STRONG SUSY IN THE LEPTONIC FINAL STATES AT CMS

Hannsjörg Weber (Fermilab), Claudia Seitz (University Zürich) on behalf of the CMS collaboration

Scope of this talk

- Leptons appear naturally in the decay chain of strongly produced gluinos/squarks:
 - In decays of top quarks from (virtual) top squark decays.
 - In decays involving sleptons.
 - In decays from W/Z/H bosons from chargino/neutralino decays.
- In this talk, I'll cover the multilepton final states: ≥ 2 charged leptons.
 - The 1ℓ final state will be covered in the plenary session: Claudia Seitz (Thursday).
 - I won't talk about leptonic searches for 3rd gen. squarks: Caroline Collard (Wednesday).

SUS-16-034

2ℓ : oppositely-charged, same flavor

- Search in two distinct signatures:
 - **1. Z** boson production (+ additional E_T^{miss})
 - 2. Dilepton mass edge

Selection:

- $M_{\ell\ell}$ within Z mass window
- Large E_T^{miss} and hadronic H_T
- Binned in $N_{(b-)jets}$ (2-3, 4-5, ≥ 6 jets X 0-b, $\geq 1-b$)
 - Additional binning in E_T^{miss}
- $M_{T2}^{\ell \ell} > 80/100 \text{ GeV} \text{ (reduce } t\bar{t} \rightarrow 2\ell \text{)}$
 - Sharp decline around W mass for tt

Background estimation:

- Flavor-symmetric: mostly $t\bar{t} \rightarrow 2\ell$
 - Estimated from an eµ data control sample.
 - R_{SE/OF} corrects for flavor dependent trigger/ID efficiencies
- SM Z+jets production:
 - Estimated using γ +jets data control sample: γ emulates $Z \rightarrow 2\ell$ (see backup for $M_{T2}^{\ell\ell}$).
 - Binned in N_b

SUS-16-034

2ℓ : oppositely-charged, same flavor

- Search in two distinct signatures:
 - 1. Z boson production
 - 2. Dilepton mass edge (through virtual Z or slepton decay)

Selection:

- High E_T^{miss} and ≥ 2 jets
- Binned in $\mathbf{M}_{\ell\ell}$
- $M_{T2}^{\ell \ell} > 80 \text{ GeV} (\text{reduce } t\bar{t} \rightarrow 2\ell)$
- A tt likelihood for additional discrimination against $tt \rightarrow 2\ell$.

Background estimation:

- Flavor-symmetric: mostly $t\bar{t} \rightarrow 2\ell$
 - Estimated from an eµ data control sample.

SUS-16-034

2ℓ : oppositely-charged, same flavor

2ℓ: equally-charged

- Two "same-sign" leptons are rarely produced in the SM.
- However, can appear natural in SUSY scenarios.

Selection:

- Two equally charged lepton.
- Large E_T^{miss} .
- Large H_T and multiple jets.
- Selection on $\min(M_T^{\ell})$: for $t\bar{t} \rightarrow l\ell$ have $M_T^{\ell} \leq M_W$.
 - Creates signal regions with low non-prompt bkg
- Selection on ++ vs. --:
 - The SM is asymmetric in charge.
- Use variables to cover a large variety of signals:
 - 100 signal regions

2ℓ: equally-charged

Backgrounds:

- 1. Non-prompt leptons: mostly $t\bar{t} \rightarrow 1\ell$ with semileptonic heavy flavor decay.
 - Estimated with "tight-to-loose" method from a data sideband where lepton passes only loose identification/isolation criteria.
- 2. SM production of equally charged leptons: mostly WZ and ttW/ttZ.
 - Estimated using 3*l* data, with 2 lepton compatible to be from a Z boson decay.
- 3. Charge misidentification: only for e^{\pm} .
 - Comparison of data yield within the Z mass window of e[±]e[±] vs. e[±]e[∓].

2ℓ: equally-charged

Results:

- No significant excess.
- Beyond usual simplified model interpretation, this analysis provides model independent interpretations on production cross section.

between chargino and neutralino

8 1704.07323 SUS-16-035

≥3ℓ

• $\geq 3\ell$ processes are rare in the SM, but can be natural to SUSY production.

Selection:

- $\geq 3\ell$, with or without $Z \rightarrow 2\ell$ boson candidate.
- Large E_T^{miss} and H_T .
- Multiple (b-tagged) jets.
- Selection on M_T^{ℓ} : for WZ have $M_T^{\ell} \leq M_W$.
 - Uses lepton not from Z or the one that gives $min(MT^{\ell})$

Define multiple (46) search regions.

