Studies of $t\bar{t}+X$ at CMS

Illia Khvastunov

on behalf of the CMS Collaboration University of Ghent (Belgium), CEA Saclay (France)

LHCP2017, Shanghai

May 19, 2017

Overview

- Introduction and experimental status of tttt, ttbb, ttγ, ttW and ttZ processes.
- Search for standard model four top-quark production at 13 TeV (2.3 ${\rm fb}^{-1}$), Submitted to PLB (1702.06164) + (NEW) SUSY SS 2ℓ (1704.07323)
- Measurement of ttbb production at 13 TeV (2.3 ${\rm fb}^{-1}$), to be submitted to PLB (CMS-TOP-16-010)
- Measurement of the tt γ production cross section at 8 TeV (19.7 fb $^{-1}$) (CMS-PAS-TOP-14-008)
- (NEW) Measurement of the top pair-production in association with a W or Z boson in pp collisions at 13 TeV (35.9 ${\rm fb}^{-1}$) (CMS-PAS-TOP-17-005)

Introduction

- The observed yields and measured cross-sections could be altered by new physics, the main background for ttH and for BSM processes
- \bullet Strength of the electromagnetic coupling of top quark and γ and top quark and Z boson can be probed
- The ttt measurement provide a useful test of analytical higher order calculation of QCD

Search for tttt

- Selection: 1 or 2 leptons, high hadron activity
- The discrimination power is provided by number of top and b quarks, event activity and topology
- Highest systematics uncertainty comes from variation of QCD scale choice at ME
- No deviation from background-only is expected and observed the limits on cross-section are set

- NEW! SUSY same charge 2*l* (1704.07323) with 35.9 / fb
- Observed (Expected) limit is 4.6 $(2.9^{+1.4}_{-0.9}) \times \sigma^{\rm SM}_{\rm tftf}$
- With new data still a place to improve! Stay tuned!

CMS

New! tībb / tījj ratio measurement

- Selection: exactly 2 OS leptons, at least 4 jets (at least 2 b jet)
- The leading and sub-leading in the b-tag discriminator value jet corresponds to the b jet from top in 85% cases
- The b tagging discriminator for 3rd and 4th jets are used to separate tibb from other processes and for the fit
- Main uncertainties: JES & JER, b tagging, the choice of MC generator and scale in parton shower

$t\bar{t}\gamma$ cross section measurement

- Measure $t\bar{t}\gamma$ cross-section relative to the $t\bar{t}$ cross section
- Selection: exactly 1 lepton, at least 3 jets (1 b iet) and 1 photon
- Two categories of background:
 - Top events with fake photon (tt)
 - Non-top events with real photon (W γ , Z γ)

- Measure the top quark purity after top quark and photon selection using a fit in an invariant mass of three jets with highest p_T (M3)
- Measure the photon purity using a fit to the photon charged hadron isolation, separates real photon events from other backgrounds (data-driven approach)
- Apply likelihood fit to the top quark purity, photon purity and number of top quark events simultaneously to extract number of tt̄γ events

Category	R	$\sigma_{t\bar{t}+\gamma}^{\mathrm{fid}}$ (fb)	$\sigma_{t\bar{t}+\gamma} \times \mathcal{B} \text{ (fb)}$
e+jets	$(5.7 \pm 1.8) \times 10^{-4}$	139 ± 45	582 ± 187
μ +jets	$(4.7 \pm 1.3) \times 10^{-4}$	115 ± 32	453 ± 124
Combination	$(5.2 \pm 1.1) \times 10^{-4}$	127 ± 27	515 ± 108
Theory	-	-	$592 \pm 71 (\text{scale}) \pm 30 (\text{PDF})$

New! ttV: strategy and event selection

tŧW. SS2ℓ

- 2 same-sign leptons
- $p_T > 40,25(27) GeV$
- veto 3rd lepton
- at least 2 jets, 1
 b-tag jet
- BDT analysis

tīZ. 3ℓ

- 3 leptons
- ullet $p_{\mathrm{T}} >$ 40, 20, 10 GeV
- at least 2 jets
- $|\mathrm{m}_{\ell\ell} \mathrm{M}_\mathrm{Z}| <$ 10 GeV
- C&C analysis

tīZ. 4ℓ

- 3 leptons
- $\begin{array}{ll} \bullet & \mathrm{p_{T}} > 40,\ 10,\ 10,\ 10 \\ \text{GeV} \end{array}$
- Sum of charges = 0
- at least 2 jets
- $|\mathrm{m}_{\ell\ell} \mathrm{M}_{\mathrm{Z}}| <$ 20 GeV
- C&C analysis

 To maximise significance the number of jets and b-tagged jets are used to form signal regions

ttV: ttW in SS 2l

- For ttW in same-sign dilepton channel BDT analysis was developed
- BDT input:
 - Number of jets; number of medium b-tagged jets; the sum of p_T of the jets
 - Leading and trailing lepton p_T, transverse invariant mass of both leptons
 - Leading and subleading jet p_T, missing transverse energy
 - ΔR between the trailing lepton and the nearest selected jet

Event selection

- BDT > 0
- Further split in number of jets, b-tag jets
- Split in ++ and --

Backgrounds

- misidentified leptons, tt̄
- tt̄Z and tt̄H

ttV: $t\bar{t}Z$ in 3ℓ and 4ℓ

 3ℓ channel in enriched $t\bar{t}Z$ region: ≥ 3 jets, ≥ 1 b jet

Main backgrounds:

- nonprompt, WZ and t(t)X (tZq, tWZ, ttH) is relevant for 3ℓ
- ZZ for 4ℓ

ttV: nonprompt lepton background

- Nonprompt background are expected to occur mostly in tt and Drell-Yan production: an additional nonprompt lepton from the semi-leptonic decays of a b-hadron, or additional jets misidentified as lepton
- The probability of loosely identified lepton to pass the full set of identification/isolation requirements is calculated in respective enriched region and validated in Monte-Carlo simulation and data:
 - 2ℓ: BDT < 0
 - 3ℓ : absence of an SFOC lepton pair or off-Z

ttV: WZ and ZZ background

- MC is used for estimation, validate WZ and ZZ in enriched control region:
 - 3 leptons(4 leptons), 2 of the form an (2)SFOC pair close to Z peak mass
 - in 3ℓ the cut that excludes b-tag jets is used

ttV: systematic uncertainties

Source	Uncertainty range	Impact on ttW cross-section	Impact on ttZ cross-section
Luminosity	2.5%	4%	3%
Jet Energy Scale/Resolution	2-5%	3%	3%
Trigger	2-4%	4-5%	5%
B tagging	1-5%	2-5%	4-5%
PU modeling	1%	1%	1%
Lepton ID, efficiency	2-7%	3%	6-7%
μ_R/μ_F scale choice	1%	<1%	1%
PDF choice	1%	<1%	1%
Nonprompt background	30%	4%	< 2%
WZ cross section	10-20%	<1%	2%
ZZ cross section	20%	-	1%
Charge misidentification	20%	3%	-
Rare SM background	50%	2%	2%
ttX background	10-15%	4%	3%
Stat. unc. for nonprompt	5-50%	4%	2%
Stat. unc. rare SM processes	20-100%	1%	< 1%
Total systematic	-	14%	12%

- Uncertainties on the lepton reconstruction, b tagging and trigger efficiency have the greatest effect both on the $t\bar{t}W$ and $t\bar{t}Z$ cross-section measurement.
- The uncertainty on nonprompt background gives a significant contribution to the systematic uncertainty of ttW cross section measurement.
- The systematic uncertainty for ttW and ttZ becomes dominant!

ttV results

tīV results

Channel	Expected significance	Observed significance
2ℓss analysis ttW−	2.4	2.3
2ℓss analysis ttW+	4.3	5.9
2ℓss analysis (ttW)	4.6	5.5
3ℓ analysis (ttZ)	8.4	8.7
4ℓ analysis (ttZ)	4.8	4.6
3ℓ and 4ℓ combined (t $\overline{t}Z$)	9.5	9.9

Measured signal strength:

- $t\bar{t}W$: 1.28 $^{+0.19}_{-0.18}(\text{stat.})$ $^{+0.20}_{-0.18}(\text{sys.})$ $^{+0.13}_{-0.12}(\text{theo.})$
- $\begin{array}{l} \bullet \quad t\overline{t}Z: \\ 1.18 \ ^{+0.11}_{-0.10} (\text{stat.}) \ ^{+0.14}_{-0.12} (\text{sys}) \ ^{+0.11}_{-0.12} (\text{theo.}) \end{array}$

Measured cross sections:

- $t\bar{t}W^+$: 0.58 $^{+0.09}_{-0.09}(stat.)$ $^{+0.09}_{-0.08}(sys.)$ pb
- $t\bar{t}W^-$: 0.19 $^{+0.07}_{-0.07}(stat.)$ $^{+0.06}_{-0.06}(sys.)$ pb
- $t\bar{t}W: 0.80^{+0.12}_{-0.11}(stat.)^{+0.13}_{-0.12}(sys.) pb$
- $t\bar{t}Z: 1.00^{+0.09}_{-0.08}(stat.) ^{+0.12}_{-0.10}(sys.) pb$
- \Rightarrow First time a single experiment achieves $>5\sigma$ for both processes simultaneously at CMS 13 TeV
- \Rightarrow First time ttV reaches $> 5\sigma$ at 13 TeV

ttV: EFT interpretations

EFT Lagrangian:

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \sum_{i} c_{i} \mathcal{O}_{i} + \frac{1}{\Lambda^{2}} \sum_{j} c_{j} \mathcal{O}_{j} + \cdots$$

- $\mathcal{M} = \mathcal{M}_0 + \sum c_j \mathcal{M}_j$, consider one operator at a time
- Do not consider all NP couplings to the first two generations, as well operators which caused significant cross section scaling for tt, inclusive Higgs, WW or WZ
- Considered NP effects on ttH as well as ttW and ttT
- Construct a profile likelihood test statistic q(c_j), maximize to find the asymptotic best-fit c_j

Wilson coefficient	Best fit [TeV ⁻²]	1σ CL [TeV ⁻²]	2σ CL [TeV ⁻²]
$ \bar{c}_{uB}/\Lambda^2 $	3.2	[0.0, 4.4]	[0.0, 5.4]
$ \bar{c}_u/\Lambda^2 + 18.7 \mathrm{TeV}^{-2} $	18.9	[5.2, 26.6]	[0.0, 32.6]
\bar{c}_{uW}/Λ^2	3.0	[-4.1, -1.5] and [1.2, 4.1]	[-5.1, 5.0]
\bar{c}_{Hu}/Λ^2	-9.4	[-10.3, -8.1] and [0.1, 2.1]	[-11.1, -6.6] and [-1.4, 3.0]

Conclusions

- Both results for $t\bar{t}t\bar{t}$ and $t\bar{t}\gamma$ are statistical limited, with new data will be improved!
- Measurement of $t\bar{t}$ + V cross-section is done at 13 TeV with statistical uncertainty O(15%) and systematic uncertainty O(15%)
- Next step is to measure differential cross-section for ttZ and the tZ coupling
- We are excited to have more data already in 2017-2018!