TeV**: **Particle** level *absolute* and *relative* differential cross section as a function of p_T^t and $|y_t|$
- Semi-leptonic (e/μ) channel


Hadronic top tagging:

- 8 TeV: $m_{jet} > 100 \text{ GeV}$ and $\sqrt{d_{12}} > 40 \text{ GeV}$
- o 13 TeV: 80% WP based on m_{jet} and au_{32}
- 13 TeV measurement already systematic-limited
 - *o* main uncertainty: large-*R* JES
 - 8 TeV: extrapolation to parton level affected by an increased signal modelling uncertainty

Phys. Rev. D 93, 032009 (2016) $\sqrt{s} = 8$ TeV, L = 20.3 fb⁻¹

ATLAS-CONF-2016-040 $\sqrt{s} = 13$ TeV, L = 3.2 fb⁻¹



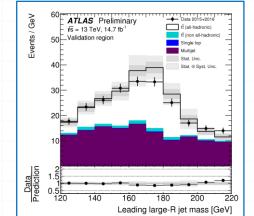
18/05/17

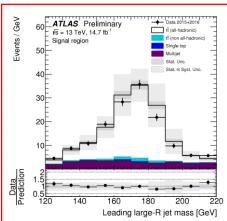
Parton level $d\sigma/dp_T^t$ in ATLAS and CMS

Parton level measurements allow direct comparisons among experiments

Compatible trends observed wrt different generators

18/05/17


Differential cross section (full hadronic) in


ATLAS

• Relative differential cross section in the full had channel

- Two large-*R* jet $(p_T^1 > 500 \text{ GeV} \text{ and } p_T^2 > 350 \text{ GeV}, mass in [122.5, 222.5] \text{ GeV})$
- Top tagging WP @50%
- At least two small-R jet (used for b-tagging)
- Main challenge: QCD background estimation
 - O Data driven ABCD method
 - $S_{QCD} = \frac{1}{2} \left(\frac{G}{A} + \frac{H}{B} \right) \times C$
 - Validated in region F

Main uncertainties: large-R jes, signal modelling, btag

0 t

Α

В

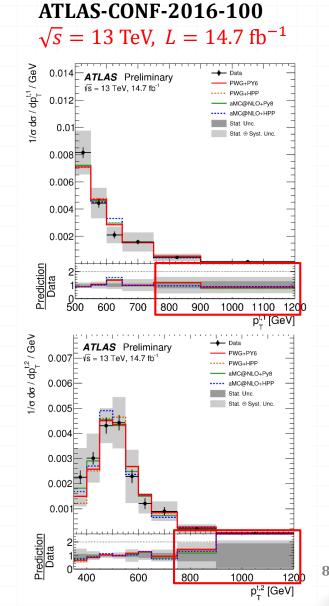
0 b

1b

2 b

1t

D


E

F

2t

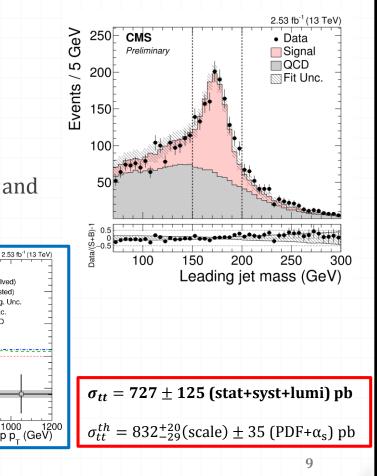
G

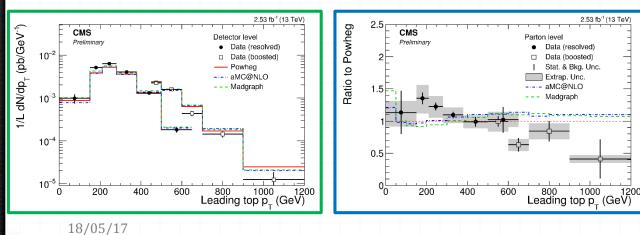
Η

Differential and inclusive cross section (full hadronic) in CMS $\frac{CMS-Top-16-013}{\sqrt{s} = 13 \text{ TeV}, L = 2.53 \text{ fb}^{-1}}$

Inclusive cross section, *detector* and *parton* level differential cross section

• Two anti-kt (R=0.8) jets ($p_T^1 > 450$ GeV and $p_T^2 > 200$ GeV) containing a b-subjets