Backgrounds:

- 1. Non-prompt leptons,
- 2. WZ/ttZ:
 - Estimated as in the "same-sign" analysis
- 3. Other rare backgrounds: ZZ, ttW, VVV:
 - Estimated from simulation.

≥3ℓ

• "Off-Z signal regions" have no excess, the observation is slightly above the background prediction in the "on-Z signal regions" but within systematic precision.

11

≥3ℓ

Summary

- No evidence for physics beyond the SM found in searches for strongly-produced sparticles in final states with multiple leptons.
 - 2ℓ same-sign; opposite-sign same-flavor (on- and off-Z)
 - $\geq 3\ell$
- For results for strong SUSY searches in other final states, please go to
 - in hadronic channel (Kin Ho Lo, earlier this session),
 - the 3rd generation (Caroline Collard, parallel Wednesday), and
 - the general [incl. 1ℓ final state] (Claudia Seitz, plenary Thursday).
- The CMS SUSY analyses presented (and most other) provide
 - aggregated signal regions (order of 5-10 signal regions instead of 50-100+)
 - and/or background correlation/covariance matrices

for easier reinterpretation by phenomenologists, see

http://cms-results.web.cern.ch/cms-results/public-results/publications/SUS/.

2ℓ SFOS: M_{T2} definition

• For the γ data control sample emulate dilepton final state, by assuming photon decays into a $\ell^+\ell^-$ as expected from a Z boson.

2^ℓ SFOS: tt likelihood

- Inputs to likelihood (PDFs determined) from opposite flavor data sample):
 - E_T^{miss} \rightarrow double exponential
 - $p_T(\ell^+\ell^-) \longrightarrow crystal-ball$
 - $|\Delta \phi(\ell^+ \ell^-)| \longrightarrow 2^{nd}$ -order polynomial
 - \rightarrow crystal-ball • $\sum M_{\ell h}$
- The negative logarithm of the likelihood is taken as discriminant:
 - Non-tt-like region defined as being 5% efficient in $t\bar{t} \rightarrow 2\ell$.

35.9 fb⁻¹ (13 TeV)

— fit data (OF

pl (GeV)

- data (OF)

2ℓ SFOS: edge mass fit

The FS background component is described using a Crystal-Ball [53] function: $\mathcal{P}_{CB}(m_{\ell\ell})$:

$$\mathcal{P}_{CB}(m_{\ell\ell}) = \begin{cases} \exp\left(-\frac{(m_{ll}-\mu_{CB})^2}{2\sigma_{CB}^2}\right) & \text{if } \frac{m_{ll}-\mu_{CB}}{\sigma_{CB}} < \alpha, \\ A(B + \frac{m_{ll}-\mu_{CB}}{\sigma_{CB}})^{-n} & \text{if } \frac{m_{ll}-\mu_{CB}}{\sigma_{CB}} > \alpha, \end{cases}$$

where

$$A = \left(\frac{n}{|\alpha|}\right)^n \exp\left(-\frac{|\alpha|^2}{2}\right)$$
 and $B = \frac{n}{|\alpha|} - |\alpha|.$

The DY background component

$$\mathcal{P}_{DSCB}(m_{\ell\ell}) = \begin{cases} A_1(B_1 - \frac{m_{ll} - \mu_{DSCB}}{\sigma_{DSCB}})^{-n_1} & \text{if } \frac{m_{ll} - \mu_{DSCB}}{\sigma_{DSCB}} < -\alpha_1, \\ \exp\left(-\frac{(m_{ll} - \mu_{DSCB})^2}{2\sigma_{DSCB}^2}\right) & \text{if } -\alpha_1 < \frac{m_{ll} - \mu_{DSCB}}{\sigma_{DSCB}} < \alpha_2, \\ A_2(B_2 + \frac{m_{ll} - \mu_{DSCB}}{\sigma_{DSCB}})^{-n_2} & \text{if } \frac{m_{ll} - \mu_{DSCB}}{\sigma_{DSCB}} > \alpha_2, \end{cases}$$

The full model for the on-Z DY lineshape is thus:

$$\mathcal{P}_{DY, \text{ on-}Z}(m_{\ell\ell}) = \int \mathcal{P}_{DSCB}(m_{\ell\ell}) \mathcal{P}_{BW}(m_{\ell\ell} - m') dm'.$$

The signal component is described by a triangular shape, convolved with a Gaussian distribution to account for the experimental resolution:

$$\mathcal{P}_{S}(m_{\ell\ell}) \propto \frac{1}{\sqrt{2\pi}\sigma_{\ell\ell}} \int_{0}^{m_{\ell\ell}^{edge}} y \cdot \exp\left(-\frac{(m_{\ell\ell}-y)^2}{2\sigma_{\ell\ell}^2}\right) dy.$$

2^ℓ SFOS: signal regions

Table 1: Summary of all signal region selections.

