#### Top Quark Decay Properties

LHCP2017, May 15-20, 2017 Shanghai Jiao Tong University







#### What's special with Top quark?

- Large coupling to the Higgs boson
- Constrains the Higgs mass along with W boson mass



 Many new physics models result in same signature, e.g, SUSY "stop" can decay into top quark

Eur. Phys. J. C 74, 3046 (2014)

#### Top pair production





- $\bowtie$  gg $\rightarrow$ ttbar is the dominant production mode
  - **90%** (gg) and 10% (qqbar) at  $\sqrt{s}=13$  TeV for pp collisions
- All the measurements are in good agreement with the SM predictions at NNLO+NNLL





#### **Electroweak Top Production**



https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SingleTopRefXsec

- $\diamond$  Direct determination of the CKM Matrix element ( $|V_{tb}|$ )
- ♦ Background process for Higgs and BSM searches
- $\diamond$  Major probe in BSM physics scenarios



## Decay of Top quark

- SM Br(t→W<sup>+</sup>b)=100%
- Final states determined through the decay of W<sup>±</sup> bosons from top and antitop quarks.
  - All jets:  $t\bar{t} \rightarrow bW^+\bar{b}W^- \rightarrow b\bar{b}q\bar{q}'q\bar{q}'$ 
    - High branching ratio but large QCD background
    - ≥ 6 jets, 2 b-jets
  - lepton+jets:  $t\overline{t} \rightarrow bW^+\overline{b}W^- \rightarrow b\overline{b}q\overline{q}'l^-\overline{v}$ 
    - Moderately high branching ratio but relatively low background
  - dilepton:  $t\overline{t} \rightarrow bW^+\overline{b}W^- \rightarrow b\overline{b}l^+\nu l^-\overline{\nu}$ 
    - Low branching ratio but clean signal
- Similarly different final states for single top/ electroweak top production
  - Dilepton:  $tW^- \rightarrow bW^+W^- \rightarrow bl^+\nu l^-\overline{\nu}$
  - Semileptonic s-channel:  $t\overline{b} \rightarrow bW^+\overline{b} \rightarrow b\overline{b}l^+\nu$



e+jets 15%

"dileptons"

"lepton+jets"

#### LHC Performance





CMS Integrated Luminosity, pp, 2016,  $\sqrt{s} =$  13 TeV



- CR LHC Run I datasets at  $\sqrt{s}=7$  TeV (2011) and 8 TeV (2012) have been fully analyzed
- C Run 2 with delivered luminosity of >40 fb<sup>-1</sup> in 2016
- Roth ATLAS & CMS experiments have recorded data with ~92% efficiency

Prolay Kumar Mal



#### **Top Quark Properties**



- Since its discovery many properties within the SM have been well established using both strong (top pair production) and electroweak (single top) production modes
- The LHC top measurements (at  $\sqrt{s}=7$ , 8 and 13 TeV) have entered into a new precision era
- Classification based on the production/decay

   ttbar spin correlation, polarization, charge
   asymmetry, electroweak coupling (ttH, ttγ, ttZ),
   FCNC coupling (tZ, tH)
  - W-helicity from top decay, width, branching ratio, anomalous couplings and rare decays (FCNC)





## W boson helicity



#### W helicity



h

\<mark>\</mark>/+

- $\Leftrightarrow \mbox{ W boson helicity fractions: } F_{L,R,O} = \Gamma_{L,R,O} / \Gamma_{Total} \mbox{ for left-handed, right-handed and longitudinal polarization of W boson respectively}$
- Helicity angle (θ\*) defined as the angle between the direction of the charged lepton/down-type quark (from W) and the direction of the bottom quark [all in the rest frame of W]
- ♦ SM (NNLO) Predictions:  $F_L$ =0.311,  $F_O$ =0.687 &  $F_R$ =0.001

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta^*} = \frac{3}{8} \left(1 - \cos\theta^*\right)^2 F_{\rm L} + \frac{3}{4} (\sin\theta^*)^2 F_0 + \frac{3}{8} \left(1 + \cos\theta^*\right)^2 F_{\rm R}$$



- CMS measurement in ttbar→µ+jets & ttbar→e +jets channel using Run I dataset at √s=8 TeV (19.8 fb<sup>-1</sup>)
- ♦ Helicity analysis are done for both leptonic and hadronic W-decays in ttbar events

