

Searches for diboson resonances at CMS

The Fifth

Annual Conference on

Large Hadron Collider Physics

LH₂₀₁₇P

Huang Huang

on behalf of the CMS collaboration

2017/5/19

Introduction

- Heavy BSM resonances (≥ 1 TeV) may decay into SM bosons (W, Z, H)
- Plethora of final states, each one with its own peculiarities:

	$V o q \overline{q}$	W ightarrow l u	Z ightarrow ll	Z ightarrow u u	$H o b\overline{b}$
$V o q \overline{q}$	$VV ightarrow q \overline{q} q \overline{q}$				
W ightarrow l u	$WV ightarrow l u q \overline{q}$				
Z ightarrow ll	$ZV ightarrow llq\overline{q}$				
Z ightarrow u u					
$H \rightarrow b\overline{b}$	$VH \to q\overline{q}b\overline{b}$	$WH \rightarrow l\nu b\overline{b}$	$ZH \rightarrow llb\overline{b}$	$ZH \rightarrow \nu \nu b \overline{b}$	$HH \rightarrow b\overline{b}b\overline{b}$

Heavy vector triplet (HVT)

Heavy Z', W' predicted by several models: Little Higgs, composite Higgs, Minimal Walking Technicolor

Two possible scenarios:

- 1. coupling to fermions dominating (Model A)
- 2. coupling to fermions suppressed w.r.t. SM bosons dominating (Model B)

Warped Extra Dimension (WED)

WED models as possible solution to the hierarchy problem

Radion (spin-0) and Graviton (spin-2)

Production through DY and gluon-fusion, decay to WW, ZZ, HH

Reconstruction & Identification

- **Challenges**
- SM bosons decay mostly to quarks $(q\overline{q}, b\overline{b})$
- Due to the large Lorentz boost W, Z, H decay ٠ products merge in to a single jet
- Clustered within a large-cone jet (R=0.8) •
- Investigation of the jet substructure
- Groomed jet mass to mitigate pileup contamination

CMS Experiment at LHC, CERN Data recorded: Fri Aug 19 02:26:23 2016 CEST Run/Event: 279024 / 602168401 Lumi section: 376

4

Reconstruction & Identification

Grooming and jet mass

Boosted large-R jets (R=0.8) can be easily contaminated by pileup interactions.

"Grooming" is to remove those pileup contaminations, to achieve stronger discrimination power for boosted jets.

- **PUPPI algorithm** (JHEP10(2014)059): pileup mitigation algorithm identifying and assigning small weights to the pileup particles served as input to jet clustering.
- **Softdrop algorithm** (<u>JHEP05(2014)146</u>): dropping soft jet constitution particles.

• Vector boson tagging ($V \rightarrow q\overline{q}$)

The V-jets tagging variables and V/H-jet mass are calculated based on the **groomed jets**

Distinguish: Boosted W/Z jets (2-prong) vs. QCD q/g jets (1-prong)

• **N-subjettiness** (arXiv:1011.2268): how likely is a jet to have "N" subjets

$$\tau_{N} = \frac{1}{d_{0}} \sum_{k} p_{\mathrm{T},k} \times \min(\Delta R_{1,k}, \Delta R_{2,k}, ..., \Delta R_{N,k})$$
$$d_{0} = \sum_{k} p_{\mathrm{T},k} \times R_{0}$$

Wjet tagger

 $\tau_2 / \tau_1 = \tau_{21}$

Reconstruction & Identification

- Higgs boson tagging $(H \rightarrow b\overline{b})$ (CMS-PAS-BTV-15-002)
- Exploit b-tagging to identify **two** b-quarks within the same jet
- Also use soft lepton (e, μ) information
- Combines tracking and vertexing information in an MVA

$X \to VV \to q\overline{q}q\overline{q}$

CMS-PAS-B2G-17-001

- All-hadronic resonance search with double (VV) or single (qV) V-tag
- Event categorization:

V-jet mass: W ($65 < m_i < 85 GeV$) or Z ($85 < m_i < 105 GeV$)

V-jet τ_{21} : high purity (τ_{21} <0.35), low purity (0.35 < τ_{21} < 0.75)

6 categories for VV: (WW/WZ/ZZ)×(HP/LP)

4 categories for qV: (W/Z)×(HP/LP)

• Background modeling:

Multijets (dominant), $t\bar{t}$, V-jets

"bump-hunt" fit with power law functions directly to data

Number of parameters (2-5) determined with Fisher-test

$X \to VV \to q\overline{q}q\overline{q}$

CMS-PAS-B2G-17-001

- No significant excess found in data
- Currently, the most stringent limits on $m_{Z'}$ < 2.7 TeV and $m_{W'}$ < 3.6 TeV

