Production of vector bosons in association with jets in ATLAS

E. Meoni (UNICAL & INFN)

On behalf of the ATLAS Collaboration

LHCP2017

The Fifth Annual Conference on Large Hadron Collider Physics May 15-20, 2017, Shanghai, China

Motivations

2

V+jets production dominated by **strong interactions**:

- Precision test of pQCD:test state-of-the-art pQCD calculations
- Impact of PDFs understandings
- Background to SM measurements, Higgs and New Physics: important validation of the Matrix Element (ME)+Parton Shower (PS) MCs
- Study QCD quantities with high statistics in a very clean environment
- Explore extreme phase spaces:
 - enhanced EW-production regions to constrain MCs in VBF-like regions important to understand Higgs and BSM backgrounds
 - V-jet collinear configurations enhanced with high $p_{_{\rm T}}$ jets to study regions where predictions could not work and mimic boosted signatures sensitive to New Physics

Outline

- "Classic" Z+jets cross-section measurement at 13 TeV (arXiv:1702.05725 [hep-ex])
- QCD+EW W+2 jets cross-section measurement at 8 TeV (arXiv:1703.04362 [hep-ex])
- W-jets collinear region measurement at 8 TeV (Phys. Lett. B 765 (2017) 132)
- k_τ splitting measurement in Z+jets at 8 TeV (arXiv:1704.01530 [hep-ex])

Z+jets @ 13 TeV

Look at leptonic decays $Z \to \mu \mu/$ ee (very clear probe)

Kinematic region with high efficiencies, good detector performances and low backgrounds:

Leptons: p_T >25 GeV, $|\eta|$ <2.4 (µ)- 2.47 (e) **Z**: 71 GeV <m_{II}<111 GeV **Jets:** anti-kt R=0.4, p_T >30 GeV, |y|<2.5, Δ R (I,j)>0.4

The Particle Level

Unfolding with MC: Correct for detector effects

Comparisons : Data unfolded – MCs Data unfolded – Fixed order calculations corrected for non perturbative effect

N_{jets}: figure of merit of goodness of QCD predictions and important discriminator with respect to the background in Higgs and searches

LO MG5_aMC+Py8 CKKWL shows good agreement with data, while LO Alpgen+Py6, NLO Sherpa 2.2 and NLO MG5_aMC+Py8 FxFx show a systematic trend deviating from data at high jet multiplicities, where large jet fraction comes from PS

Z+jets @ 13 TeV

- Highly correlated to p_T of V boson

- Modeling important for VH and some BMS searches: analysis done in different p_T^{\vee} ranges

LO Alpgen+Py6 and **NLO Sherpa 2.2** and **NLO calculation from BlackHat+Sherpa** in agreement with data within systematics over the full jet p_{T} range and at different jet multiplicities

 N_{jetti} NNLO models well the jet p_{T} spectrum

LO MG5_aMC+Py8 CKKWL models too hard jet p_{τ} spectrum for high p_{τ}

Z+jets @ 13 TeV arXiv:1702.05725 [hep-ex]

$H_T = \sum_{leptons, jets} |p_T|$

- Usual QCD scale
- Important for searches:

signal topologies with large jet activity (discriminant with respect to SM background)

NLO calculations from BlackHat+Sherpa

underestimates data in H_{T} >300GeV (missing higher orders)

N_{jetti}NNLO recovers agreement by adding higher orders in pQCD

LO MG5_aMC+Py8 CKKWL over-predicts large H_{τ} (consistently with what observed in the p_{τ} spectra)

QCD+EW W+2 jets@ 8 TeV

EW W+2 jets production is roughly 10 times smaller than QCD W+2 jets

arXiv:1703.04362 [hep-ex]

Phase space of the measurement

		Wij inclusive region (M >0.5 TeV)	\downarrow
Select W via leptonic decay	Lepton $p_T > 25 \text{ GeV}$		
	Lepton $ \eta < 2.5$	POWHEG+PYTHIA8	POWHEG+PYTHIA8
	$E_{T}^{\text{miss}} > 20 \text{ GeV}$	8 0.2	
	$m_{\rm T} > 40 { m GeV}$		se
	$p_{T}^{j_{1}} > 80 \text{GeV}$		ର୍ଜ 10 ⁻²
Select jets enhancing	$p_{\rm T}^{j_2} > 60 {\rm GeV}$	0.1	
EW production with a	Jet $ y < 4.4$		10 ⁻³
simple selection	$M_{jj} > 500 \text{ GeV}$	ATLAS Simulation	
-	$\Delta y(j_1, j_2) > 2$	0^{1}_{2} 3 4 5 6 7 8	
	$\Delta R(j, \ell) > 0.3$	Δ y(j ₁ , j ₂ ,	2 5×10 ⁻ 10 ⁻ 2×10 ⁻ 3×10 ⁻ Dijet mass [GeV]

