Strong SUSY Production in Hadronic Channels with CMS

Kin Ho Lo on behalf of the CMS collaboration

16th May, 2017 LHCP 2017, Shanghai Jiao Tong University

https://indico.cern.ch/event/517784/contributions/ 2492780/

Strong production in hadronic channel

- Strong production
 - larger cross section than other sparticle production
- Hadronic channels
 - jets and missing energy in final states
 - events with a lepton or photon are vetoed in search regions and are used as control samples
- SMS (simplified model spectra)
 - interpretation of results
- Related parallel talks with CMS SUSY:
 - <u>SUSY strong production (leptonic) with CMS</u>
 - <u>Third generation squarks with CMS</u>
 - SUSY in photons and taus with CMS
 - SUSY electroweak searches with CMS

<u>arxiv:1407.5066</u>

SUS-16-033	jets + MHT	35.9 fb ⁻¹	Focus of today
SUS-16-036	jets + M _{T2}	35.9 fb ⁻¹	Focus of today
SUS-16-016	jets + a⊤	12.9 fb ⁻¹	Stay tuned!
SUS-15-004	jets + razor	2.3 fb ⁻¹	Stay tuned!

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS/index.html

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

General Strategy

- Jets and missing transverse energies (MET) as final states
 - Reliant on good performance on jet reconstructions and measurement of energy deposits
- Typical background:
 - top pair or W(→Iv)+jets: lost lepton, hadronic τ decay
 - Z(→vv)+jets
 - Multi-jets production
- Inclusive search for broad range of phase space
 - Wide energy range and topologies: H_T ~ few hundred GeV to TeV, N_{jet} ≥ 1
 - Covering low to high MET environment: few hundred GeV to ~ 1 TeV
 - Sensitivity to broad range of SUSY models

 $\begin{array}{l} \underline{\text{Typical variables}}\\ H_T = -\sum_{i \in \text{ jet}} \vec{p}_{T,i}\\ H_T^{miss} = -\sum_{i \in \text{ jet}} \vec{p}_{T,i}\\ E_T^{miss} = -\sum_{i \in \text{ particles}} \vec{p}_{T,i}\\ \Delta \phi = \Delta \phi(\vec{p}_{\mathrm{T}i}, \vec{H}_{\mathrm{T}}^{\mathrm{miss}}) \end{array}$

General Strategy

- Employ robust discriminating variables against various backgrounds
 - e.g. M_{T2}, α_T, razor
- Data-driven background estimation from multiple control regions (CRs)
 - Selection mimic as closely as possible the signal region → minimise bias from extrapolations
 - Extensive validation with data in control regions
- Extensive binning scheme with various variables
 - e.g. N_{jet} , N_b , H_T , MHT, MET
- Aggregated signal region
 - Maintain good sensitivities to wide range of models
 - Possible re-interpretation in a simple manner for recasters

Example of CRs:

- Di-lepton: $Z(\rightarrow II)$ +jets
- Single photon: γ+jets
- Single lepton: W(→Iv)
 +jets, top pair

jets + MHT

- + Four dimensional exclusive binning in $N_{jet,}\,N_{b,}\,H_{T}\,and\,\,MHT$
- Some background estimation methods
 - Lost lepton: event weighting with efficiencies of various lepton acceptance effect
 - Hadronic τ: muon p_T smearing of µ+jets sample with detector response templates

arXiv:1704.07781, Submitted to Phys. Rev. D

Run 1 results

SUS-13-012, JHEP 06 (2014) 055
SUS-12-024, PLB 725 (2013) 243
SUS-12-011, PRL 109 (2012) 171803
SUS-10-005, JHEP 08 (2011) 155

Run 2 results SUS-15-002, PLB 758 (2016) 152

jets + MHT

(13 TeV)

 $N_{iet} \ge 9$

35.9 fb⁻¹

Prediction from low- $\Delta \phi$

Prediction from R&S

 $7 \le N_{iet} \le 8$

QCD background

 $5 \le N_{iet} \le 6$

- Recent updates:
 - Additional independent QCD background estimation method with rebalance and smear technique
 - Extended lower N_{jet} to 2 and 3; and lower H_{T} threshold to 300 GeV
 - Increase sensitivity to squark pair production

CMS

 $3 \le N_{int} \le$

Events

10³

10²

10

10⁻¹

Strong production in hadronic channel with CMS, 16th May 2017

jets + MHT: Result

jets + M_{T2}

- M_{T2} as important discriminating variable
 - e.g. against QCD background
- + Four dimensional exclusive binning in $N_{jet,}\,N_{b,}\,H_{T}$ and M_{T2}
- Some background estimation methods:
 - Lost lepton: transfer factor from single lepton control region
 - Z(→vv) +jets: data-driven estimate with µµ+jets sample corrected by acceptance effect, branching fraction

