

# SUSY Strong Production Search with Leptonic Final State at ATLAS

### Tomoyuki Saito



(University of Tokyo, ICEPP)

On behalf of the ATLAS collaboration



The Fifth Annual Large Hadron Collider Physics conference (LHCP), Shanghai Jiao Tong University, 16 May 2017

# **SUSY Production @ LHC**

• Large cross section on colored SUSY particle ( $\tilde{g}$ ,  $\tilde{q}$ ) at LHC

SUSY particles produced by pair production (R-parity conservation)



# **SUSY Particle Decay & Final State**

Heavy gluino/squark decay into lighter particles



#### Final state of SUSY signal

- 1. Decay into LSP, finally  $\Rightarrow$  Large  $E_{\rm T}^{\rm miss}$  in the final state
- 2. Two invisible particles ( $\tilde{\chi}_1^0$ ) in final state  $\rightarrow$  No clear peak
- 3. Kinematics depends on mass difference between SUSY particles ( $\Delta M$ )

#### A dedicated search is necessary to cover all phase spaces

# **SUSY Search @ ATLAS**

- Various final states should be covered for the search of SUSY
- Topology based search, aiming to cover every SUSY signals



# **Background Estimation for SUSY Search**

#### Background estimation is challenging

#### for SUSY discovery!

- SUSY signal has no clear peak
- appears at tail in kinematic distribution
- extreme phase space
- MC modeling is not perfect

#### Typical method at ATLAS

- 1. A dedicated Control Region (CR) to normalize MC to data
- 2. Extrapolation of CR to Signal Region (SR) with well-modeled variables
- Validation Region (VR) to make sure of the extrapolation modeling



# **Today's Content**

- ► One lepton in final state (15 fb<sup>-1</sup>)
- ► One lepton + Multiple-bjets in final state (36 fb<sup>-1</sup>)
- ► Two leptons (Same-sign)/ Three leptons in final state (36 fb<sup>-1</sup>)
- ▶ RPV one lepton final state (36 fb<sup>-1</sup>)
- (► Two leptons (same-flavor, opposite-sign) final state (15 fb<sup>-1</sup>))

### **One-Lepton in Final State**

- Search for gluino/squark production with 1-lepton final state (15 fb<sup>-1</sup>)
- ► 1-lepton (e,µ)+ Multiple-jets + Large E<sup>miss</sup><sub>t</sub>
- Event shape (Aplanarity)





Signal Regions (2/4/5/6-jets)





#### **One-Lepton : Results**



# **Multiple b-jets in Final State**

#### Search for gluino pair production with decays via stop quarks

- Motivated by
  - Light stop expected in view of 125 GeV Higgs
  - Large xsection of gluino pair production at LHC
- 3 b-jets + 1-lepton + Large  $E_{\rm T}^{\rm miss}$  + Additional light guark jets
- ▶ 3 SRs for different  $\Delta m (= m_{\tilde{g}} m_{\tilde{\gamma}0})$
- A: 5-jet SR for large  $\Delta m$  (>~ 1.5 TeV)
  - Highly boosted objects

The decay products of a hadronically-decaying boosted top quarks can be reconstructed in a single  $\tilde{x}_{\star}$ large-radius re-clustered jet  $\Rightarrow$  Large total jet mass **B:** 6-jet SR for intermediate  $\Delta m$ 

**C: 7-jet SR** for small  $\Delta m$  (<~ 300 GeV)

Softer decay products



p



# **Multi-b: Background Estimation**

#### Main background : ttbar together with heavy and light flavor jets

- $m_{\text{eff}}$  correction  $m_{\text{eff}} = \sum_{r} p_T^{jet_i} + \sum_{r} p_T^{l_j} + E_T^{miss}$   $m_T = \sqrt{2 p_T^l E_T^{miss} (1 \cos[\Delta \phi(l, p_T^{miss})])}$ 
  - Correction factor extracted at two b-tagged jets and low  $m_{T,\min}^{b-jets}$
  - Corrections for  $m_{\rm eff}$  shape in MC modeling with respect to each  $m_{\rm eff}$  bin
- CRs defined in low  $m_{\rm T}$  region
  - $m_{
    m T}$  extrapolation modeling is checked at VR (inverted selection on  $M_J^{\sum}$  )



### **Multi-b: Results**



#### Same Sign Two/Three Leptons in Final State

- Search for gluino pair production with two leptons of the same electric charge (Same-Sign; SS) / three leptons (36 fb<sup>-1</sup>)
- Multi-leptons from long decay chain
- SM process has a very small cross section
  - allow the use of looser kinematic requirements
  - $\Rightarrow$  Good sensitivity to scenarios with small  $\Delta m (= m_{\tilde{g}} m_{\tilde{\chi}0})$
- ► SR : SS 2-leptons/3-leptons + Large  $E_{T}^{miss}$  + Multiple-jets