QCD+EW W+2 jets@ 8 TeV

Signal region employed to extract EW component (see talk of Narei Lorenzo Martinez at this conference) and to explore modelling and interplay between QCD and EW production (shown in this talk)

M_{jj}: QCD Z+jets & QCD+EW W+jets

Very good modelling observed for all predictions, apart from a harder $m_{_{\rm II}}$ predicted by LO MG5 CKKWL

LO Sherpa and NLO Powheg+Pythia give a satisfactory description of data when both QCD and EW processes are included

$\Delta \phi_{ii}$: QCD Z+jets & QCD+EW W+jets

 $\Delta \phi$ not sensitive to EW and QCD separation but discriminant variable in Higgs measurements, moreover it tests interplay between ME (radiation at large angles) and PS (soft collinear radiation)

Very good agreement between data and predictions in "classic" QCD V+jets phase space, while in EW enhanced phase space slight tendency for predictions to overestimate data at small angles

arXiv:1703.04362 [hep-ex]

 $\Delta \phi(j, j) / \pi$

Collinear W+jets @ 8 TeV

At high energy real W emission can contribute significantly to W+jets.

Probe real W emission by studying the region of small angular separation between W and jets.

Use muon from W decay as a proxy

- $\rightarrow\,$ Muon and initial W directions highly correlated
- \rightarrow Key observable: $\Delta R(\mu$ -closest jet)

Use events with leading jet p_T >500 GeV

 $\rightarrow\,$ enriched collinear production of W+jets

Testing 2 inclusive regions: 0.2< ΔR <2.4 and ΔR >2.4

Collinear W+jets @ 8 TeV

NLO QCD+EW Sherpa and N_{jetti}NNLO agree with data within uncertainties

LO Alpgen describes shape well expect at very low ΔR but overestimates total cross section

Pythia8 (W+jet and dijet+weak shower) well describes back-to-back region while underestimates data at low ΔR

k_t splitting in Z+jets @ 8 TeV

Use Z as a trigger and study jet production at different splitting scales k_{T} clustering of jets (resolution scales)

arXiv:1704.01530 [hep-ex]

The
$$\mathbf{k}_{t}$$
 algorithm iteratively combines
charged-particle momenta, removing
particles at each iteration (in which
number of input momenta goes from
k+1 to k) by minimizing distance
 k_{t} algorithm combines soft radiation first,
working backwards through showering
and perturbative radiation

 $\cdot \sqrt{\mathbf{d}_0}$ is the \mathbf{p}_{T} of the leading \mathbf{k}_t -jet

• $\sqrt{d_k}$ is the distance scale at which a k-jet event is resolved as a (k + 1)-jet event \rightarrow main observable

Allows to understand region of transition between hard and soft hadronic activity, not directly probed by jet-based measurements \rightarrow sensitivity to PS (and matching and merging)

k_t splitting in Z+jets @ 8 TeV

Testing splitting scales (k) from 0 up to 7

arXiv:1704.01530 [hep-ex]

General underestimate of the bulk, and overestimates of the low region and tail MEPS@NLO (equivalent to NLO Sherpa 2.2) best at high $\sqrt{d_k}$, NNLOPS (equivalent to DY@NNLO+Powheg+Pythia 8) best at large k

Conclusions

Measurements of jet production in association with a V boson allow us to:

- -Improve understanding of pQCD
- -Improve understanding of MCs modelling in different kinematic regions important for many measurements and for searches:
 - explored not only "classical V+jets phase space", also "EW enhanced regions" and "collinear regions" investigated

ATLAS published a vast set of results in this contest with Run1 (7, 8 TeV) and Run2 (13 TeV) data

A lot of new exiting results are coming soon with Run-1 and Run-2 data

→ Stay tuned!

BACKUP

MCs & Fixed Order Calculations

Main Features	MC & Calculations	Details	PDFs
LO + PS	Alpgen (+ Pythia6)	LO up to 5 partons	CTEQ6L1
	MG5_aMC+Py8 CKKWL	LO up to 4 partons	NNPDF30NLO
	Sherpa (1.4)	LO up to 4 partons Note: EW production is LO up to 2 partons (via EW) + to up 1 parton (via QCD)	CT10
NLO+PS	Sherpa 2.2 (or MEPS@NLO)	NLO up to 2 partons and LO up to 4 partons (with Comix and OpenLoops ME)	NNPDF30NLO
	MG5_aMC+Py8 FxFx	NLO up to 2 partons	NNPDF2.3nlo
	Powheg (+ Pythia8)	NLO up to 2 partons	CT10
NNLO +PS	DY@ NNLO (+Powheg+Pythia8)	NNLO	PDF4LHC15nnlo
Fixed Order NLO Calc	BlackHat+Sherpa	NLO up to 5 jets	CT14
Fixed Order NNLO Calc	N _{jetti} NNLO	NNLO V+>=1 jets	CT14
Higher orders (with approx)	HEJ	approx. to all orders for W+>=2 jets	

