Very forward measurements at the LHC

(a selection of recent results from LHCf, CMS-Forward, TOTEM and CT-PPS)

Mirko Berretti (Helsinki University and Helsinki Institute of Physics)

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

The Fifth Annual Conference on Large Hadron Collider Physics May 15-20, 2017, Shanghai, China

TOTEM

Introduction and outlook

Thanks to the exceptional coverage of many LHC experiments in the forward region, the LHC data are unique for a better understanding of many fundamental aspects of the hadron-hadron interaction, like:

- The dynamics of the coherent hadronic interaction (elastic/diffractive)
- The modelling of the high energy cosmic-ray showers
- The evolution of the gluon pdf at small-x
- The modelling of the Multiple Parton Interaction
- (...)

This talk will address some recent forward physics measurements published at the LHC:

- Recent total, inelastic and elastic cross section measurements by TOTEM.
- Proton tagging with the new proton spectrometers at high-luminosity (in particular CT-PPS).
- Forward γ /n measurement with LHCf
- Forward pp energy flow and p-A jets production measured by CMS-CASTOR

... and this is of course a non-comprehensive list !!

The LHCf experiment

Recent reults from LHCf

Measurement of forward photon-energy spectra for \sqrt{s} = 13 TeV proton-proton collisions with the LHCf detector

- Inclusive single-photon analysis
- η > 10.94 and 8.81 < η < 8.99
- 0.191 nb⁻¹, $\mu \sim 1\%$
- Photon PID, multi-hit rejection, beam background correction
- Spectrum Unfolding
 - Although none of the models agrees perfectly with the data, EPOS-LHC shows the best agreement with the experimental data among the models.
 - Important measurement to improve the knowledge of hadronic interaction models for HECR Physics.

Future plans:

- Opportunity in proton-Oxygen collisions.
- The detailed studies with event-by-event information measured by ATLAS (see later) will be able to help us understand more fully the production of photons in the forward region.

- The LHCf and ATLAS experiment demonstrated already in 2013 the capability to generate a common trigger.
- LHCf trigger signal was incorporated in the ATLAS Level-1 trigger system, events are then matched offline.
- Preliminary analysis of the combined dataset has been carried out: possibility to further improve our understanding of cosmic-ray air showers and modelling of inelastic processes at the LHC:
 - Enhanced discrimination power by using information from ATLAS to classify the events with reconstructed particles in LHCf (diffractive/non diffractive).

Recent reults from LHCf: neutron differential cross section at 13 TeV

The Castor calorimeter

- Forward CMS detector: -6.6 < η < -5.2, about 14.37 m from the IP
- Sampling calorimeter: Quartz plates embedded in W absorbers
- 16 sectors in transverse/azimuthal plane, no segmentation in $\boldsymbol{\eta}$
- 14 modules along z-axis (10.5 λ_i , 20X₀)

Selected recent results:

- CMS-FSQ-16-002: inclusive energy spectrum in the very forward direction pp collisions at 13 TeV (arXiv:1701.08695)
- CMS-PAS-FSQ-17-001: forward inclusive jet cross sections for p+Pb collisions at 5.02 TeV

(see <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/FSQ/index.html</u> for a complete list of analyses)

Measurement of the inclusive energy spectrum in the very forward direction in proton-proton collisions at \sqrt{s} = 13 TeV

https://arxiv.org/abs/1701.08695

Event selection:

 BX trigger & HF activity (either side) & Castor E>5 GeV

Important messages:

- PYTHIA8 CUETP8M1 without MPI is ruled out by the data (without MPI the spectra are much more soft).
- The shape of the spectra is significantly influenced by the MPI-related settings in PYTHIA8. The present results can therefore contribute to improvements in future Monte Carlo parameter tunes.
- Generators used in CR analyses like LHCtuned QGSJET II and SIBYLL show better agreement. However they underestimate the μ production rate in extensive air showers: possible to improve the hadronic shower component thanks to these measurements

Very forward inclusive jet cross sections in p+Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV

Analysis representative of pPb events having:

- a particle on both sides of the HF acceptance with a minimal energy of 4 GeV
- a charged particle in the central acceptance with p_T above 0.4 GeV/c

Very forward inclusive jet cross sections in p+Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV

p-Pb collisions are ideal to search for signature of non-DGLAP parton evolution scheme.

