Very forward measurements at the LHC

(a selection of recent results from LHCf, CMS-Forward, TOTEM and CT-PPS)

Mirko Berretti
(Helsinki University and Helsinki Institute of Physics)

on behalf of:
Introduction and outlook

Thanks to the exceptional coverage of many LHC experiments in the forward region, the LHC data are unique for a better understanding of many fundamental aspects of the hadron-hadron interaction, like:

- The dynamics of the coherent hadronic interaction (elastic/diffractive)
- The modelling of the high energy cosmic-ray showers
- The evolution of the gluon pdf at small-x
- The modelling of the Multiple Parton Interaction
- (…)

This talk will address some recent forward physics measurements published at the LHC:

- Recent total, inelastic and elastic cross section measurements by TOTEM.
- Proton tagging with the new proton spectrometers at high-luminosity (in particular CT-PPS).
- Forward γ/n measurement with LHCf
- Forward pp energy flow and p-A jets production measured by CMS-CASTOR

… and this is of course a non-comprehensive list!!
The LHCf experiment

Arm 1:
- Position resolution:
 - < 200 μm (photons)
 - < 1 mm (hadrons)
- Imaging layers:
 4 x-y GSO bars
- 1.6 \(\lambda_v \), 44\(X_0 \)

Arm 2:
- Position resolution:
 - < 40 μm (photons)
 - < 400 μm (hadrons)
- Imaging layers:
 4 x-y silicon microstrip
- 1.6 \(\lambda_v \), 44\(X_0 \)

Detection of **neutral particles** having pseu**dorapidity** \(\eta > 8.4 \)
Recent results from LHCf

Measurement of forward photon-energy spectra for $\sqrt{s} = 13$ TeV proton-proton collisions with the LHCf detector

- Inclusive single-photon analysis
- $\eta > 10.94$ and $8.81 < \eta < 8.99$
- 0.191 nb$^{-1}$, $\mu \sim 1\%$
- Photon PID, multi-hit rejection, beam background correction
- Spectrum Unfolding

Although none of the models agrees perfectly with the data, EPOS-LHC shows the best agreement with the experimental data among the models.

Important measurement to improve the knowledge of hadronic interaction models for HECR Physics.

Future plans:

- Opportunity in proton-Oxygen collisions.
- The detailed studies with event-by-event information measured by ATLAS (see later) will be able to help us understand more fully the production of photons in the forward region.
The LHCf and ATLAS experiment demonstrated already in 2013 the capability to generate a common trigger.

LHCf trigger signal was incorporated in the ATLAS Level-1 trigger system, events are then matched offline.

Preliminary analysis of the combined dataset has been carried out: possibility to further improve our understanding of cosmic-ray air showers and modelling of inelastic processes at the LHC:

- **Enhanced discrimination power by using information from ATLAS to classify the events with reconstructed particles in LHCf (diffractive/non diffractive).**
Recent results from LHCf: neutron differential cross section at 13 TeV

Arm2 unfolded spectra

Differential neutron production cross section

$$d\sigma_n/dE = \frac{dN(\Delta\eta, \Delta E)}{E} \times \frac{1}{L} \times \frac{2\pi}{d\phi},$$

Analysis completed in Arm2 and ongoing in Arm1

Only QGSJET II-04 qualitatively reproduces behavior of data in $\eta > 10.76$
EPOS-LHC has the best overall agreement in $8.81 < \eta < 9.22$ despite lower yield

The Castor calorimeter

- Forward CMS detector: $-6.6 < \eta < -5.2$, about 14.37 m from the IP
- Sampling calorimeter: Quartz plates embedded in W absorbers
- 16 sectors in transverse/azimuthal plane, no segmentation in η
- 14 modules along z-axis ($10.5 \lambda_i, 20X_0$)

Selected recent results:

- CMS-PAS-FSQ-17-001: forward inclusive jet cross sections for p+Pb collisions at 5.02 TeV

Important messages:

- PYTHIA8 CUETP8M1 without MPI is ruled out by the data (without MPI the spectra are much more soft).