# 2L(SS)/3L: Background Estimation

- Main sources of background
- Electron mis-measured charge
  - Estimation by charge-flip probability extracted in  $Z/\gamma^* \rightarrow ee$  data
- One fake/non-prompt lepton from heavy flavor hadron decays
  - Two data-driven methods (Matrix method and MC templates)
- ► SM process with SS 2L/3L : ttV, diboson
- Estimated from MC with dedicated VR to verify the modeling



# 2L(SS)/3L: Results



### 1-Lepton without Large $E_{T}^{miss}$ in Final State Submitted to JHEP

- Search for the final state of 1-lepton + many jets without large  $E_{\rm T}^{\rm miss}$
- 1-lepton + 8-12-jets + (b-tagged jets)
  - No requirement on  $E_{\mathrm{T}}^{\mathrm{miss}}$
- Benchmark : SUSY with RPV
- SR: 8-12 jets and b-jet multiplicity
- Main background: ttbar+jets (W+ jets) at high (low) b-jet multiplicity
- The modeling of the background at high jet multiplicity suffers from large uncertainties
- Extraction of an initial template of the b-tag jet multiplicity in data (5-jets region) and parameterization of the evolution of the template to higher jet multiplicities



#### Submitted to JHEP

# 1-Lep without Large $E_{\mathrm{T}}^{\mathrm{miss}}$ : Result



# Summary

- **ATLAS is exploring the energy frontier to discover SUSY !**
- Topology based search
  - to cover all phase spaces of SUSY signal
  - not to lose any slight evidence of SUSY signal

#### SUSY searches in final states with leptons

- No clear sign of SUSY
- Search region on gluino mass goes to ~2TeV
- The LHC experiment has 3ab<sup>-1</sup> program
- The experiment has just started
- Large increase in sensitivity in coming data



mınarv

\s = 13 TeV, 14.8-36.1 fb



#### **Same-flavor Opposite-sign Two Leptons** in Final State Eur. Phys. J C 77 (2017 144

Search for final states with 2-leptons (same-flavor(SS), opposite-

sigh(OS),  $l^+l^-$ ) from the gluino/squark decays (15 fb<sup>-1</sup>)

▶ 2 types of the search : on-shell Z or off-shell Z

**On-shell Z** (81 GeV< *m*<sub>1</sub><101 GeV)



Edgo soar

- Dominant Background: Flavor symmetric background
- 2-leptons from independent  $W \rightarrow l \nu \Rightarrow$  Estimation by  $e \mu$  data sample

### **SS OS Two Leptons : Results**



# Supersymmetry (SUSY)

#### SUSY: Unification of Fermion and Boson



#### Why SUSY ?

- Good dark matter candidate
- Higgs mass 125 GeV (MSSM prediction < ~150 GeV [1])</li>
- GUT prefers SUSY

[1] Y. Okada, M.Yamaguchi T. Yanagita prog.Theor. Phys. **85** (1991).

### One-Lep 15fb-1



## One-Lep 15fb-1

![](_page_22_Figure_1.jpeg)

### One-Lep 15fb-1

![](_page_23_Figure_1.jpeg)

# **One-Lep :Background Estimation**

ttbar

#### Major Background: ttbar , W+jets

- CRs defined at low  $m_{\rm T}$  and low Aplanarity
- VRs for  $m_{\rm T}$  and Aplanarity extrapolations

![](_page_24_Figure_4.jpeg)

Tomoyuki Saito (Tokyo, ICEPP), May 16, 2017, LHCP @ Shanghai Jiao Tong Univ.

W+jets

# **One-Lep : Results**

![](_page_25_Figure_1.jpeg)

### Same-flavor Opposite-sign Two Leptons in Final State

![](_page_26_Figure_1.jpeg)

#### Same-flavor Opposite-sign Two Leptons

![](_page_27_Figure_1.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_0.jpeg)

#### 1L SR has a much better sensitivity than OL SR

![](_page_30_Picture_0.jpeg)

![](_page_30_Figure_1.jpeg)