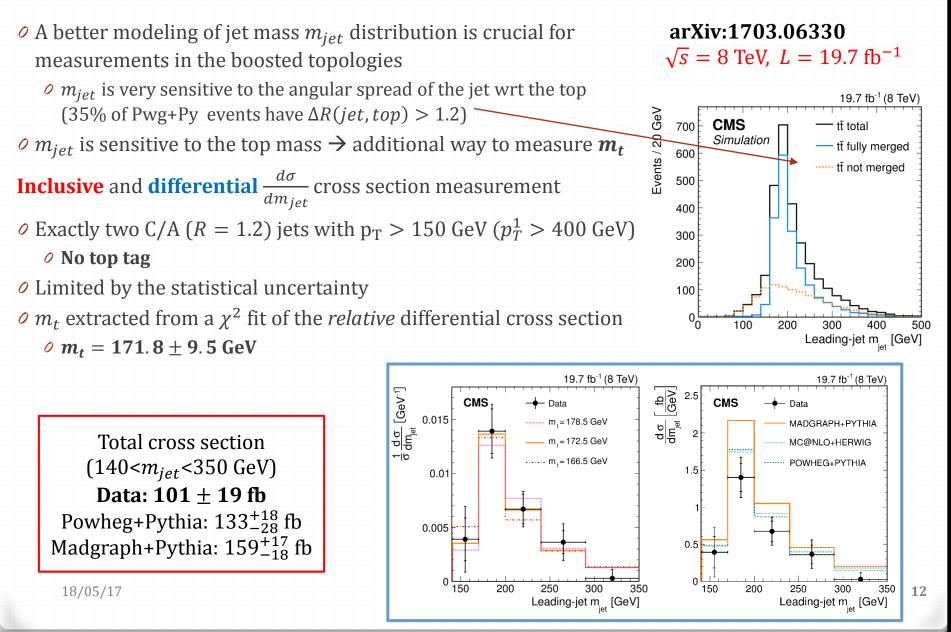

O Top tagging:


 ${\it o}$ Leading jet soft-drop mass 150 $< m_{SD} <$ 200 GeV

 ${\it o}\,$ Event Fisher discriminant built from τ_{21} and τ_{32}

 o Signal and QCD bkg extracted via a fit of m_{SD}

- QCD templates built from data in control region and corrected with MC to the signal region
- Limited by the statistical, QCD modelling (low pT), JES and bTag uncertainties

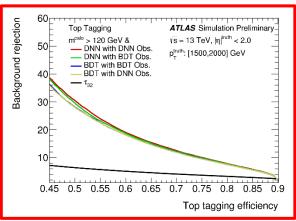


Top properties measurements

Charge asymmetry in ATLAS

 $A(\Delta) = \frac{N(\Delta > 0) - N(\Delta < 0)}{N(\Delta > 0) + N(\Delta < 0)}$ Phys. Lett. B756 (2016) 52 $\sqrt{s} = 8 \text{ TeV}, L = 20.3 \text{ fb}^{-1}$ \circ Top pair production via $q\overline{q}$ gives non-zero *forward-backward* asymmetry • Measured at Tevatron ($\Delta = y_t - y_{\bar{t}}$): $A_{FB} = 0.164 \pm 0.047, \ A_{FB}^{MCFM} = 0.073 \pm 0.022$ (Phys. Rev. D 87, 092002) do/dy FB asymmetry not defined at LHC (symmetric collider) • A_C (charge asymmetry) can be measured instead ($\Delta = |y_t| - |y_{\bar{t}}|$) O Diluted by the dominant gg production \circ ATLAS has measured A_c in the boosted l+jets topology \circ Boosted tops can probe A_C at high invariant mass O Sensitive to BSM effects ം 0.3 0.25 ATLAS 8 TeV, 20.3 fb⁻¹ data Ŧ ODD Dominated by theoretical and NLO .3 TeV) 0.2 0.2 large-R JES uncertainties 0.15 0.1 V 'Inclusive' measurement '[∓] 0.1 ATLAS $(m_{tt} > 750 \, \text{GeV})$ 0 V 6.0) $A_C = (4.2 \pm 3.2)\%$ 0.05 -0.1 A^o $A_C^{NLO} = (1.60 \pm 0.04)\%$ 0-SN TLAS 8 TeV, 20 fb -0.2 -0.05^L 18/05/17 0.5^{[1} > 0.75 0.75 - 0.9 0.9 - 1.3 > 1.3 0.2 0.1 0.3 m,, interval [TeV] A_{FB} (pp, 1.96 TeV)