- The shape of the spectra is significantly influenced by the MPI-related settings in PYTHIA8. The present results can therefore contribute to improvements in future Monte Carlo parameter tunes.

- Generators used in CR analyses like LHC-tuned QGSJET II and SIBYLL show better agreement. However they underestimate the μ production rate in extensive air showers: possible to improve the hadronic shower component thanks to these measurements.
Very forward inclusive jet cross sections in p+Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV

Analysis representative of pPb events having:
- a particle on both sides of the HF acceptance with a minimal energy of 4 GeV
- a charged particle in the central acceptance with p_T above 0.4 GeV/c
p-Pb collisions are ideal to search for signature of non-DGLAP parton evolution scheme.

- These effects are expected to be important at gluon small-x and high density.
- In ions, gluon densities are larger than protons, moreover the x carried by the parton can be very small for this measurement since $x = \frac{p_T \cdot e^{-|\eta|}}{\sqrt{s}}$ and $P_{T \text{ min}} = 4 \text{ GeV}$.

Important messages:

None of the models investigated are capable of describing all the spectra.

- The p+Pb spectrum is well described by HIJING
- The Pb+p spectra, is underestimated at lower energy while the models are consistent with the data for $E>1.2$ TeV
- The spectrum of the p+Pb/Pb+p ratio is more precise as the dominating uncertainty (energy scale) cancel out. All the models investigated don’t describe this distribution
- **Future**: Analyses ongoing on single inclusive jet spectra in pp at (7, 13 TeV) and in pA (5 TeV). Planned to start analysis on jet-gap-jet and fw-central correlations

Very forward inclusive jet cross sections in p+Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV
The Totem experiment

Improved RP system for LHC-Run2 measurements (3 station/side):

This RP is rotated by about 8 deg to increase multi-track capability.
Recent results from TOTEM

σ_{tot}, σ_{inel}, σ_{el} VS \sqrt{s}

with the luminosity independent method:

$$
\sigma_{\text{tot}} = \frac{16\pi}{(1 + \rho^2)} \frac{(dN_{\text{el}}/dt)_{t=0}}{(N_{\text{el}} + N_{\text{inel}})}
$$

TOTEM @ $\sqrt{s} = 2.76$ TeV ($\rho = 0.145$):

$\sigma_{\text{tot}} = 84.7 \pm 3.3$ mb
$\sigma_{\text{inel}} = 62.8 \pm 2.9$ mb
$\sigma_{\text{el}} = 21.8 \pm 1.4$ mb

ALICE @ $\sqrt{s} = 2.76$ TeV:

$\sigma_{\text{inel}} = 62.8^{+2.4}_{-4.0} \pm 1.2$ mb

ALICE coll., EPJC 73 (2013) 2456

... 13 TeV analysis well advanced, results expected soon
Photon exchange

\[\rho = \frac{\text{Re} A^H}{\text{Im} A^H} \bigg|_{t=0} \]

"Diffractive cone"

\[\beta^* = 2.5 \text{ km}, \quad \text{RPs}\@ 3\sigma \]

"Coulomb-nuclear interference" region

"Dip" region

"Pomeron" exchange

"Perturbative QCD" (pQCD) region

Recent results from TOTEM

Non exponentiality of the elastic scattering t-distribution and parameters trend

$d\sigma/dt = A \cdot \exp(-Bt) \quad \Rightarrow \quad d\sigma/dt = A \cdot \exp(b_1t + b_2t^2 + b_3t^3)$

Diffractive slope parameter $B = \frac{d}{dt} \ln\left(\frac{d\sigma}{dt}\right)_{t=0}$ increase with \sqrt{s}

$|t|$-value of dip position decreases with increasing \sqrt{s}

TOTEM measurement @ $\sqrt{s} = 2.76$ TeV:

$B = 17.10 \pm 0.26$ GeV$^{-2}$ ($d\sigma_{el}/dt \propto e^{-B|t|}$)

Larger impact from contribution of multi-Pomeron exchanges:

The CT-PPS spectrometer

- Joint project of the CMS and TOTEM collaborations
- Tracking in 2016: TOTEM silicon strips
- Timing 2016: diamond detectors (commissioning only)
- Tracking in 2017: TOTEM silicon strips + CT-PPS pixel detector.
- Timing 2017: (3 diamond + 1UFSD plane)/Arm. Clock distribution ready!