| Criteria common                                                                                      | to all Ctt 1                                     | lepton re      | gions      |                                          | Variable                         | Signal region | Control region | VR-m <sub>T</sub> | $VR-m_{T,min}^{b-jets}$ |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------|------------|------------------------------------------|----------------------------------|---------------|----------------|-------------------|-------------------------|
| $\geq 1$ signal lepton, $p_{\mathrm{T}}^{\mathrm{jet}} > 30 \text{ GeV}, N_{b-\mathrm{jets}} \geq 3$ |                                                  |                |            | N <sup>Signal Lepton</sup>               | ≥ 1                              | ≥ 1           | ≥ 1            | ≥ 1               |                         |
|                                                                                                      | Variable                                         | $\mathbf{SR}$  | CR         | Criteria common<br>to all regions of the | $p_{\mathrm{T}}^{\mathrm{jet}}$  | > 30          | > 30           | > 30              | > 30                    |
|                                                                                                      | N· ,                                             | > 5            | = 5        | same type                                | N <sub>b-jet</sub>               | ≥ 3           | ≥ 3            | ≥ 3               | ≥ 3                     |
| $\begin{array}{c} {\rm Region} \ {\rm A} \\ {\rm (Large} \ \Delta {\rm m}) \end{array}$              | $m_{ m T}$                                       | > 150          | -5 < 150   | Region A<br>(Large mass<br>splitting)    | $N^{\rm jet}$                    | ≥ 5           | == 5           | ≥ 5               | > 5                     |
|                                                                                                      | $m_{\mathrm{T}\ \mathrm{min}}^{b\mathrm{-jets}}$ | > 120          | _          |                                          | $m_{\mathrm{T}}$                 | > 150         | < 150          | > 150             | < 150                   |
|                                                                                                      | $E_{\mathrm{T}}^{\mathrm{miss}}$                 | > 500          | > 300      |                                          | $m_{T,min}^{b-jets}$             | > 120         | -              | _                 | > 120                   |
|                                                                                                      | $m_{ m eff}^{ m incl}$                           | > 2200         | > 1700     |                                          | $E_{\mathrm{T}}^{\mathrm{miss}}$ | > 500         | > 300          | > 300             | > 400                   |
|                                                                                                      | $M_J^{\Sigma}$                                   | > 200          | > 150      |                                          | m <sup>incl</sup>                | > 2200        | > 1700         | > 1600            | > 1400                  |
| Region B (Moderate $\Delta m$ )                                                                      | $N_{ m jet}$                                     | $\geq 6$       | = 6        |                                          | $M_J^{\Sigma,4}$                 | > 200         | > 150          | < 200             | > 200                   |
|                                                                                                      | $m_{ m T}$                                       | > 150          | < 150      | Region B<br>(Moderate mass               | N <sup>jet</sup>                 | ≥ 6           | == 6           | ≥ 6               | > 6                     |
|                                                                                                      | $m_{\mathrm{T,min}}^{b	ext{-jets}}$              | > 160          | —          |                                          | m <sub>T</sub>                   | > 150         | < 150          | > 200             | < 150                   |
|                                                                                                      | $E_{\mathrm{T}}^{\mathrm{miss}}$                 | > 450          | > 400      | splitting)                               | $m_{T min}^{b-jets}$             | > 160         | _              | _                 | > 140                   |
|                                                                                                      | $m_{\rm eff}^{\rm incl}$                         | > 1800         | > 1500     |                                          | $E_{\rm T}^{\rm miss}$           | > 450         | > 400          | > 250             | > 350                   |
|                                                                                                      | $M_J^2$                                          | > 200          | > 100      |                                          | m <sup>incl</sup>                | > 1800        | > 1500         | > 1200            | > 1200                  |
| $\begin{array}{c} {\rm Region \ C} \\ {\rm (Small \ } \Delta {\rm m}) \end{array}$                   | $N_{ m jet}$                                     | $\geq 7$       | =7         |                                          | $M_J^{\sum,4}$                   | > 200         | > 100          | < 100             | > 150                   |
|                                                                                                      | $m_{ m T}$                                       | > 150          | < 150      |                                          | N <sup>jet</sup>                 | > 7           | == 7           | > 7               | > 7                     |
|                                                                                                      | $m_{\mathrm{T,min}}$                             | > 100<br>> 350 | -<br>> 350 | Region C<br>(Small mass                  | mT                               | > 150         | < 150          | > 150             | < 150                   |
|                                                                                                      | $m_{ m T}^{ m incl}$                             | > 1000         | > 1000     | splitting)                               | $m_{\pi}^{b-jets}$               | > 160         | _              | < 160             | > 160                   |
|                                                                                                      | еп                                               |                |            |                                          | $E_{\rm T}^{\rm min}$            | > 350         | > 350          | > 300             | > 300                   |
|                                                                                                      |                                                  |                |            |                                          | m <sup>incl</sup>                | > 1000        | > 1000         | > 1000            | > 1000                  |

Criteria common to all Gtt 1-lepton regions:  $\geq 1$  signal lepton,  $p_T^{\text{jet}} > 30 \text{ GeV}$ ,  $N_{b-\text{jet}} \geq 3$ 