LHCP2017@Shanghai, May 15-20, 2017

Prolay Kumar Mal



## W helicity (II)







 $\square \ge 2$  b-tagged jets



#### arXiv:1605.09047 [hep-ex]





#### W helicity (III)





ATLAS measurements are done using both leptonic analyzer and hadronic analyzer. Leptonic 

 analyzer results (F<sub>0</sub>=0.709±0.019
 & F<sub>L</sub>=0.299±0.015) are more precise than the hadronic one

Eur. Physics J. C 77, 264 (2017) arXiv:1612.02577 [hep-ex] CMS measurements (with better than 5% accuracy) are limited by the ttbar signal modeling; dominant uncertainties from ttbar scale and top quark mass

•  $F_0 = 0.681 \pm 0.012 \text{ (stat)} \pm 0.023 \text{ (syst)} \text{ and } F_L = 0.323 \pm 0.008 \text{ (stat)} \pm 0.014 \text{ (syst)} \text{ with } F_0 + F_L + F_R = 1$ 

Phys. Lett. B 762, 512 (2016)

arXiv:1605.09047 [hep-ex]



Analyses from 2012 dataset have best sensitivity





# Top quark Width



## Top Width



- Top width (Γ<sub>t</sub>) is inversely proportional to its life-time; NLO SM predicted value ( $\Gamma_{SM}$ ) is 1.35 GeV for m<sub>top</sub>=173.3 GeV and  $\alpha_s$ =0.118
- Analysis performed with the ttbar→dilepton (e/µ) +≥ 2 jets (≥1 b-tagged jets, ≥2 b-tagged jets) events at √s=13 TeV (13.1 fb<sup>-1</sup>)
- Discriminating variable  $M_{lb} = \sqrt{(m_{top}^2 m_W^2)}$



LHCP2017@Shanghai, May 15-20, 2017



## Top Width (II)



**CMS PAS TOP-16-019** 

14

• Two dimensional likelihood varying the signal strength ( $\mu = \sigma_{obs} / \sigma_{SM}$ ) and sample fraction for alternate hypothesis x:

$$N_{\text{signal}} = \mu \left[ (1 - x) \cdot N_{\text{SM}} + x \cdot N_{\text{alt}} \right]$$

 $N_{SM}$  ( $N_{alt}$ ) being expectation for SM (alternate) hypothesis

Limit extraction with a test statistic:

$$q \equiv -2 \cdot \ln\left(\frac{\mathcal{L}_{\text{alt}}}{\mathcal{L}_{\text{SM}}}\right)$$

- limits on  $\Gamma_t$  at 95% CL:
  - ★ Observed:  $0.6 < \Gamma_t < 2.5$  GeV (Expected:  $0.6 < \Gamma_t < 2.4$  GeV for  $m_{top} = 172.5$  GeV)
- Till the date it is the best precision from direct measurement. Indirect measurements so far result:
  - \*  $\Gamma_t = 2.00^{+0.47} GeV [DØ: Phys Rev D 85, 091104 (2012)]$
  - ♦  $\Gamma_t$ =1.36±0.02 (stat) <sup>+0.14</sup> <sub>-0.11</sub>(syst) GeV [CMS: Phys. Lett. B 736, 33 (2014)]







## **Top Branching Ratio**



### **Branching Ratio**



- ♦ Measurement of R=Br ( $t \rightarrow Wb$ )/Br( $t \rightarrow Wq$ ) with q=b,s,d
- ♦ Estimation of R from ttbar→dilepton+jets dataset at √s=8 TeV (19.7 fb<sup>-1</sup>) by counting number of b-jets/event
- ♦ The fraction of correct pairs of lepton-jet pairs (from top decays) is modeled through  $M_{lj} = \sqrt{(M_{lj}^2 - M_{W_{lj}}^2)}$  variable





#### Branching Ratio (II)



Phys. Lett B 736, 33 (2014) arXiv: 1404.2292 [hep-ex]

♦ Combined measurement of R= 1.014 ± 0.003 (stat) ± 0.032 (syst)

♦ Translates to CKM  $|V_{tb}| = 1.007 \pm 0.016$ (syst+stat)