Two analyses already ongoing with the CT-PPS 2016 data:
- Search for exclusive $\gamma\gamma \rightarrow l^+l^-$
- Search for exclusive $\gamma\gamma \rightarrow \gamma\gamma$ production

More details in my Monday talk: “Proton tagging in the forward region: prospect and performance”
CT-PPS Physics measurements of exclusive production:
- $\gamma\gamma$ fusion processes (including anomalous quartic gauge coupling)
- gluon-gluon fusion in color-singlet state ($J^{PC} = 0^{++}, 2^{++}..$)

Advanced status analysis (exclusive di-lepton):

- Performed already in the past by CMS (e.g. JHEP 1307 (2013) 116, JHEP 1608 (2016) 119) and ATLAS (Phys.Rev. D94 (2016) 3.032011) without proton information (isolated back-to-back leptons)
- Proton detection in CT-PPS is fundamental to enhance the exclusive sample purity by requiring the matching between the proton momentum loss measured in the spectrometer and estimated from the leptons.
 - Evaluation of detector performance and background rejection.
 - Single dissociation process can be measured directly (not possible in the past).
 - QED process is known (calibration of survival gap probability factor)

Ongoing analysis (exclusive di-photon):

- Many extensions of the SM predict a larger yield in the $\gamma\gamma \rightarrow \gamma\gamma$ scattering (example: extradimensional models).
- Previous studies suffer from small statistics (no proton tagging → small pile-up → small Lumi → low $M \rightarrow \gamma\gamma$ productions from gluons).
- In the CT-PPS mass acceptance, the exclusive $\gamma\gamma$ process is dominated by electromagnetic production (light-by-light-scattering).
- *Possible to perform the measurement at high lumi thanks to the mass-rapidity matching between CT-PPS and CMS central detector.*
- Planned analysis: WW(AQGC), ZZ, $Z\gamma$, DPE and SD di-jet.
CT-PPS results and perspective

Mass-Rapidity acceptance

2016 optics before TS2 (data-calibrated): $\beta^* = 0.4 \text{ m, } \alpha_X = 370 \mu \text{rad, mild orbit bump, RPs} @ 15\sigma$

$y = \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$

- Overall sensitivity with double tags to missing mass range between 385 and 1950 GeV (for low-rapidity of the central system).
- Lower mass can be reached with single-arm proton tagging.
Conclusions:

• Important forward Physics results have been recently obtained by CMS, TOTEM, LHCf, and CT-PPS.

• LHCf and CMS-CASTOR measurements represent very important benchmarks for the understanding and improvement of the soft/small-x modeling of the hadron collision interaction

 • LHCf: forward γ / n yields at 13 TeV.
 • CMS-Castor: energy flow in pp and inclusive jets in pA.

• TOTEM has completed the measurement at 2.7 TeV of total, elastic, inelastic pp cross section and new elastic scattering; t-distributions were measured at 13 TeV (with important consequences on the understanding of the pp elastic scattering dynamics)

• With the LHC Run-2 we also entered the era of the high-luminosity proton spectrometers.

 • CT-PPS collected 15 fb$^{-1}$ in 2016 and demonstrated that high luminosity proton tagging is feasible: new opportunities to study rare processes with forward protons (data analyses ongoing).
 • AFP performed single-arm commissioning measurements.
 • Both spectrometers are now ready for double-arm 4D proton reconstruction: 2017 integrated luminosity with AFP/CT-PPS = delivered luminosity to ATLAS/CMS
BACKUP
Photon-photon collisions

cross section for $\mathbf{AA (\gamma\gamma)} \rightarrow \mathbf{AA X}$ process:

(i) Number of equivalent photons (EPA)
by integration of relevant EM form factors:

$$n(b, \omega) = \frac{Z^2 \alpha_{em}}{\pi^2 \omega} \left| \int dq \frac{F(Q^2)}{Q^2} J_1(bq) \right|^2$$

$$Q^2 \lesssim 1/R^2 \quad \omega_{max} \approx \gamma/R$$

(ii) EW $\mathbf{\gamma\gamma} \rightarrow \mathbf{X}$ (elementary) cross section

$$\sigma_{EPA}^{AA A_1 A_2(\gamma\gamma) \rightarrow AA X} = \int \int d\omega_1 \ d\omega_2 \ n_1(\omega_1) \ n_2(\omega_2) \ \sigma_{\gamma\gamma \rightarrow X} (W_{\gamma\gamma})$$

pp collisions
+ harder spectrum ($\omega_{max} \sim \text{TeV}$)
- large pile-up
- harder to trigger on low pT objects
+ large datasets, $O(40 \text{ fb}^{-1})$
-> Need proton spectrometers

PbPb collisions
- softer spectrum ($\omega_{max} \sim 100 \text{ GeV}$)
+ AA ($\gamma\gamma$) cross-sections $\propto Z^4$
+ gluonic cross-sections $\propto \sim A^2$ (lower CEP background wrt pp)
+ lower pile-up (<1%)
- smaller data set
Inclusive energy spectrum in the very forward direction in proton-proton collisions at $\sqrt{s} = 13$ TeV

Analysis details:

Data correspond to an integrated luminosity of 0.35 fb$^{-1}$
Pile-up $\mu=5\%$
Event selection: BX trigger & HF activity (2 side) & at least 1 Castor tower with $E>5$ GeV.
Beam halo muon for channel cross calibration.
HF spectrum used for absolute energy scale.
Unfolding technique from extract detector to particle level energy
Analysis representative for event with proton fractional E-loss $\xi>10^{-6}$
Muon and neutrino not included in the computation.

Very forward inclusive jet cross sections in p+Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF energy scale</td>
<td>10%</td>
</tr>
<tr>
<td>Extrapolation and model dependence</td>
<td>10%</td>
</tr>
<tr>
<td>CASTOR non-compensation</td>
<td>5%</td>
</tr>
<tr>
<td>Total</td>
<td>15%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>p+Pb 600 GeV</th>
<th>p+Pb 2.5 TeV</th>
<th>Pb+p 600 GeV</th>
<th>Pb+p 2.5 TeV</th>
<th>p+Pb/Pb+p 600 GeV</th>
<th>p+Pb/Pb+p 2.5 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy scale</td>
<td>$+2%$</td>
<td>$+145%$</td>
<td>$+6%$</td>
<td>$+170%$</td>
<td>$+5%$</td>
<td>$+57%$</td>
</tr>
<tr>
<td>Model dependence</td>
<td>$-2%$</td>
<td>$-71%$</td>
<td>$-6%$</td>
<td>$-82%$</td>
<td>$-7%$</td>
<td>$-9%$</td>
</tr>
<tr>
<td>Alignment</td>
<td>$+14%$</td>
<td>$+37%$</td>
<td>$+13%$</td>
<td>$+46%$</td>
<td>$+24%$</td>
<td>$+48%$</td>
</tr>
<tr>
<td>Jet identification</td>
<td>$-14%$</td>
<td>$-37%$</td>
<td>$-13%$</td>
<td>$-46%$</td>
<td>$-24%$</td>
<td>$-48%$</td>
</tr>
<tr>
<td>Total</td>
<td>$+3%$</td>
<td>$+24%$</td>
<td>$+3%$</td>
<td>$+49%$</td>
<td>$+10%$</td>
<td>$+4%$</td>
</tr>
<tr>
<td>Source of uncertainty</td>
<td>p+Pb 600 GeV</td>
<td>p+Pb 2.5 TeV</td>
<td>Pb+p 600 GeV</td>
<td>Pb+p 2.5 TeV</td>
<td>p+Pb/Pb+p 600 GeV</td>
<td>p+Pb/Pb+p 2.5 TeV</td>
</tr>
<tr>
<td>Total</td>
<td>$+1%$</td>
<td>$+22%$</td>
<td>$<1%$</td>
<td>$<1%$</td>
<td>$+1%$</td>
<td>$+21%$</td>
</tr>
</tbody>
</table>

