KHOO TENG JIAN (OBO ATLAS & CMS COLLABORATIONS)

JET AND ETMISS RECONSTRUCTION IN ATLAS AND CMS

CMS Experiment at the LHC, CERN Data recorded: 2015-Jul-12 06:52:51.677888 GMT Run / Event / LS: 251562 / 310157776 / 347

LHCP 2017, 上海

HADRONIC OBSERVABLES & ELEMENTS

JET RECONSTRUCTION & CALIBRATION

MET RECONSTRUCTION & PERFORMANCE JET SUBSTRUCTURE & TAGGING

- Strongly associated with calorimetry, but tracking is progressively more important will demonstrate.
- Brief overview starting from basic elements

JET RECONSTRUCTION

TOPOLOGICAL CLUSTERING

ATLAS hadronic reconstruction begins with 3D topological clusters constructed from calorimeter cells.

Noise-suppressed and calibrated for pileup-stability and good single-hadron response.

4

[<u>arXiv:1603.02934]</u>

SINGLE-HADRON RESPONSE & JET COMPOSITION MEASUREMENTS

Tracks capture jet structure in fine detail

Better particle momentum resolution

Correct for bending in magnetic field

Identify origin vertices

PARTICLE FLOW RECONSTRUCTION

- Foundation of CMS hadronic reconstruction
- Integrated with global event reco
 1. Muons & electron constituents removed
 - 2. Extrapolated tracks matched to clusters to form charged hadrons
 - 3. Photon & neutral hadrons created from excess ECAL/HCAL energy
 - 4. Dedicated calibrations applied to each particle type

ATLAS EXPERIMENT

PARTICLE FLOW @ ATLAS

Different approach for longitudinally/laterally segmented calorimeter Subtract calorimeter energy with parameterised shower shape.

8

[arXiv: 1703.10485]

JET CALIBRATION

[JINST 12 (2017) P02014], [CMS DP -2016/020] Applied to data ——— **Residuals** (η) Pileup **Response** (p_T, η) **Residuals** (p_T) Flavor MC + RCdijets γ /Z+jet, MJB Reconstructed Calibrated MC MC Jets Jets MC Applied to simulation -

Four-vector restored to particle-scale reference four-momentum using similar sequential corrections.

JET CALIBRATION STEPS ILLUSTRATED

Jet Uncertainties

Sub-percent precision reached for O(100 GeV)

JET MASS CALIBRATION

JET-LEVEL PILEUP SUPPRESSION

- Track associations Identify vertex origin
- Jet width & angular variables:
 - wider spread in PU jet constituents
- Central-forward matching tags PU outside tracker

ATLAS

<u>CMS-PAS-JME-16-004</u> arXiv: 1510.03823, 1705.02211 Crucial for VBF analyses

JET-LEVEL PILEUP SUPPRESSION

PFlow+CHS reduce pileup at source.

Jet-level cuts still needed, achieve better suppression.

[CMS PAS-JME-16-004]

PUPPI filtering improves resolution with pile-up at cost of underestimating hadronic recoil.

Difficult trade-off between optimising for scale and optimising for resolution. Needs to be driven by physics goals.

[CMS PAS-JME-16-004]

Forward pileup suppression has large impact

Indiscriminate cuts cause scale defects, need dedicated pileup taggers.

Improvements seen with PFlow

[JETM-2017-001], [JETM-2017-007]

Jet & Boosted-object tagging

ΤJ

JETM-2017-004, JETM-2017-005 PUB in preparation

KHOO, LHCP 2017, SHANGHAI

19

See also: <u>B.Nachman (15/5)</u>, <u>ATL-PHYS-PUB-2017-009</u>

Fragmentation distribution

QUARK-GLUON TAGGING

Jet opening angle

CMS PAS JME-16-003

CMS PAS JME-16-003

(13 TeV) - Mistagging rate (QCD) 60 60 60 CMS <PU> = 12 Simulation Preliminary AK R = 0.8 |m| < 2.5 $65 \text{ GeV} < M_{iet} < 105 \text{ GeV}$ M_{iet} selection only M_{iet} + τ₂₁ selection -τ₂₁ scan - $M_{Pruning}^{CHS}$ + τ_{21} , p_{τ} = 200 - 400 GeV ···· $M_{Pruning}^{CHS}$ + τ_{21} , p_{τ} = 800 - 1200 GeV - $M_{\text{Softdrop}}^{\text{PUPPI}}$ + τ_{21} , p_{T} = 200 - 400 GeV ··· $M_{Softdrop}^{PUPPI}$ + τ_{21} , p_{T} = 800 - 1200 GeV - $M_{\text{Softdrop}}^{\text{PUPPI}} + \tau_{21}^{\text{DDT}}, p_{\text{T}} = 200 - 400 \text{ GeV}$ ···· $M_{Softdrop}^{PUPPI}$ + τ_{21}^{DDT} , p_{τ} = 800 - 1200 GeV 0.85[∟] 0.4 0.6 0.8 0.2 Tagging efficiency ($W \rightarrow q\overline{q}$)

Various strategies studied for PU suppression & substructure refinement.