Strong on-Z Signal Regions							
Region	N _{jets}	N _{b-jets}	H_{T}	$M_{T2}(\ell\ell)$	E ^{miss} binning [GeV]		
SRA b-veto	2–3	= 0	> 500 GeV	> 80 GeV	[100,150,250,∞]		
SRB b-veto	4–5	= 0	$> 500 \mathrm{GeV}$	> 80 GeV	[100,150,250,∞]		
SRC b-veto	≥ 6	= 0	-	$> 80 \mathrm{GeV}$	[100,150,∞]		
SRA b-tag	2–3	≥ 1	> 200 GeV	> 100 GeV	[100,150,250,∞]		
SRB b-tag	4–5	≥ 1	> 200 GeV	> 100 GeV	[100,150,250,∞]		
SRC b-tag	≥ 6	≥ 1	-	> 100 GeV	[100,150,∞]		
		•	Electroweak o	n-Z Signal Regions			
Region	N _{jets}	N _{b-jets}	dijet mass	M _{T2}	E _T ^{miss} binning [GeV]		
VZ	≥ 2	= 0	m _{jj} < 110 GeV	$M_{T2}(\ell\ell) > 80 \text{ GeV}$	[100,150,250,350,∞]		
HZ	≥ 2	= 2	m _{bb} < 150 GeV	$M_{T2}(\ell b \ell b) > 200 \text{ GeV}$	[100,150,250,∞]		
Edge Signal Regions							
Region	Njets	$E_{\rm T}^{\rm miss}$	$M_{T2}(\ell\ell)$	tī likelihood	$m_{\ell\ell}$ binning [GeV]		
Edge Fit	≥ 2	> 150 GeV	> 80 GeV	-	> 20		
t ī like	≥ 2	$> 150 \mathrm{GeV}$	> 80 GeV	< 21	[20,60,86],[96,150,200,300,400,∞]		
non-tī like	≥ 2	> 150 GeV	> 80 GeV	> 21	[20,60,86],[96,150,200,300,400,∞]		

2ℓ SFOS: results

FS

Rares

Data

m_{II}: 300-400 GeV

m_{li}: > 400 GeV

m_{II}: 20-60 GeV

m_{II}: 60-86 GeV

m_{II}: 96-150 GeV

Template

35.9 fb⁻¹ (13 TeV)

11111

1111

14

m_{II}: > 400 GeV

m_{II}: 200-300 GeV

m_{II}: 150-200 GeV

m_{II}: 300-400 GeV

Tot. unc.

non tī like

2^ℓ SFOS: interpretation

2ℓ SS: signal regions

Table 2: Signal region definitions for the HH selection. Regions split by charge are indicated with (++) and (--).

N _b	$m_{\rm T}^{\rm min}$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	Njets	$H_{\rm T} < 300 {\rm GeV}$	$H_{\rm T} \in [300, 1125] { m GeV}$	$H_{\rm T} \in [1125, 1300] {\rm GeV}$	$H_{\rm T} \in [1300, 1600] {\rm GeV}$	$H_{\rm T} > 1600{\rm GeV}$										
0		50 200	2-4	SR1	SR2													
	~ 120	50 - 200	≥ 5		SR4													
	< 120	200 - 300	2-4		SR5 (++) / SR6 ()													
		200 000	≥ 5		SR7													
		50 - 200	2-4	SR3	SR8 (++) / SR9 ()													
	> 120		≥ 5		CD10													
		200 - 300	2-4		SKIU													
			≥ 3	CD11	CD12													
		50 - 200	>5	5K11	SR12 SR15 (++) / SR16 ()													
	< 120		2-4		SR17(++)/SR18()													
		200 - 300	>5		SR19													
1			2-4	SR13 (++) / SR14 ()	SR20 (++) / SR21 ()													
	> 100	50 - 200	≥ 5															
	> 120	200 300	2-4		SR22	SP46(11)/SP47(1)	SP / R (++) / SP / Q (-)	SP50(++)/SP51(-)										
		200 - 300	≥ 5			3K40 (++) / 3K47 ()		3K30 (++) / 3K31 ()										
	< 120	50 - 200	2-4	SR23	SR24													
			≥5		SR27 (++) / SR28 ()													
		200 - 300	0 2-4		SR29 (++) / SR30 ()													
2					≥ 5	$CDOF(\cdot,\cdot) / CDO((\cdot))$	SK31	-										
	> 120	50 - 200	2-4	SR25 (++) / SR26 ()	5K32 (++) / 5K33 ()													
		$200 - 300 \xrightarrow{2-4}{>5}$	$\frac{\geq 3}{2-4}$		SR34													
			>5		0101													
≥3	< 120 > 120	100	. 120	. 120	. 120	100	100	. 120	. 100	100	100	50 - 200			SR37 (++) / SR38 ()			
		200 - 300	≥ 2	SR35 (++) / SR36 ()	SR39													
		> 120	50 - 300	>2	SR40	SR/1												
		> 120	50 - 500	<u> </u>	UTTU	5171												
inclusive	inclusive	300 - 500	>2	-	SR42 (++) / SR43 ()													
	> 500 - SK44 (++) / SR45 ()																	