- These effects are expected to be important at gluon small-x and high density.
- In ions, gluon densities are larger than protons, moreover the x carried by the parton can be very small for this measurement since $x = \frac{p_T \cdot e^{-|\eta|}}{\sqrt{s}}$ and $P_{T \min} = 4$ GeV.

Important messages:

None of the models investigated are capable of describing all the spectra.

- The p+Pb spectrum is well described by HIJING
- The Pb+p spectra, is underestimated at lower energy while the models are consistent with the data for E>1.2 TeV
- The spectrum of the p+Pb/Pb+p ratio is more precise as the dominating uncertainty (energy scale) cancel out. All the models investigated don't describe this distribution
- *Future:* Analyses ongoing on single inclusive jet spectra in pp at (7, 13 TeV) and in pA (5 TeV). Planned to start analysis on jet-gap-jet and fw-central correlations

The Totem experiment

Improved RP system for LHC-Run2 measurements (3 station/side):

This RP is rotated by about 8 deg to increase multi-track capability

Recent reults from TOTEM

 $\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$ $\sigma_{tot}, \sigma_{inel}, \sigma_{el} vs \sqrt{s}$ with the luminosity independent method: 140(qm) īрр (PDG) Δ TOTEM @ √s = 2.76 TeV 130 pp (PDG) Auger (+ Glauber) $\tau_{\rm el}$ (green), $\sigma_{\rm inel}$ (blue) and $\sigma_{\rm tot}$ (red) 120 $(\rho = 0.145)$: 2.76 TeV ALICE 110 ATLAS, ATLAS-ALFA σ_{tot} = 84.7 ± 3.3 mb 100 CMS TOTEM (*L* independent) σ_{inel} = 62.8 ± 2.9 mb 90 CDF best COMPETE σ_{tot} fits 80 σ_{el} = 21.8 \pm 1.4 mb $-11.7 - 1.59 \ln s + 0.134 \ln^2 s$ $\sigma_{\rm tot}$ 70 E710 60 ALICE @ $\sqrt{s} = 2.76$ TeV: 50 Prelim 40 $\sigma_{\text{inel}} = 62.8 + 2.4 \pm 1.2 \text{ mb}$ 30 20 ALICE coll., EPJC 73 (2013) 2456 10 0 10^{3} 10^{2} 10^{4} 10^{5} 101 \sqrt{s} (GeV)

... 13 TeV analysis well advanced, results expected soon

Recent reults from TOTEM

Elastic pp scattering @ $\sqrt{s} = 13 \text{ TeV}$

Recent reults from TOTEM

Non exponentiality of the elastic scattering t-distribution and parameters trend

TOTEM measurement @ $\sqrt{s} = 2.76$ TeV: $B = 17.10 \pm 0.26$ GeV⁻² ($d\sigma_{el}/dt \propto e^{-B|t|}$)

Larger impact from contribution of multi-Pomeron exchanges: A. Donnachie, P.V. Landshoff arXiv1112.2485, PRD 85 (2012) 094024

Deviation from pure exponential under measurement at 13 TeV: A.D. Martin, V.A. Khoze, M.G. Ryskin, JPG 42 (2015) 025003; D.A. Fagundes et al., IJMPA 31 (2016) 1645022

The CT-PPS spectrometer

letecto

- Joint project of the CMS and TOTEM collaborations
- Tracking in 2016: TOTEM silicon strips

x (mm)

- Timing 2016: diamond detectors (commissioning only)
- Tracking in 2017: TOTEM silicon strips + CT-PPS pixel detector.
- Timing 2017: (3 diamond + 1UFSD plane)/Arm. Clock distribution ready!