♦ Imposing R≤1 condition → R>0.955 and CKM  $|V_{tb}| > 0.975$  at 95% CL



♦ Translated into an indirect Γ<sub>t</sub> (top width) measurement using the formula:  $\Gamma_t = \frac{\sigma_{t-ch.}}{\mathcal{B}(t \to Wb)} \cdot \frac{\Gamma(t \to Wb)}{\sigma_{t-ch.}^{\text{theor.}}} \qquad \text{with } \Gamma(t \to Wb) = 1.329 \text{ GeV}$ 

Γ<sub>t</sub>= 1.36 ± 0.02 (stat) <sup>+0.14</sup> <sub>-0.11</sub>(syst) GeV





#### Search for anomalous Wtb coupling



## Anomalous Wtb coupling



t-channel single top production is sensitive to possible deviations from the SM predictions; most general CP-conserving Lagrangian:

$$\mathfrak{L} = \frac{g}{\sqrt{2}}\bar{\mathbf{b}}\gamma^{\mu}\left(f_{\mathrm{V}}^{\mathrm{L}}P_{\mathrm{L}} + f_{\mathrm{V}}^{\mathrm{R}}P_{\mathrm{R}}\right)\mathsf{t}\mathsf{W}_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{\mathbf{b}}\frac{\sigma^{\mu\nu}\partial_{\nu}\mathsf{W}_{\mu}^{-}}{M_{\mathrm{W}}}\left(f_{\mathrm{T}}^{\mathrm{L}}P_{\mathrm{L}} + f_{\mathrm{T}}^{\mathrm{R}}P_{\mathrm{R}}\right)\mathsf{t} + \mathsf{h.c.},$$

 $f_V^L(f_V^R)$  and  $f_T^L(f_T^R)$  represent left-handed (right-handed) vector and tensor couplings respectively; In SM:  $f_V^L = V_{tb}$  and  $f_V^R = f_T^L = f_T^R = 0$ 

- Signal selection: 1 muon + 1 b-tagged jet + 1 light-flavored jet in the forward region
- ♦ Dataset: 5 fb<sup>-1</sup> at  $\sqrt{s}=7$  TeV (2011) and 19.7 fb<sup>-1</sup> at  $\sqrt{s}=8$  TeV (2012)
- ♦ Baysian Neural Networks (BNN) for SM signal extraction as well as three additional Wtb BNN for separating the contributions for  $f_V^R$ ,  $f_T^L$ , and  $f_T^R$





#### Anomalous Wtb coupling (II)







### Anomalous Wtb coupling (III)



ATLS W-helicity results translated to set limits on anomalous Wtb coupling
 The structure of the Wtb vertex can be expressed as:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_{\rm L}P_{\rm L} + V_{\rm R}P_{\rm R})t W_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{W}}(g_{\rm L}P_{\rm L} + g_{\rm R}P_{\rm R})t W_{\mu}^{-} + \text{h.c.}$$

Anomalous couplings can lead to non-vanishing  $V_R$ ,  $g_L$ ,  $g_R$ 





#### Summary & Conclusions



- During the LHC era, the top quark properties are being measured with unprecedented precision
  - $\diamond$  Both ATLAS and CMS have finished up the Run I legacy papers
  - ♦ Some measurements are already performed with the Run II dataset
- ♦ Measurement of various properties of top quark are providing crucial tests on the SM itself while probing the BSM physics; so far no excess observed over the SM predictions.
- $\diamond~$  Key measurements on Top decay properties presented here
  - $\diamond$  W boson helicity
  - ♦ Top quark width (both direct and indirect)
  - $\diamond$  Branching Ratio and  $|V_{tb}|$
  - $\diamond$  Limits on anomalous Wtb couplings
- $\diamond\,$  Some of the limiting systematics affecting these measurements stem from
  - ♦ ttbar modeling (top mass, ttbar scale, ttbar matching scale)
  - Experimental uncertainties related to the jets (Jet Energy Scale, Jet Energy Resolution), W+jets and QCD background determination



## LHC Outlook (Run II & beyond)



- ♦ LHC Run II at Vs=13 TeV began in 2015; Top properties from the full 2016 dataset are yet to be measured
- New Physics discovery may be at the door-step and top quark properties would play the key role; In addition, we would also be able to probe tiny SM predictions
- Many more upgrades with the LHC and the detectors are scheduled for next two decades. In addition analyses techniques would be refined further.







#### References

♦ LHCTopWG: <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWG</u>
 ♦ ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>
 ♦ CMS: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u>