DDT "<u>Decorrelated</u> <u>Taggers</u>" [arXiv: 1603.00027] reduce pT-dependence of substructure selection.

W BOSON TAGGING

TOP QUARK TAGGING

New tagger optimisation strategy: focus on fullycontained top jets.

Flat-pT training ensures good performance in wide kinematic range.

JETM-2017-004, JETM-2017-005

A TASTE OF THINGS TO COME

Run 3 & HL-LHC

- Software challenges: high-throughput & trigger reconstruction
- Physics challenges: pileup, pileup, pileup!
- ATLAS:
 - PFlow in analysis: multijet SUSY, ZH, ttH...?
 - Jet substructure & advanced calibration in triggers
- CMS:
 - Advanced trigger-level pile-up suppression
 - Deep-learning jet applications

THE JETS ARE OUT THERE!

Gensler / CTBUH

BACKUPS

Penggunaan **Jet Backup** untuk Restore Konten Website

JET INPUTS

PARTICLE FLOW @ ATLAS

[arXiv: 1703.10485]

PARTICLE FLOW @ ATLAS

[arXiv: 1703.10485]

DNSTITUENT PILEUP SUPPRESSION

30

Charged Hadron Subtraction (used with PFlow):

- Associate tracks to origin vertices
- PF charged hadrons from pileup vertices discarded before jet-finding.

See also: JETM-2016-012 (HL-LHC)

PileUp-Per-Particle-Identification [arxiv: 1407.6013]:

- Weight particles by pileup probability
 - Central region: prefer high local pT density of PV charged particles
 - Forward region: prefer high local pT density of particles

WHY PFLOW? (THE EMPIRICAL ANSWER)

JET CALIBRATION

correction

 $\overline{\mathbf{x}}$

JET UNCERTAINTIES

35

ΤJ

JET MASS CALIBRATION

- Detector response shapes jet mass as well as energy.
- At high pT, cluster merging obscures substructure, but can still be resolved with tracks but response suffers from lack of neutral information.
- Correct track-jet mass as m_{trk}*pT_{trk}/pT_{calo} [<u>ATLAS-CONF-2016-035</u>], combine with calo mass using resolution-weighted average.

TRIGGER JET CALIBRA ON

 Track-based Global Sequential Calibration vastly improves resolution, sharpening turn-on.

PILEUP SUPPRESSION

Jet-level PileUp Suppression

Jet Vertex Tagger [arXiv: 1510.03823]: forward JVT [arXiv:1705.02211]:

- Identify jets with large fraction of track pT from pileup vertices
- Additional discrimination from track-calorimeter pT correlation
- Jet shape (width) discriminates stochastic & QCD-like jets
- Central pileup jets used to tag forward dijet partners

JET-LEVEL PILEUP SUPPRESSION

TJ KHOO, LHCP 2017, SHANGHAI

40

Performance assessment

 Use projections parallel and perpendicular to the reference object (Z or photon) to isolate scale defect & resolution effects

FORWARD PILEUP-SUPPRESSION

- Simply raising pt threshold is effective in Z+jets, due to low intrinsic forward activity.
- VBF & ttbar, with more jets, require dedicated fJVT cut.

Number of primary vertices N

KHOO, LHCP 2017, SHANGHAI

43

ΤJ

EVENT CLEANING

Impossible to do MET without removing detector defects!

JET TAGGING

ATL-PHYS-PUB-2017-004 MACHINE

MACHINEW BOSONLEARNINGTAGGING

TOP QUARK TAGGING

ATLAS

<u>ATL-PHYS-PUB-2017-004</u>

MACHINE LEARNING

W BOSON TAGGING

TOP QUARK TAGGING

Optimised minimal input ensemble performing well for each ML alg. Calo substructure only.

Implicit pt/mass dependence.

	W-Boson Tagging		Top-Quark Tagging	
Observable	BDT	DNN	BDT	DNN
ECF_1		0	0	0
ECF_2	0	0		0
ECF_3	0	0	0	0
C_2		0	0	0
D_2	0	0	0	0
$ au_1$	0	0		0
τ_2		0	0	0
$ au_3$				0
$ au_{21}$	0	0	0	0
τ_{32}			0	0
$R_2^{\rm FW}$	0	0		
S	0	0		
${\cal P}$	0	0		
${\mathcal D}$		0		
a_3	0	0		
Α	0	0		
$T_{\rm MIN}$				
$T_{\rm maj}$				
Z_{CUT}		0		
μ_{12}		0		
$\sqrt{d_{12}}$		0	0	0
$\sqrt{d_{23}}$			0	0
KtDR	0	0		
Q_w			0	0

JET SUBSTRUCTURE TRIGGERS

 Selection on jet mass with trimming cuts background, allowing drastic lowering of threshold.

H BOSON TAGGING

DOUBLE B-TAGGING

N-subjettiness axes used as proxy for jet axes for b-tagging.