$X \to VH \to q\overline{q}b\overline{b}$

• All-hadronic resonance search for $V \to q\overline{q}$ and $H \to b\overline{b}$

- Similar topology and background estimation to VV resonances search, but dedicated identification for $H \rightarrow b\overline{b}$ (b-tagging)
- Same pre-selections as VV, 2×2×2 = 8 categories depending on:

1. V-jet mass: W ($65 < m_j < 85GeV$) or Z ($85 < m_j < 105GeV$)

2. V-jet τ_{21} : high purity (τ_{21} <0.35), low purity

 $(0.35 < \tau_{21} < 0.75)$

3. H-jet b-tagging: tight (Hbb>0.9) and loose

(0.3<Hbb<0.9) b-tag

• Background modeling:

Multijets (dominant), $t\bar{t}$, V-jets

"bump-hunt" fit with power law functions directly to data

Number of parameters (2-5) determined with Fisher-test

CMS-PAS-B2G-17-002 $\xrightarrow{X \to VH \to q\overline{q}b\overline{b}} \qquad 35.9 \text{ fb}^{-1} (13 \text{ TeV})$ $\xrightarrow{Preliminary} \qquad Data (362)$ $\xrightarrow{Preliminary} \qquad Bkg. \text{ fit } (2 \text{ par.})$

$X \to VH \to q\overline{q}b\overline{b}$

- No significant excess found in data
- Sensitivity close to VV search ($m_{Z'}$ < 2.4 TeV and $m_{W'}$ < 3.3 TeV)
- Combined exclusion in triplet hypothesis ($m_{V'} < 3.4 \text{ TeV}$)

9

New result

CMS-PAS-B2G-16-026

$X \to HH \to b\overline{b}b\overline{b}$

- All-hadronic resonance search for double $H \rightarrow b\overline{b}$
- Preselection:
 - **0.** Tight jet ID with lepton veto, $|\Delta \eta(j_1, j_2)| < 1.3$
 - **1.** V-jet mass: H ($105 < m_j < 135 GeV$)
 - **2.** V-jet τ_{21} : high purity (τ_{21} <0.55)
 - **3.** H-jet b-tagging: tight (Hbb>0.9) and loose
 - (0.3<Hbb<0.9) b-tag TT and LL category
- Background modeling:

Almost all background due to QCD multijet production. (Tiny fraction from other sources, but measured inclusively using the data.)

Low mass: 750 < M(X) < 1200 Ge

Alphabet method (extended ABCD method).

High mass: M(X) >= 1200 GeV

Alphabet-assisted bump hunt: AABH.-- Bump hunt with

constraints on the normalization.

New result

$X \to HH \to b\overline{b}b\overline{b}$

CMS-PAS-B2G-16-026

• Alphabet method:

Predicting background normalization and Mjj red shape based on several sidebands (generalized ABCD method)

• Two orthogonal variables:

Jet soft drop mass

Double b tagger discriminator

- Measure double b pass/ fail ratio ($R_{p/f}$) defined using leading p_T jet in the SD mass sidebands.
- Anti-tag region $\times R_{p/f}$ = Background in the signal region

New result

$X \to ZZ \to l^- l^+ \nu \overline{\nu}$

- A highly boosted Z decay to a pair of leptons, High MET from the other Z decay into neutrinos
- Use transverse mass m_T as the observable to separate signal over background
- data:

single e/ μ data

• Background modeling:

main: Z+jets: data driven by γ + *jets* data

(Z+jets MC only for validation)

resonance background: WZ, ttZ (MC)

non-resonance background: WW, $t\overline{t}$

data driven by di-lep ($e\mu$) data

$X \to ZV \to llq\overline{q}$

CMS-PAS-B2G-16-022

- Search for resonances in the $Z \rightarrow ee$ or $\mu\mu$, $V \rightarrow q\overline{q}$ (either W or Z) channel:
 - Clean final state (leptons)
 - Good mass resolution
 - Large signal efficiency (~65%)
 - **P**enalized by $\mathbf{Z} \rightarrow \mathbf{ll}$ branching fraction
- Search with ICHEP dataset (12.9fb⁻¹)
- Usual τ_{21} categorization (HP, LP)
- *α*-method background estimation
- Normalization
 - 1. Use suitable functions to parameterize main bkg (Z+jets)
 - 2. Fit them to data in the *m_j* sidebands (LSB & HSB)
 - **3.** Take shape of second bkg (VV, $t\overline{t}$) from simulation