Jet mass distribution in CMS


Summary

LHC offers a unique opportunity to explore extreme topologies through boosted tops ATL-PHYS-PUB-2017-004

- Several boosted top reconstruction algorithms have been (and are being) developed by ATLAS⁽¹⁾⁽²⁾ and CMS⁽³⁾
 - Jet grooming procedures allow for stability in high pileup conditions
 - Use of substructure variables improves the background discrimination
- Boosted tops have been used in SM measurements and BSM searches (not presented in this talk)
 - Lepton+jets differential cross section in ATLAS⁽⁴⁾⁽⁵⁾ and CMS⁽⁶⁾
 - Full hadronic differential and inclusive cross section in ATLAS⁽⁷⁾ and CMS⁽⁸⁾
 - Lepton+jets charge asymmetry in ATLAS⁽⁹⁾
 - Jet mass distribution in CMS⁽¹⁰⁾

We are entering an era where data statistics is not the limiting factor

- Main uncertainties: large-R jets and signal modelling
- O The measurements are "self improving" → can be used to improve future analyses
 - O By adding better constraints to the generator parameters
 - O By improving the understanding of the jet mass distribution
 - Stay tuned for new and improved measurements using the full 13 TeV data! 18/05/17

(1) JHEP 1606 (2016) 093

- (2) ATL-PHYS-PUB-2015-053
- (3) CMS-PAS-JME-19-003
- (4) Phys. Rev. D 93, 032009 (2016)
- (5) ATLAS-CONF-2016-040
- (6) Phys. Rev. D 94, 072002 (2016)
- (7) ATLAS-CONF-2016-100
- (8) CMS-Top-16-013
- (9) Phys. Lett. B756 (2016) 52
- (10) arXiv:1703.06330

Backup

Top tagging in CMS at 13 TeV CMS-PAS-JME-16-003

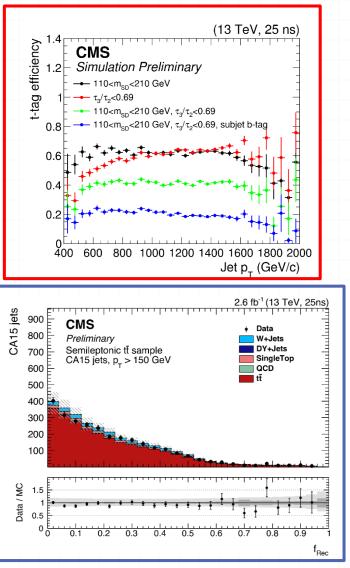
O Large-*R* jet reconstruction:

- Low p_T (~500 GeV): Cambridge/Aachen particle flow jets with R = 1.5 (CA15)
- High p_T : Anti-*kt* particle flow jets with R = 0.8 (AK8)

O High p_T top tagging:

- *N*-subjettiness and softdrop mass ($\beta = 0, z = 0.1$)
 - O Recursive pair-wise declustering, rejecting the softer jets not satisfying $\frac{\min(p_T^1, p_T^2)}{p_T^1 + p_T^2} > z \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$

o Low p_T top tagging:


HEP Top tagger version 2. Discriminating variables:

 $o\,m_{\rm 123}$: reconstructed top mass from three subjets obtained after a massdrop unclustering

• Reconstructed W to top mass ratio $f_{Rec} = \min_{ii} \left| \frac{\overline{m_{123}}}{\underline{m_W}} - 1 \right|$

- *N*-subjettiness with AC15 jets after softdrop ($\beta = 1, z = 0.2$)
- b-tagging: Multivariate CSV algorithm
 - For CA15: use the three HTT subjets
 - For AK8: use the subjets after the softdrop mass

 Top tagging at 8 TeV based on subjets from primary and secondary decomposition

Top tagging in CMS at 8 TeV

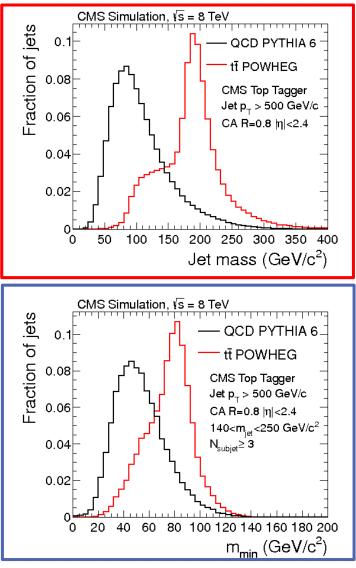
O Large-R jet reconstruction:

• Cambridge/Aachen (C/A) jets with R = 0.8, $|\eta| < 2.4$, $p_T > 350$ GeV

O Top tagging algorithm:

- Primary decomposition: recursively declusters the jet to find two well separated hard subclusters
- Secondary decomposition: declusters the previously found subclusters

O Top tagging based on subcluster variables:


Ø Jet mass

O Number of subclusters

• Minimum Pairwise Mass among the three hardest subjets:

 $m_{min} = \min(m_{12}, m_{13}, m_{23})$

Other top tagging algorithms: N-subjetness and HEP Top tagger

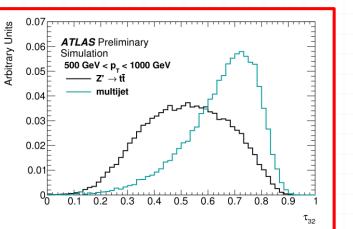
Top tagging in ATLAS JHEP 1606 (2016) 093

Large-*R* jet reconstruction:

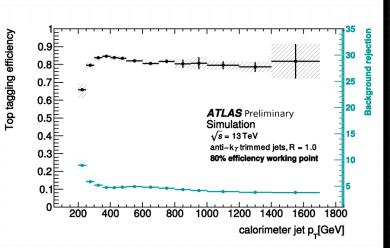
- *•* Anti-*kt* with R = 1.0, $|\eta| < 2$, $p_T > 200$ GeV
- **Trimming**: subjets with R=0.3-0.2 (at 8 and 13 TeV) and $p_T > 0.05 \cdot p_T^J$ are **removed**
- O Trimmed jet mass corrected to particle top jet using MC

O Top tagging based on substructure variables:

- O Large-R jet mass
- N-subjettiness: shape variable related to the hypothesis of having *N* subjets:


$$\tau_N = \frac{\sum_{i=1}^{n_{costintuents}} p_{T,i} \Delta R_i^{min}}{\sum_{i=1}^{n_{costintuents}} p_{T,i} R}$$

 $\sigma \tau_{32} = \tau_3/\tau_2$ provides discrimination between jets originated by 3 body decays and 2 body decays


• **Kt splitting scale:** $\sqrt{d_{ij}} = \min(p_{T,i}, p_{T,j}) \cdot \Delta R_{ij}$

$$O \sqrt{d_{12}} \sim m_{top}/2$$

Used only at 8 TeV

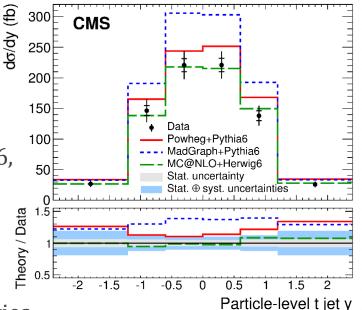
ATL-PHYS-PUB-2015-053

Differential and inclusive cross section (l+jets) in CMS Phys. Rev. D 94, 072002 (2016) $\sqrt{s} = 8$ TeV, L = 19.7 fb⁻¹

• **Integrated** ($p_T > 400$ GeV) and **differential** $\left(\frac{d\sigma}{dp_T^t} \text{ and } \frac{d\sigma}{dy^t}\right)$ cross section at **particle** and **parton** level

• Event selection 1 lepton (e/μ) + jets

• C/A large-R jet (R = 0.8), $p_T > 400$ GeV; mass ~ [140, 250] GeV

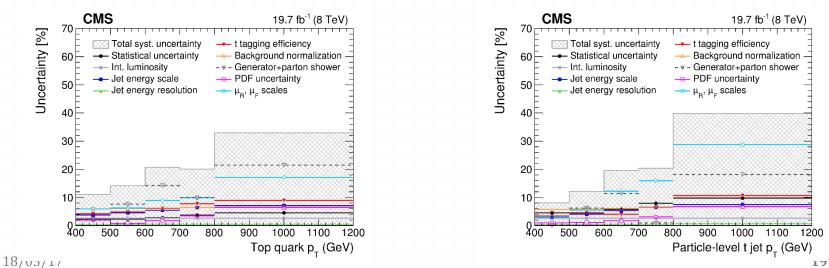

OCMS Top Tagger

- Signal yield extracted via maximum likelihood fit in (0t, 1t+0b, 1t+1b) exclusive categories
 - Background normalizations and uncertainties treated as nuisance parameters
- Inclusive cross section compared to Powheg+Pythia6, normalized to NNLO total cross section

