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Introduction

e The top quark is the heaviest known fundamental particle.
Could it play a special role in
?
e The top quark has a very short lifetime and is the only quark
that decays before forming hadronic bound states.

e This leads to a wealth of interesting, measurable properties
that we can test.

e Precise studies of these properties could shed light on
possible physics beyond the SM.
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Spin correlation and polarisation
(£767)



tt spin correlations and polarisation

e At the LHC top quarks produced in tt pairs are (almost
completely) unpolarised but with correlated spins.

e As the top quark decays before it hadronises, information
about the top quark spin is transferred to the top decay
products and can be measured using angular distributions.

° are the best spin analysers as they carry all
the information about the top quark spin and are easily
identified experimentally.

e Therefore precise measurements of spin correlations and
polarisation can be performed more easily in the dilepton
channel, although ATLAS and CMS have also performed
measurements in the /+jets channel.



Spin correlation

e The normalised double-differential cross-section for top pair
production and decay is:
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e Where and C% are the and spin correlation
along the spin quantisation axes a and b.

e ¢ is the angle between the spin quantisation axis and the
direction of flight of the charged lepton in the top quark rest
frame.



Spin quantisation axes

e The full top quark spin density matrix can be probed using
three quantisation axes.

t r
1. k: Helicity axis (has traditionally been measured)
2. h: Transverse axis
3. F: Orthogonal to k and A



Helicity basis spin correlation (cos 9{1 cos 9’3)

e The cos 6k cos 6k variable has a non-zero asymmetry in the
standard model due to spin correlations.

e If there was no spin correlations then the distribution would
be symmetric.
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Helicity basis polarisation (cos O’i)

e Top quark polarisation is very small in SM (per mill level).
e We would expect a slope in this distribution if top quarks
are produced with large polarisation.
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Limits on new physics

e We can use the measurements to set limits on new physics.
e CMS sets limits on chromo-magnetic and
dipole moments (parameters in an effective Lagrangian).
e The measurements are dominated by systematic
uncertainties (tt modelling).
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CP Asymmetries (/+jets)




Searching for CP violation

These analyses test for CP violation using tt events.

The analyses have slightly different approaches but both
use the /+jets channel.

CMS measures Acp using four observables that are
constructed using the kinematics of the leptons and jets.

ATLAS use tt events to identify weakly decaying b-hadrons to
probe CP violation.
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CMS observables

e CMS measures the following observables.

0 o< (Pp + Pp) - (Pe < Pjn) (lab) (1)
O3 o Q¢ Pp - (Be % Pjn) (bb CM) )
04 x Q¢ (Po — Py) - (P X Pjr) (lab) 3)
07 o (Pb — Pp)2(Pb % Pp)z (lab) (4)

e These observables are all symmetric around zero in the SM,
but CPV effects can introduce asymmetries (up to 8% in
ACP(O3) and ACP(O4)).

e Results are presented as A (raw asymmetries) and Acp
(corrected using simulation).
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CMS results
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ATLAS analysis

e ATLAS uses weakly decaying b-hadrons from top decays to
probe CP violation.

e Using the charge of the lepton from the leptonically
decaying top quark and the charge of the lepton from a soft

muon tag one can determine the charge of the b-quark at

production and decay.
vy

W+
t T a
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ATLAS analysis

e One can then determine the same-sign (SS) and
opposite-sign (OS) charge asymmetries using the number of
events with lepton charges « and /3, N7,
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ATLAS results

e Results are in agreement with the SM prediction of ~ o
asymmetry.

e Statistical uncertainties dominate.

e One can convert the charge asymmetries into CP
asymmetries using simulation (see " backup ),
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Charge asymmetry ((*/")




Forward-backward and charge asymmetry

e Beyond LO there is a preference for the top quark travel in
the same direction as the incoming quark.

e Measurements of the tt charge asymmetry became a hot
topic due to tensions between measurements at the
Tevatron and theoretical predictions.

e The asymmetry can be enhanced by new physics e.g. Z/,

KK gluon
17



Forward-backward and charge asymmetry

e At the LHC we have a symmetric intial state (pp) and the
dominant production mode of tt pairs is via two gluons,
which is charge symmetric to all orders in QCD.

(p) () = (p) (p)
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tt charge asymmetry

e However at the LHC in qg — tt the valence quark tends to
have a higher momentum fraction leading to the t being
produced in a more forward direction than the .

e Canmeasure A = W where xis Aly| = [y¢| — |y

or Aln| = |ny| — |n—| inthe £+¢~ channel.
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ArB VS Ac

— top

anti-top

Tevatron LHC
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e This variable requires us to reconstruct the tt system.
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e We can also look directly at the lepton directions.

e No tt reconstruction required- better resolution.
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Differential AZ distributions

e We can also look at the charge asymmetry versus properties
of the tt system e.g.
e New physics might enhance asymmetry at high m; for

example.
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e ATLAS & CMS are using the large number of top quarks
pairs produced to make precise measurements of the
properties of the top.

e The SM predictions are holding up very well to scrutiny!
e ATLAS & CMS are busy analysing the run-2 datal!

e As statistical uncertainties become less relevant,
understanding our tt modelling uncertainties will become
more and more important.
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Spin analysing power

e Leptons are the best analysers and thus the most precise
spin correlation measurements are performed in the
dilepton channel.

e Leptons have the highest spin analysing power and are easy
to identify experimentally.

b/w+ ot d/s u/c/v

a; (LO) 0.41 1 1 -0.31
a; (NLO) 0.39 0.998 0.93 -0.31




CP asymmetry from charge asymmetry

The decay chain fractions ry(rx),

= (5)
a Nfb + Nfc + Nfcz 7 >

where x = b, c or cC relate the charge asymmetries A%S and ASS

to the following CP asymmetries:
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Origin of charge asymmetry

t t t
t t t
t t t



tt reconstruction

e tt reconstruction is easier in the £ + jets channel where the
system is over-constrained.

e In the dilepton channel tt reconstruction is more
challenging due to the presence of two neutrinos.

e Several different methods used:

ATLAS

CMS

Spin corr./pol.

Charge asymmetry

Neutrino weighting
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