2ℓ SS: signal regions

Table 3: Signal region definitions for the HL selection. Regions split by charge are indicated with (++) and (--).

Nb	$m_{\rm T}^{\rm min}$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	Njets	$H_{\rm T} < 300 {\rm GeV}$	$H_{\rm T} \in [300, 1125] { m GeV}$	$H_{\rm T} \in [1125, 1300] {\rm GeV}$	$H_{\rm T} > 1300 {\rm GeV}$
0		50 - 200	2-4	SR1	SR2		
	< 120		≥ 5		SR4		
0	< 120	200 - 300	2-4	SR3	SR5 (++) / SR6 ()		
			≥ 5		SR7		
		50 - 200	2-4	SR8	SR9		
1	< 120	30 - 200	≥ 5		SR12 (++) / SR13 ()		
1	< 120	200 - 300	2-4	SR10 (++) / SR11 ()	SR14 (++) / SR15 ()		
			≥ 5		SR16 (++) / SR17 ()		
		120 $50 - 200$ 200 300	2-4	SR18	SR19	SR38 (++) / SR39 ()	SR40 (++) / SR41 ()
2	< 120		≥ 5		SR22 (++) / SR23 ()		
2	< 120		2-4	SR20 (++) / SR21 ()	SR24 (++) / SR25 ()		
		200 - 300	≥ 5		SR26		
≥3	< 120	50 - 200	>2	SR27 (++) / SR28 ()	SR29 (++) / SR30 ()		
		200 - 300	<u> </u>		SR31		
inclusive	> 120	50 - 300	≥ 2	SR32	SR33		
inclusive	inclusivo	inclusive $300-500$	>2	-	SR34 (++) / SR35 ()		
		> 500	<u> </u>	-	SR36 (++) / SR37 ()		

Table 4: Signal region definitions for the LL selection. All SRs in this category require $N_{\text{jets}} \ge 2$.

N _b	$m_{\rm T}^{\rm min}$ (GeV)	$H_{\rm T}$ (GeV)	$E_{\mathrm{T}}^{\mathrm{miss}} \in [50, 200] \mathrm{GeV}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$
0	< 120	> 300	SR1	SR2
1			SR3	SR4
2			SR5	SR6
≥ 3			SR7	
Inclusive	> 120		SR8	

2ℓ SS: results

2ℓ SS: interpretation

2^l SS: interpretation

$\geq 3\ell$: signal regions

Table 2: Summary of the definition of the signal regions. The minimum $E_{\rm T}^{\rm miss}$ requirement is raised from 50 to 70 GeV only for on-Z SR1 and SR5. The dagger sign indicates signal regions that are further subdivided at $M_{\rm T}^{\rm min}$ = 120 GeV. The search regions are mirrored in on- and off-Z region.

Njets	N _{b jets}	$H_{\rm T}$ (GeV)	$50(70)\mathrm{GeV} \le E_\mathrm{T}^\mathrm{miss} < 150\mathrm{GeV}$	$150\text{GeV} \le E_{\text{T}}^{\text{miss}} < 300\text{GeV}$	$E_{\rm T}^{\rm miss} \ge 300 {\rm GeV}$
≥ 2 ·	0	60 - 400	SR1 +	SR2 †	
		400 - 600	SR3 †	SR4 †	
	1	60 - 400	SR5	SR6	
		400 - 600	SR7	SR8	SR16 +
	2	60 - 400	SR9	SR10	
		400 - 600	SR11	SR12	
	≥ 3	60 - 600	SR1		
	inclusive	≥ 600	SR14 †	SR15 †	

$\geq 3\ell$: results

(a)

(b)

26

$\geq 3\ell$: interpretation

upper limit on cross section [pb]

5%

Ő