

Top Production Properties in ATLAS & CMS

Tom Neep, CEA Saclay LHCP, Shanghai, China May 19th 2017

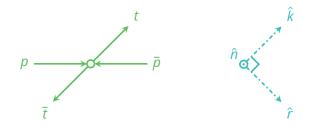
- The top quark is the heaviest known fundamental particle. Could it play a special role in electroweak symmetry breaking?
- The top quark has a very short lifetime and is the only quark that decays before forming hadronic bound states.
- This leads to a wealth of interesting, measurable properties that we can test.
- Precise studies of these properties could shed light on possible physics beyond the SM.

Spin correlation and polarisation $(\ell^+\ell^-)$

$t\bar{t}$ spin correlations and polarisation

- At the LHC top quarks produced in *tt* pairs are (almost completely) unpolarised but with correlated spins.
- As the top quark decays before it hadronises, information about the top quark spin is transferred to the top decay products and can be measured using angular distributions.
- Charged leptons are the best spin analysers as they carry all the information about the top quark spin and are easily identified experimentally.
- Therefore precise measurements of spin correlations and polarisation can be performed *more easily* in the dilepton channel, although ATLAS and CMS have also performed measurements in the *l*+jets channel.

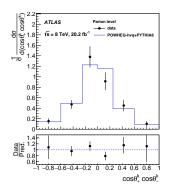
Spin correlation

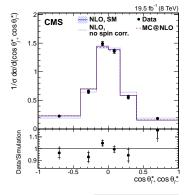

• The normalised double-differential cross-section for top pair production and decay is:

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d(\cos \theta^a_+) d(\cos \theta^b_-)} = \frac{1}{4} (1 + B^a_+ \cos \theta_+ + B^b_- \cos \theta_- - C^{ab} \cos \theta^a_+ \cos \theta^b_-)$$

- Where *B^{a,b}* and *C^{ab}* are the polarisation and spin correlation along the spin quantisation axes *a* and *b*.
- θ is the angle between the spin quantisation axis and the direction of flight of the charged lepton in the top quark rest frame.

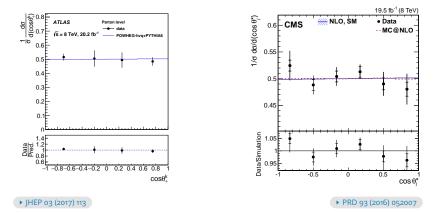
Spin quantisation axes

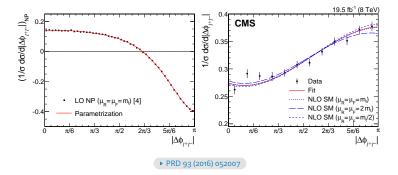

• The full top quark spin density matrix can be probed using three quantisation axes.



- 1. \hat{k} : Helicity axis (has traditionally been measured)
- 2. *î*: Transverse axis
- 3. \hat{r} : Orthogonal to \hat{k} and \hat{n}

Helicity basis spin correlation ($\cos \theta_{+}^{\hat{k}} \cos \theta_{-}^{\hat{k}}$)


- The cos θ^{k̂} cos θ^{k̂} variable has a non-zero asymmetry in the standard model due to spin correlations.
- If there was no spin correlations then the distribution would be symmetric.

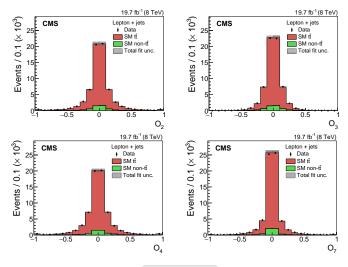

Helicity basis polarisation ($\cos \theta_{\pm}^{\hat{k}}$)

- Top quark polarisation is very small in SM (per mill level).
- We would expect a slope in this distribution if top quarks are produced with large polarisation.

Limits on new physics

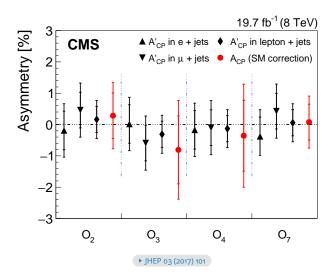
- We can use the measurements to set limits on new physics.
- CMS sets limits on chromo-magnetic and chromo-electric dipole moments (parameters in an effective Lagrangian).
- The measurements are dominated by systematic uncertainties (*tī* modelling).