Integrated lumi for p+Pb and Pb+p runs used in this analysis is 3.13 and 6.71 nb$^{-1}$
Different LHC Optics

Hit maps of simulated diffractive events for 2 optics configurations

$\beta^* = 0.55$ m (low β^* = standard at LHC) \hspace{1cm} \beta^* = 90$ m (developed for σ_{total} measurement)

diffractive protons: mainly in horizontal RP
elastic protons: in vertical RP near $x \sim 0$
sensitivity only for large scattering angles

diffractive protons: mainly in vertical RP
elastic protons: in narrow band at $x \approx 0$,
sensitivity for small vertical scattering angles

| β^* | Transverse size of IP | Angular beam divergence | Min. reachable $|t|$ |
|-----------|-----------------------|-------------------------|-------------------|
| 0.5–3.5 m | $\sigma_{x,y}^* = \sqrt{\frac{e_p \beta^*}{\gamma}} \sim 15-30 \mu$m | $\sigma(\Theta_{x,y}^*) = \sqrt{\frac{e_p}{\beta^* \gamma}} \sim 10^{-5}$ μrad | $|t_{\text{min}}| = \frac{n_e^2 \rho e_m^2}{\beta^*} \sim 0.3$–$1$ GeV2 |
| 90 m | $\sim 300 \mu$m | $\sim 10^{-6}$ μrad | $\sim 10^{-2}$ GeV2 |
LHC Optics & proton acceptance

\(t = -p^2 \Theta^2 \): four-momentum transfer squared; \(\xi = \Delta p/p \): fractional momentum loss

\(\beta^* = 0.55 \text{ m} \)
\(\beta^* = 90 \text{ m} \)
\(\beta^* = 1000 \text{ m} \)

\(> 10^{33} \text{ cm}^{-2} \text{ s}^{-1} \) \(\leftrightarrow \) \(\mathcal{L} \propto \frac{1}{\beta^*} \) \(\leftrightarrow \) \(\sim 10^{27} \text{ cm}^{-2} \text{ s}^{-1} \)

Diffraction:
\(\xi > -0.01 \), low cross-section processes (hard diffraction)
Elastic scattering: large \(|t|\)

Diffraction: all \(\xi \) if \(|t| > \sim 10^{-2} \text{ GeV}^2\), soft & semi-hard diffraction
Elastic scattering: low to mid \(|t|\)
Total Cross-Section

Elastic scattering:
very low \(|t|\), Coulomb-Nuclear Interference
Total Cross-Section
Acquired data and published results

<table>
<thead>
<tr>
<th></th>
<th>Proton equivalent energy in LAB (eV)</th>
<th>γ</th>
<th>n</th>
<th>π^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>p+Pb 5.02 TeV</td>
<td>1.4x10^{16}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p+p 13 TeV</td>
<td>9.0x10^{16}</td>
<td>submitted to PLB</td>
<td>Analysis ongoing</td>
<td></td>
</tr>
<tr>
<td>p+Pb 8.1 TeV</td>
<td>3.6x10^{16}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data taking completed in November 2016

Thanks to information in the central region it is possible to distinguish between diffractive and non-diffractive events.
Exclusive WW:

Cuts and cross sections (fb)