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_36_Figure_1.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Picture_0.jpeg)

| Validation Regions      | tĪW             | $t\bar{t}Z$     | WZ4j            | WZ5j            | $W^{\pm}W^{\pm}jj$ |
|-------------------------|-----------------|-----------------|-----------------|-----------------|--------------------|
| $t\bar{t}Z/\gamma^*$    | $6.2 \pm 0.9$   | $123 \pm 17$    | $17.8 \pm 3.5$  | $10.1 \pm 2.3$  | $1.06 \pm 0.22$    |
| $t\bar{t}W$             | $19.0 \pm 2.9$  | $1.71 \pm 0.27$ | $1.30\pm0.32$   | $0.45 \pm 0.14$ | $4.1 \pm 0.8$      |
| tīH                     | $5.8 \pm 1.2$   | $3.6 \pm 1.8$   | $1.8 \pm 0.6$   | $0.96 \pm 0.34$ | $0.69 \pm 0.14$    |
| tīttī                   | $1.02 \pm 0.22$ | $0.27 \pm 0.14$ | $0.04 \pm 0.02$ | $0.03 \pm 0.02$ | $0.03 \pm 0.02$    |
| $W^{\pm}W^{\pm}$        | $0.5 \pm 0.4$   |                 |                 |                 | $26 \pm 14$        |
| WZ                      | $1.4 \pm 0.8$   | $29 \pm 17$     | $200 \pm 110$   | $70 \pm 40$     | $27 \pm 14$        |
| ZZ                      | $0.04 \pm 0.03$ | $5.5 \pm 3.1$   | $22 \pm 12$     | 9 ± 5           | $0.53 \pm 0.30$    |
| Rare                    | $2.2 \pm 0.5$   | $26 \pm 13$     | $7.3 \pm 2.1$   | $3.0 \pm 1.0$   | $1.8 \pm 0.5$      |
| Fake/non-prompt leptons | $18 \pm 16$     | $22 \pm 14$     | $49 \pm 31$     | $17 \pm 12$     | $13 \pm 10$        |
| Charge-flip             | $3.4 \pm 0.5$   |                 |                 |                 | $1.74 \pm 0.22$    |
| Total SM background     | $57 \pm 16$     | $212 \pm 35$    | $300 \pm 130$   | $110 \pm 50$    | $77 \pm 31$        |
| Observed                | 71              | 209             | 257             | 106             | 99                 |

| Validation                       | $N_{lepton}^{signal}$           | N <sub>b-jets</sub> | N <sub>jets</sub>                              | $p_{\mathrm{T, jet}}$ | $E_{\mathrm{T}}^{\mathrm{miss}}$ | $m_{\rm eff}$ | Other                                                      |
|----------------------------------|---------------------------------|---------------------|------------------------------------------------|-----------------------|----------------------------------|---------------|------------------------------------------------------------|
| Region Name                      | Ĩ                               |                     |                                                | [GeV]                 | [GeV]                            | [GeV]         |                                                            |
| $t\bar{t}W$                      | = 2SS                           | ≥ 1                 | $\geq 4 \ (e^{\pm}e^{\pm},  e^{\pm}\mu^{\pm})$ | > 40                  | > 45                             | > 550         | $p_{\rm T}(\ell_2) > 40 { m GeV}$                          |
|                                  |                                 |                     | $\geq 3 \; (\mu^{\pm} \mu^{\pm})$              | > 25                  |                                  |               | $\sum p_T^{b-jet} / \sum p_T^{jet} > 0.25$                 |
| $t\bar{t}Z$                      | ≥ 3                             | ≥ 1                 | ≥ 3                                            | > 35                  | —                                | > 450         | $81 < m_{\rm SFOS} < 101 { m GeV}$                         |
|                                  | $\geq$ 1 SFOS pair              |                     |                                                |                       |                                  |               |                                                            |
| WZ4j                             | = 3                             | = 0                 | ≥ 4                                            | > 25                  | _                                | > 450         | $E_{\mathrm{T}}^{\mathrm{miss}} / \sum p_{T}^{\ell} < 0.7$ |
| WZ5j                             | = 3                             | = 0                 | ≥ 5                                            | > 25                  | —                                | > 450         | $E_{\mathrm{T}}^{\mathrm{miss}} / \sum p_{T}^{\ell} < 0.7$ |
| W <sup>±</sup> W <sup>±</sup> jj | = 2SS                           | = 0                 | ≥ 2                                            | > 50                  | > 55                             | > 650         | veto $81 < m_{e^{\pm}e^{\pm}} < 101 \text{ GeV}$           |
|                                  |                                 |                     |                                                |                       |                                  |               | $p_{\rm T}^{\ell_2} > 30 {\rm GeV}$                        |
|                                  |                                 |                     |                                                |                       |                                  |               | $\Delta R_{\eta}(\ell_{1,2},j) > 0.7$                      |
|                                  |                                 |                     |                                                |                       |                                  |               | $\Delta R_{\eta}(\ell_1,\ell_2) > 1.3$                     |
| All VRs                          | Veto events belonging to any SR |                     |                                                |                       |                                  |               |                                                            |

### **RPV 1L**

![](_page_42_Figure_1.jpeg)