$X \to ZV \to llq\overline{q}$

CMS-PAS-B2G-16-022

- *α*-method background estimation
- Shape
 - **1.** transfer function: $\alpha^{MC} = \frac{F_{WW}(SR)^{MC}}{F_{WW}(SB)^{MC}}$
 - **2.** Fit data $N_{SB}^{data}(m_X)$ in sideband
 - 3. background expectation in SR

 $F_{WW}(SR)^{Data} = F_{WW}(SB)^{Data} \times_{\alpha} {}^{MC}$

- Data compatible with the SM-only hypothesis
- Exclusion limits at 95% CL of the spin-1 W' singlet

HVT model A: $m_{W'} \leq 2.0 \text{ TeV}$

HVT model B: $m_{W'} \leq 2.3 \text{ TeV}$

• Significant improvement w.r.t. 2015 search

$X \to WV \to l \nu q \overline{q}$

- Search for a resonance decaying to WV in the leptonic channel $(W \rightarrow l\nu, V \rightarrow q \overline{q})$
- ICHEP dataset (12.9 fb⁻¹)
- Categorization in τ_{21} and W/Z mass
- Low mass extension down to 600 GeV
- Kinematic reconstruction of $p_z^{
 u}$ from m_{W}
- a-method for background prediction
- Sensitivity similar to $ZV \rightarrow llq\overline{q}$: HVT model A W' excluded up to 2.0 TeV

CMS-PAS-B2G-16-020

Combination

CMS-PAS-B2G-16-007

- Combination between 13 TeV (2015 data only) and 8 TeV searches [WW, WZ, ZZ, WH, & ZH]
- Favored by orthogonally between analyses and common techniques
- Excluding W' & Z' with masses up to about 2.4 TeV in HVT model B ($g_V = 3$).
- Not sensitive enough to exclude Bulk Graviton
- 2016 searches already more sensitive than combination

Conclusions

- Searching for heavy resonances is one of the most direct ways to find new physics at TeV scale
- Significant development in boosted object techniques
- Rich phenomenology & final states VV, VH, HH: clear experimental signatures and allows cross check among different channels
- No significant excess observed in data
- Only recent 13 TeV results are shown here today many new results to arrive in the coming months.
- Exciting diboson results in preparation with the 2016-17 LHC data !!

• Backup

ROC curve

Figure 16: Performance of several discriminants in the background-signal efficiency plane. The baseline selection for W tagging requiring a PF+CHS pruned or PF+PUPPI softdrop jet mass of 65 < m_{jet} < 105 GeV, and N-subjettiness ratio (PF+CHS inputs) of τ_2/τ_1 < 0.45 or N-subjettiness ratio (PF+PUPPI inputs) of τ_2/τ_1 < 0.4 or τ_{21}^{DDT} < 0.52 are indicated with symbols.

Alphabet

- Categories in double b values of leading and subleading jets:
 - Loose: > 0.3
 - Tight: > 0.8
- Both passing tight: TT
- Both passing loose but not in the TT category: LL
- Anti-tag regions defined by inverting double b requirement of the leading jet:

Cat.	Signal region	Control region
TT	Double b (j1) > 0.8 Double b (j2) > 0.8	Double b (j1) < 0.3 Double b (j2) > 0.8
LL	Double b (j1) > 0.3 Double b (j2) > 0.3 and not TT	Double b (j1) < 0.3 0.3 < Double b (j2) < 0.8

• All four regions fully statistically uncorrelated.

Alphabet

Alphabet method:

- Predicting background normalization and M_{jj}^{red} shape based on several sidebands (generalized ABCD method)
- Two orthogonal variables:
 - Jet soft drop mass
 - Double b tagger discriminator

- Measure double b pass/ fail ratio (R_{p/f}) defined using leading p_T jet in the SD mass sidebands.
- Anti-tag region × $R_{p/f}$ = Background in the signal region

AABH

- A step beyond the classic bump hunt.
- Constraint on background normalization in the signal region
 - From the Alphabet method we see that the background shape in the anti-tag and signal regions are similar.
 - Simultaneous fit of signal+background to the data using parametric functions
 - Normalization using anti-tag region and R_{p/f}
 - R_{p/f} constrained with log-normal priors.
- Better constraint on background systematics.
- The fit can extend farther in M_{jj}^{red} since there are more events in the anti-tag region to predict the tails

- The AABH, like a bump hunt works only when the trigger is 100% efficient.
- Used for searches for M(X) > 1200 GeV