<table>
<thead>
<tr>
<th>Selection</th>
<th>SM exclusive WW</th>
<th>exclusive WW (incorrectly reconstructed)</th>
<th>inclusive WW</th>
<th>exclusive $\tau\tau$</th>
</tr>
</thead>
<tbody>
<tr>
<td>generated $\sigma \times B(WW \rightarrow e\mu \nu\bar{\nu})$</td>
<td>0.86±0.01</td>
<td>N/A</td>
<td>2537</td>
<td>1.78±0.01</td>
</tr>
<tr>
<td>≥ 2 leptons ($p_T > 20$ GeV, $\eta < 2.4$)</td>
<td>0.47±0.01</td>
<td>N/A</td>
<td>1140±3</td>
<td>0.087±0.003</td>
</tr>
<tr>
<td>opposite sign leptons, “tight” ID</td>
<td>0.33±0.01</td>
<td>N/A</td>
<td>776±2</td>
<td>0.060±0.002</td>
</tr>
<tr>
<td>dilepton pair $p_T > 30$ GeV</td>
<td>0.25±0.01</td>
<td>N/A</td>
<td>534±2</td>
<td>0.018±0.001</td>
</tr>
<tr>
<td>protons in both PPS arms (ToF and TRK)</td>
<td>0.055 (0.054)±0.002</td>
<td>0.044 (0.085)±0.003</td>
<td>11 (22)±0.3</td>
<td>0.004±0.001</td>
</tr>
<tr>
<td>no overlapping hits in ToF + vertex matching</td>
<td>0.033 (0.030)±0.002</td>
<td>0.022 (0.043)±0.002</td>
<td>8 (16)±0.2</td>
<td>0.003 (0.002)±0.001</td>
</tr>
<tr>
<td>ToF difference, $\Delta t = (t_1 - t_2)$</td>
<td>0.033 (0.029)±0.002</td>
<td>0.011 (0.024)±0.001</td>
<td>0.9 (3.3)±0.1</td>
<td>0.003 (0.002)±0.001</td>
</tr>
<tr>
<td>$N_{\text{tracks}} < 10$</td>
<td>0.028 (0.025)±0.002</td>
<td>0.009 (0.020)±0.001</td>
<td>0.03 (0.14)±0.01</td>
<td>0.002±0.001</td>
</tr>
</tbody>
</table>

aQGC

$$a_W^0/\Lambda^2 = 5 \cdot 10^{-6} \text{GeV}^{-2}$$

<table>
<thead>
<tr>
<th>Selection</th>
<th>$a_W^0/\Lambda^2 = 5 \cdot 10^{-6} \text{GeV}^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>generated $\sigma \times B(WW \rightarrow e\mu \nu\bar{\nu})$</td>
<td>3.10±0.14</td>
</tr>
<tr>
<td>≥ 2 leptons ($p_T > 20$ GeV, $\eta < 2.4$)</td>
<td>2.33±0.08</td>
</tr>
<tr>
<td>opposite sign leptons, “tight” ID</td>
<td>1.82±0.08</td>
</tr>
<tr>
<td>dilepton pair $p_T > 30$ GeV</td>
<td>1.69±0.07</td>
</tr>
<tr>
<td>protons in both PPS arms (ToF and TRK)</td>
<td>0.52 (0.50)±0.04</td>
</tr>
<tr>
<td>no overlapping hits in ToF detectors</td>
<td>0.35 (0.32)±0.03</td>
</tr>
<tr>
<td>ToF difference, $\Delta t = (t_1 - t_2)$</td>
<td>0.35 (0.32)±0.03</td>
</tr>
<tr>
<td>$N_{\text{tracks}} < 10$</td>
<td>0.27 (0.24)±0.03</td>
</tr>
</tbody>
</table>
Auger determination of the "muon problem"

\[\sigma_{\text{inel}} \] by ATLAS at 13 TeV

FIG. 1. Top: The measured longitudinal profile of an illustrative air shower with its matching simulated showers, using QGSJet-II-04 for proton (red solid) and iron (blue dashed) primaries. Bottom: The observed and simulated ground signals for the same event (\(p\): red squares, dashed-line, Fe: blue triangles, dot-dash line) in units of vertical equivalent muons; curves are the lateral distribution function (LDF) fit to the signal.

FIG. 3. The inelastic proton-proton cross section versus \(\sqrt{s}\). Measurements from other hadron collider experiments [6,7,9,14,15] and the Pierre Auger experiment [16] are also shown. Some LHC data points have been slightly shifted in the horizontal position for display purposes. The data are compared to the PYTHIA8, EPOS LHC and QGSJet-II MC generator predictions. The uncertainty in the ATLAS ALFA measurement is smaller than the marker size.