• Parton level:
$$\frac{\sigma_{meas}}{\sigma_{th}} = 0.86 \pm 0.19$$

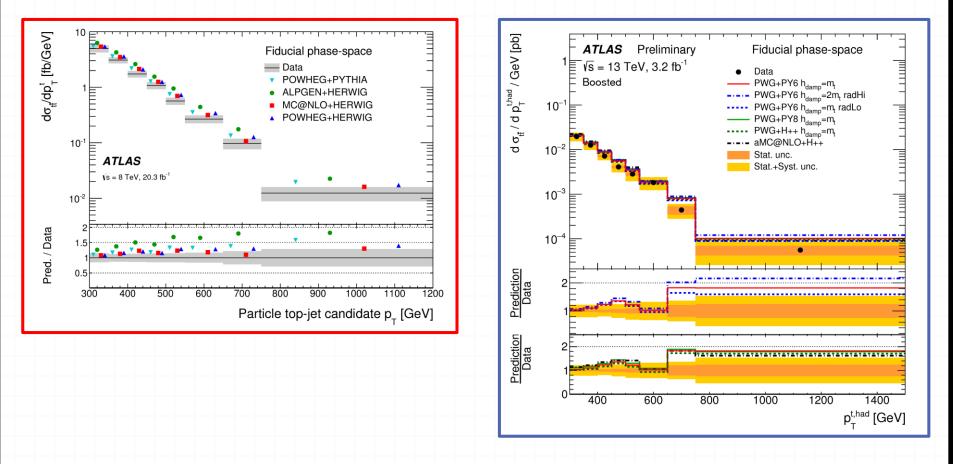
• Particle level:
$$\frac{\sigma_{meas}}{\sigma_{th}} = 0.86 \pm 0.16$$

Opposite the op

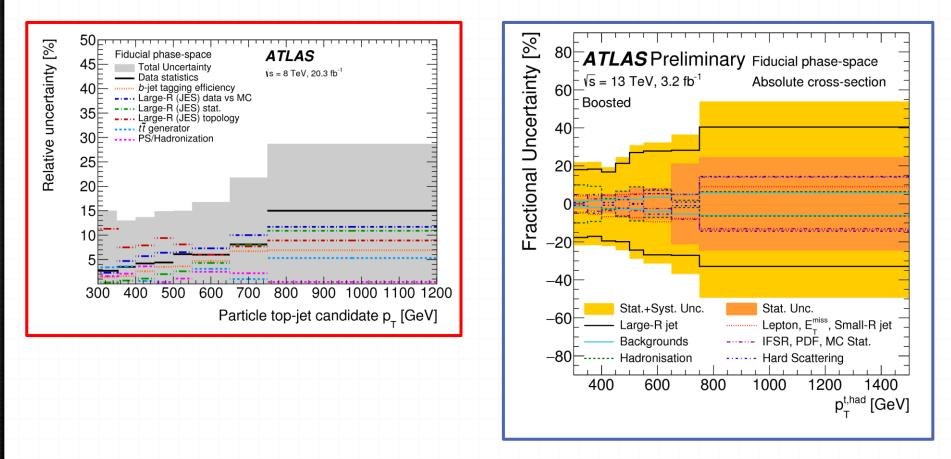


19.7 fb⁻¹ (8 TeV)

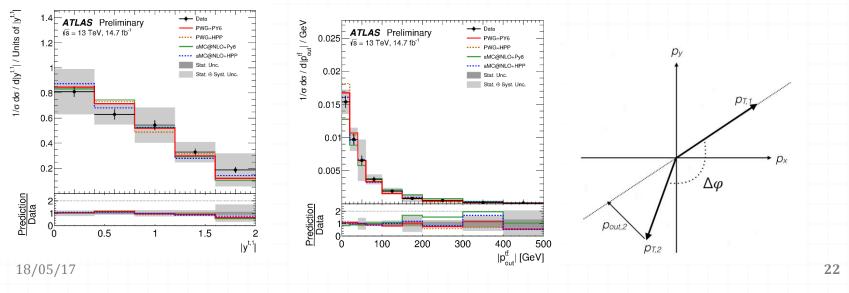
Ljets differential cross section in CMS

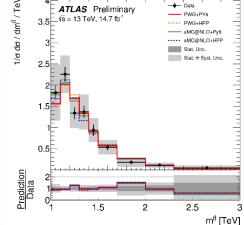

• signal extraction - maximum likelihood fit in 3 categories based on top and b tag