CP Asymmetries (ℓ +jets)

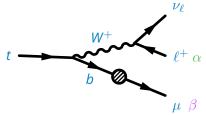

- These analyses test for CP violation using $t\bar{t}$ events.
- The analyses have slightly different approaches but both use the ℓ +jets channel.
- CMS measures *A*_{CP} using four observables that are constructed using the kinematics of the leptons and jets.
- ATLAS use $t\bar{t}$ events to identify weakly decaying *b*-hadrons to probe CP violation.

• CMS measures the following observables.

$O_{ t 2} \propto (ec{ ho}_b + ec{ ho}_{ar{b}}) \cdot (ec{ ho}_\ell imes ec{ ho}_{j_1})$	(lab)	(1)
$O_3 \propto Q_\ellec{ ho}_b\cdot(ec{ ho}_\ell imesec{ ho}_{j_1})$	$(bar{b}~{ m CM})$	(2)
$O_4 \propto Q_\ell \; (ec{ ho}_b - ec{ ho}_{ar{b}}) \cdot (ec{ ho}_\ell imes ec{ ho}_{j_1})$	(lab)	(3)
$O_7 \propto (ec{ ho}_b - ec{ ho}_{ar{b}})_{\scriptscriptstyle Z} (ec{ ho}_b imes ec{ ho}_{ar{b}})_{\scriptscriptstyle Z}$	(lab)	(4)

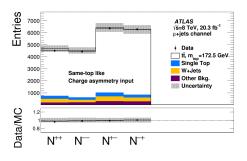

- These observables are all symmetric around zero in the SM, but CPV effects can introduce asymmetries (up to 8% in A_{CP}(O₃) and A_{CP}(O₄)).
- Results are presented as $A'_{\rm CP}$ (raw asymmetries) and $A_{\rm CP}$ (corrected using simulation).

CMS observables



▶ JHEP 03 (2017) 101

CMS results

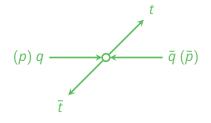


- ATLAS uses weakly decaying *b*-hadrons from top decays to probe CP violation.
- Using the charge of the lepton from the leptonically decaying top quark and the charge of the lepton from a soft muon tag one can determine the charge of the *b*-quark at production and decay.

ATLAS analysis

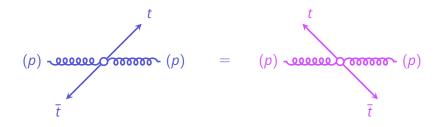
 One can then determine the same-sign (SS) and opposite-sign (OS) charge asymmetries using the number of events with lepton charges *α* and *β*, *N^{αβ}*.

$$A^{SS} = \frac{(N^{++}/N^{+}) - (N^{--}/N^{-})}{(N^{++}/N^{+}) + (N^{--}/N^{-})}$$
$$A^{OS} = \frac{(N^{+-}/N^{+}) - (N^{-+}/N^{-})}{(N^{+-}/N^{+}) + (N^{-+}/N^{-})}$$

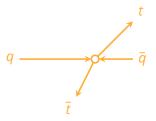

▶ JHEP 02 (2017) 071

- Results are in agreement with the SM prediction of \approx 0 asymmetry.
- Statistical uncertainties dominate.

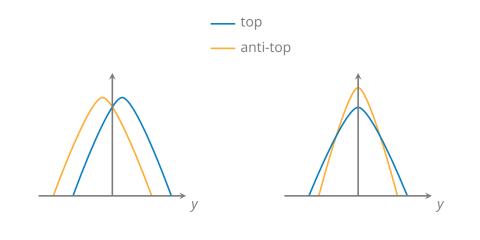
Charge asymmetry $(\ell^+\ell^-)$


Forward-backward and charge asymmetry

• Beyond LO there is a preference for the top quark travel in the same direction as the incoming quark.


- Measurements of the *tt* charge asymmetry became a hot topic due to tensions between measurements at the Tevatron and theoretical predictions.
- The asymmetry can be enhanced by new physics e.g. *Z*', KK gluon

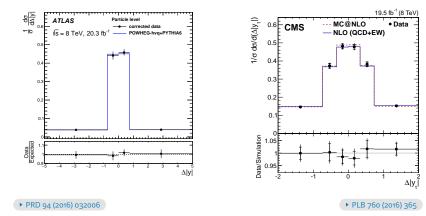
• At the LHC we have a symmetric intial state (*pp*) and the dominant production mode of *tt* pairs is via two gluons, which is charge symmetric to all orders in QCD.