Z+jets@13 TeV

	Electron channel							
	$+ \ge 0$ jets	$+ \ge 1$ jet	$+ \ge 2$ jets	$+ \ge 3$ jets	$+ \ge 4$ jets	$+ \ge 5$ jets	+ ≥ 6 jets	$+ \ge 7$ jets
$Z \rightarrow e^+ e^- [\%]$	99.3	97.6	93.9	90.3	87.3	85.2	83.3	81.2
Top quark [%]	0.2	1.2	3.8	6.5	8.6	9.7	10.5	11.6
Diboson [%]	0.2	0.8	1.6	2.4	3.4	4.4	5.5	6.6
$Z \rightarrow \tau^+ \tau^- [\%]$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
$W \rightarrow e \nu \ [\%]$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Multijet [%]	0.2	0.4	0.6	0.7	0.7	0.7	0.7	0.7
Expected	1,327,900	239,500	57,310	14,080	3637	978	252	63
Observed	1,347,900	248,816	59,998	14,377	3587	898	217	48
	Muon channel							
	$+ \ge 0$ jets	$+ \ge 1$ jet	$+ \ge 2$ jets	$+ \ge 3$ jets	$+ \ge 4$ jets	$+ \ge 5$ jets	+ ≥ 6 jets	$+ \ge 7$ jets
$Z \rightarrow \mu^+ \mu^- [\%]$	99.3	97.5	94.0	90.7	88.3	86.7	84.8	84.6
Top quark [%]	0.2	1.1	3.6	6.0	7.7	8.1	8.7	7.7
Diboson [%]	0.2	0.7	1.6	2.4	3.4	4.5	5.9	7.0
$Z \rightarrow \tau^+ \tau^- [\%]$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
$W \rightarrow \mu \nu [\%]$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Multijet [%]	0.3	0.6	0.9	0.9	0.7	0.7	0.7	0.7

Backgrounds from MCs expect multijets estimated with data-driven technique: template build loosening the lepton identification and isolation requirements, normalization established with a fit on

m

arXiv:1702.05725 [hep-ex]

QCD+EW W+2 jets@ 8 TeV: background

arXiv:1703.04362 [hep-ex]

Process	7 TeV	8 TeV
Wjj(EW)	920	5600
W jj (QCD)	3020	19600
Multijets	500	2350
tī	430	1960
Single top	244	1470
Zjj (QCD)	470	1140
Dibosons	126	272
Zjj (EW)	5	79
Total SM	5700	32500
Data	6063	33719

Background estimated with MC expect multijets estimated with data-driven technique: template built inverting certain lepton identification criteria, normalization established with a fit on E_{τ}^{miss}

W+jets collinear@8TeV: background

Process	$0.2 < \Delta R < 2.4$	$\Delta R > 2.4$	Inclusive
Dijets	5%	2%	4%
$t \overline{t}$	7%	2%	5%
Z + jets	6%	4%	5%
Dibosons	2%	4%	3%
W + jets	80%	88%	82%
Data	1907	833	2740

Main backgrounds (QCD jet, tt, Z+jets) estimated with MC but normalisation corrected with data in CR

Phys. Lett. B 765 (2017) 132

CR1: enriched in QCD (93% pure), inverting isolation requirement on signal muon

CR2: enriched in tt (91% pure), requiring at least 2 b-tagged jets

CR3: enriched in Z+jets (94% pure), requiring two signal muons within 60<mµµ/GeV<120

k_t splitting: the algorithm

k, splitting: background and uncertainty

	Z	$\rightarrow e^+e^-$	$Z \rightarrow \mu^+ \mu^-$		
Process	Events	Contribution [%]	Events	Contribution [%]	
QCD Z + jets	5 090 000	98.93 %	7 220 000	99.40 %	
Multijet	42 000	0.81 %	25 000	0.34 %	
Electroweak Z + jets	5 3 5 0	0.10 %	7 340	0.10 %	
Top quarks	6 1 9 0	0.12 %	8 440	0.12 %	
W(W)	1 1 0 0	0.02 %	1 460	0.02~%	
$Z \to \tau^+ \tau^-$	1 1 0 0	0.02 %	1 700	0.02 %	
Total expected	5 1 5 0 0 0 0	100.00 %	7 260 000	100.00~%	
Total observed	5 196 858		7 349 195		

Background from MC expect multijets estimated with data-driven technique: fit on data with 2 templates one for signal+other background (from MC) and one for multijet (from data reversing some of the lepton criteria)

arXiv:1704.01530 [hep-ex]

Total uncertainty (including 1.9% luminosity) ranging typically between 5 and 30%