Binning for high H_T regions

H _T Range [GeV]	Jet Multiplicities	M _{T2} Binning [GeV]
[1000, 1500]	2 – 3j, 0b	[200, 400, 600, 800, 1000, 1200, ∞]
	2 — 3j, 1b	[200, 400, 600, 800, 1000, 1200, ∞]
	2 – 3j, 2b	[200, 400, 600, 800, 1000, ∞]
	4 - 6j, 0b	[200, 400, 600, 800, 1000, 1200, ∞]
	4 - 6j, 1b	[200, 400, 600, 800, 1000, 1200, ∞]
	4 – 6j, 2b	[200, 400, 600, 800, 1000, ∞]
	\geq 7j, 0b	[200, 400, 600, 800, 1000, ∞]
	\geq 7j, 1b	[200, 400, 600, 800, ∞]
	\geq 7j, 2b	[200, 400, 600, 800, ∞]
	$2 - 6j \ge 3b$	[200, 400, 600, ∞]
	\geq 7j, \geq 3b	[200,400,600,∞]
[1500, ∞]	2 – 3j, 0b	[400, 600, 800, 1000, 1400, ∞]
	2 – 3j, 1b	[400,600,800,1000,∞]
	2 - 3j, 2b	[400,∞]
	4 - 6j, 0b	[400,600,800,1000,1400,∞]
	4 – 6j, 1b	[400,600,800,1000,1400,∞]
	4 – 6j, 2b	[400,600,800,∞]
	\geq 7j, 0b	[400,600,800,1000,∞]
	\geq 7j, 1b	[400,600,800,∞]
	\geq 7j, 2b	[400,600,800,∞]
	$2 - 6j \ge 3b$	[400,600,∞]
	$> 7i_{,} > 3b$	[400, ∞]

Run 1 results

- SUS-14-015, arXiv:1602.03169

- SUS-13-019, JHEP 05 (2015) 078
- SUS-12-002, JHEP 10 (2012) 018

Run 2 results

- SUS-16-015, CMS-PAS-SUS-16-015 (2016)

CMS-PAS-SUS-16-036

CMS

K.H Lo

jets + M_{T2}

- QCD background estimation by extrapolation from $\Delta \varphi_{min}$ sideband
- Extensive validation of modelling of M_{T2} variable with data in γ +jets, $W \rightarrow Iv, Z \rightarrow II$ control sample

K.H Lo

jets + M_{T2}: Result

Interpretation I

Strong production in hadronic channel with CMS, 16th May 2017

Interpretation II

- Significant gains in limits since Run 1 for strongly produced models
- Highlighted results from two inclusive analysis with 35.9 fb⁻¹ data collected by CMS
- Within framework of simplified models, exclude up to:
 - gluino masses up to ~ 2 TeV, LSP masses up to ~ 1400 GeV
 - light flavour squarks up to ~ 1500 GeV, LSP masses up to ~ 800 GeV
- More results to come in summer! Stay tuned!

Backup

jets + M_{T2}: Result II

jets+MHT: Result II

jets + M_{T2}: stranverse mass

CMS-PAS-SUS-16-036

$$M_{T2} = \min_{\vec{q}_T + \vec{r}_T = \vec{E}_T^{\text{miss}}} \left[\max(M_T(\vec{p}_T^{j_1}, M_T(\vec{q}_T), M_T(\vec{p}_T^{j_2}, M_T(\vec{r}_T))) \right]$$

$$M_T(\vec{p}_T, \vec{q}_T) = \sqrt{2(p_T q_T - \vec{p}_T \cdot \vec{q}_T)}$$

- M_{T2} defined for di-jet system
- For events with ≥ 3 jets, form two pseudo-jets to maximize their invariant mass

jets + M_{T2}: Binning

10 11

CMS-PAS-SUS-16-036

$H_{\rm T}$ Range [GeV]	Jet Multiplicities	M _{T2} Binning [GeV]
[250, 450]	2 – 3j, 0b	[200, 300, 400, ∞]
	2 – 3j, 1b	[200,300,400,∞]
	2 – 3j, 2b	[200,300,400,∞]
	\geq 4j, 0b	[200,300,400,∞]
	\geq 4j, 1b	[200,300,400,∞]
	\geq 4j, 2b	[200,300,400,∞]
	$\geq 2j, \geq 3b$	[200,300,400,∞]
[450, 575]	2 – 3j, 0b	[200, 300, 400, 500, ∞]
	2 – 3j, 1b	[200, 300, 400, 500, ∞]
	2 – 3j, 2b	[200, 300, 400, 500, ∞]
	4 – 6j, 0b	[200, 300, 400, 500, ∞]
	4 – 6j, 1b	[200, 300, 400, 500, ∞]
	4 – 6j, 2b	[200, 300, 400, 500, ∞]
	\geq 7j, 0b	[200,300,400,∞]
	\geq 7j, 1b	[200,300,400,∞]
	\geq 7j, 2b	[200,300,400,∞]
	$2-6j, \ge 3b$	[200, 300, 400, 500, ∞]
	\geq 7j, \geq 3b	[200,300,400,∞]
[575, 1000]	2 – 3j, 0b	[200, 300, 400, 600, 800, ∞]
	2 – 3j, 1b	[200, 300, 400, 600, 800, ∞]
	2 – 3j, 2b	[200, 300, 400, 600, 800, ∞]
	4 – 6j, 0b	[200, 300, 400, 600, 800, ∞]
	4 – 6j, 1b	[200, 300, 400, 600, 800, ∞]
	4 – 6j, 2b	[200, 300, 400, 600, 800, ∞]
	\geq 7j, 0b	[200, 300, 400, 600, 800, ∞]
	\geq 7j, 1b	[200, 300, 400, 600, ∞]
	\geq 7j, 2b	[200, 300, 400, 600, ∞]
	$2 - 6j, \ge 3b$	[200, 300, 400, 600, ∞]
	\geq 7j, \geq 3b	[200, 300, 400, 600, ∞]

N _b	jet p _T binning [GeV]
0	[250,350,450,575,700,1000,1200,∞]
≥ 1	[250,350,450,575,700,∞]

jets+MHT