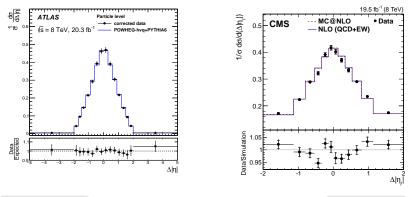
tt **charge asymmetry**

 However at the LHC in qq̄ → tt̄ the valence quark tends to have a higher momentum fraction leading to the t being produced in a more forward direction than the t̄.

• Can measure $A = \frac{N(x \ge 0) - N(x \le 0)}{N(x \ge 0) + N(x \le 0)}$ where x is $\Delta |y| = |y_t| - |y_{\overline{t}}|$ or $\Delta |\eta| = |\eta_+| - |\eta_-|$ in the $\ell^+ \ell^-$ channel. $A_{\rm FB}~vs\,A_{\rm C}$

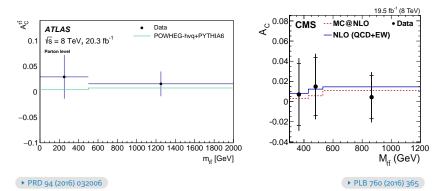


Tevatron


• This variable requires us to reconstruct the $t\bar{t}$ system.

21

- We can also look directly at the lepton directions.
- No *tt* reconstruction required- better resolution.



PRD 94 (2016) 032006

PLB 760 (2016) 365

Differential $A_c^{t\bar{t}}$ distributions

- We can also look at the charge asymmetry versus properties of the $t\bar{t}$ system e.g. $m_{t\bar{t}}$.
- New physics might enhance asymmetry at high $m_{t\bar{t}}$ for example.

23

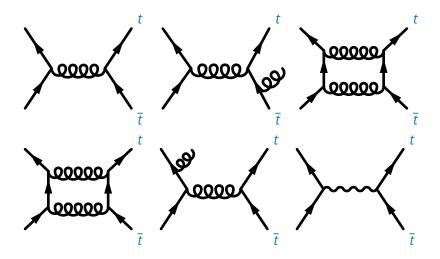
- ATLAS & CMS are using the large number of top quarks pairs produced to make precise measurements of the properties of the top.
- The SM predictions are holding up very well to scrutiny!
- ATLAS & CMS are busy analysing the run-2 data!
- As statistical uncertainties become less relevant, understanding our *tt* modelling uncertainties will become more and more important.

Backup

- Leptons are the best analysers and thus the most precise spin correlation measurements are performed in the dilepton channel.
- Leptons have the highest spin analysing power and are easy to identify experimentally.

	$ar{b}/W^+$	ℓ^+	\bar{d}/\bar{s}	u /c/ <i>v</i>
α_i (LO)	0.41	1	1	-0.31
α_i (NLO)	0.39	0.998	0.93	-0.31

CP asymmetry from charge asymmetry


The decay chain fractions $r_x(\tilde{r_x})$,

$$r_x = \frac{N_{r_x}}{N_{r_b} + N_{r_c} + N_{r_{c\bar{c}}}}$$
, (5)

where x = b, c or $c\bar{c}$ relate the charge asymmetries A^{OS} and A^{SS} to the following CP asymmetries:

$$A^{b}_{\text{mix}} = \frac{A^{\text{SS}}}{r_{b} + r_{c\bar{c}}}$$
$$A^{b\ell}_{\text{dir}} = \frac{A^{\text{OS}}}{\tilde{r}_{b}}$$
$$A^{c\ell}_{\text{dir}} = \frac{-A^{\text{SS}}}{r_{c} + r_{c\bar{c}}}$$
$$A^{bc}_{\text{dir}} = \frac{A^{\text{SS}}}{r_{c}}$$

Origin of charge asymmetry

tt reconstruction

- $t\bar{t}$ reconstruction is easier in the ℓ + jets channel where the system is over-constrained.
- In the dilepton channel $t\bar{t}$ reconstruction is more challenging due to the presence of two neutrinos.
- Several different methods used:

	ATLAS	CMS
Spin corr./pol.	Neutrino weighting	Analytic • JHEP 07 (2011) 049
	PRL 80 (1998) 2063	• NIMA 736 (2014) 169
	• JHEP 05 (2015) 061	• PLB 287 (1992) 225
	KIN	
Charge asymmetry	 PRD 73 (2006) 112006 PLB 722 (2013) 48 	Analytic