- O Signal and all background yields determined by fit
- O Discriminant variables: lepton |eta| used in (0t, 1t+0b), mvtx used in 1t+1b
- Ø Background normalizations and experimental uncertainties treated as nuisance parameters.
- Unfolding in 2 steps: reco → particle, particle → parton
 - Regularized unfolding (SVD)
 - I Electron and muon channel unfolded separately and combined with weighted mean


Ljets differential cross section in ATLAS

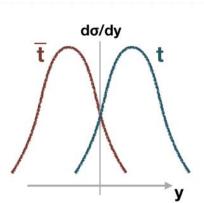
08 TeV vs 13 TeV comparison


Ljets differential cross section in ATLAS


0 8 TeV vs 13 TeV uncertainty comparison

Full had cross section in ATLAS

- Differential cross section measurements performed as a function of several kinematic variables of the *tt* system:
- *p*_T, |y| (t₁, t₂, tt̄) and m(tt̄) *χ*^{tt} = exp 2|y*| (y*: rapidity of the top in the tt̄ rest frame)
- $OY_B^{tt} = \frac{1}{2}(y^{t_1} + y^{t_2})$: longitudinal boost in the lab frame
- ${}^{o}\Delta\phi^{tt}$ azimuthal angular separation between the tops
- $|p_{out}^{tt}|$: projection of top-quark momentum onto the direction perpendicular to a plane defined by the other top quark and the beam


Forward-backward asymmetry at Tevatron

Definition: $A_{\Delta} = \frac{N(\Delta > 0) - N(\Delta < 0)}{N(\Delta > 0) + N(\Delta < 0)}$

@ Tevatron leading production is $q\bar{q}$ (asimmetric initial state) At Tevatron $\Delta_{FB} \equiv y_t - y_{\bar{t}}$ CDF measured $A_{FB} = 0.158 \pm 0.074$ (both *l*+jets and di-leptonic channels) $A_{FB}^{\text{MCFM}} = 0.058 \pm 0.009$ (agreement ~2 σ)

Important features: dependence on $m_{t\bar{t}}$, Δy $m_{t\bar{t}} < 450$ GeV compatible with SM ~ 1.8 sigma $m_{t\bar{t}} > 450$ GeV difference >3 sigma

> Superseded by $A_{FB} = 0.160 \pm 0.045$ $A_{FB}^{NNLO} = 0.095 \pm 0.007$ (CDF/ANAL/TOP/PUB/11161)

Charge asymmetry at LHC

@ LHC leading production channel is gg in symmetric pp collisions
Ø Forward-backward is not visible at the LHC, but we can measure A_Q (charge asymmetry) in the central and forward region

 $OA_Q = \frac{N(\Delta|y|>0) - N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)}$ $OA_{QF} = \frac{N_t(|y|>y_0) - N_{\bar{t}}(|y|>y_0)}{N_t(|y|>y_0) + N_{\bar{t}}(|y|>y_0)}$ $OA_{QC} = \frac{N_t(|y|<y_0) - N_{\bar{t}}(|y|<y_0)}{N_t(|y|<y_0) + N_{\bar{t}}(|y|<y_0)}$

 A_Q was found to be the most sensitive variable to new physics effects Tests performed using a parametrized BSM asymmetry:

$$1 - f(m_{tt}) \tanh \Delta y$$
, $f(m_{tt}) = \frac{m_{tt}}{200} - 2$

http://www.hep.phy.cam.ac.uk/theory/webber/MCEGforLHC.pdf

 $d\sigma/dv$

Introduction

Why boosted tops?

- LHC is a 'top factory'
 - Large center-of-mass energy combined with high luminosity
 - The cross section in boosted phase space will benefit most from the energy increase
 - Access to phase space regions never explored before
- Feasibility of differential measurements in boosted topologies
 - O Stronger constraints to SM parameters

This talk:

- Ø Boosted top tagger algorithms in ATLAS and CMS
- ATLAS and CMS precision measurements with boosted quarks
 - Inclusive and differential cross sections at 8 and 13 TeV
 - O Top properties: charge asymmetry and jet mass distribution
 - Exotic searches will not be covered

Cross section	8 TeV	13 TeV	
Total	240.6 pb ⁽¹⁾	818 ⁽³⁾ pb	
Boosted (pt>300GeV)	5.5pb ⁽²⁾	0(10)x	

- (1) ATLAS-CONF-2014-053, CMS-PAS-TOP-14-016
- (2) PRD 93, 032009 (2016)
- (3) PLB 761 (2016) 136