More details in my Monday talk: "Proton tagging in the forward region: prospect and performance"

CERN-LHCC-2014

Timina

CT-PPS Physics

CT-PPS Physics measurements of exclusive production:

- γγ fusion processes (including anomalous quartic gauge coupling)
- gluon-gluon fusion in color-singlet state (J^{PC} = 0⁺⁺, 2⁺⁺ ..)

Currently ongoing analysis (exclusive di-lepton and di-photon):

AQGC, DPE dijets and missing mass searches better with timing information

Advanced status analysis (exclusive di-lepton):

- Performed already in the past by CMS (e.g. JHEP 1307 (2013) 116, JHEP 1608 (2016) 119) and ATLAS (Phys.Rev. D94 (2016) 3.032011) without proton information (isolated back-to-back leptons)
- Proton detection in CT-PPS is fundamental to enhance the exclusive sample purity by requiring the matching between the proton momentum loss measured in the spectrometer and estimated from the leptons.
 - Evaluation of detector performance and background rejection.
 - Single dissociation process can be measured directly (not possible in the past).
 - QED process is known (calibration of survival gap probability factor)

Ongoing analysis (exclusive di-photon):

- Many extensions of the SM predict a larger yield in the $\gamma\gamma \rightarrow \gamma\gamma$ scattering (example: extradimensional models).
- Previous studies suffer from small statistics (no proton tagging \rightarrow small pile-up \rightarrow small Lumi \rightarrow low M $\rightarrow \gamma\gamma$ productions from gluons).
- In the CT-PPS mass acceptance, the exclusive γγ process is dominated by electromagnetic production (light-by-light-scattering).
- Possible to perform the measurement at high lumi thanks to the mass-rapidity matching between CT-PPS and CMS central detector.
- Planned analysis: WW(AQGC), ZZ, Zγ, DPE and SD di-jet.

CT-PPS results and perspective

Mass-Rapidity acceptance

2016 optics before TS2 (data-calibrated): $\beta^* = 0.4 \text{ m}$, $\alpha_X = 370 \mu \text{rad}$, mild orbit bump, RPs @ 15σ

- Overall sensitivity with double tags to missing mass range between 385 and 1950 GeV (for low-rapidity of the central system).
- Lower mass can be reached with single-arm proton tagging

Conclusions:

- Important forward Physics results have been recently obtained by CMS, TOTEM, LHCf, and CT-PPS.
- LHCf and CMS-CASTOR measurements represent very important benchmarks for the understanding and improvement of the soft/small-x modeling of the hadron collision interaction
 - LHCf: forward γ / n yields at 13 TeV.
 - CMS-Castor: energy flow in pp and inclusive jets in pA.
- TOTEM has completed the measurement at 2.7 TeV of total, elastic, inelastic pp cross section and new elastic scattering; t-distributions were measured at 13 TeV (with important consequences on the understanding of the pp elastic scattering dynamics)
- With the LHC Run-2 we also entered the era of the high-luminosity proton spectrometers.
 - CT-PPS collected 15 fb⁻¹ in 2016 and demonstrated that high luminosity proton tagging is feasible: new opportunities to study rare processes with forward protons (data analyses ongoing).
 - AFP performed single-arm commissioning measurements.
 - Both spectrometers are now ready for double-arm 4D proton reconstruction: 2017 integrated luminosity with AFP/CT-PPS = delivered luminosity to ATLAS/CMS

BACKUP

Photon-photon collisions

cross section for AA ($\gamma\gamma$) \rightarrow AA X process: (i) Number of equivalent photons (EPA) by integration of relevant EM form factors:

$$\begin{array}{ll} n(b,\omega) &=& \displaystyle \frac{Z^2 \alpha_{em}}{\pi^2 \omega} \left| \int \mathrm{d}q_\perp q_\perp^2 \frac{F(Q^2)}{Q^2} J_1(bq_\perp) \right|^2 \\ Q^2 &< 1/R^2 \quad \omega_{\max} \,\approx \, \gamma/R \end{array}$$

(ii) EW $\gamma\gamma \rightarrow X$ (elementary) cross section

$$\sigma_{A_1A_2(\gamma\gamma)\to A_1A_2X}^{\text{EPA}} = \iint d\omega_1 \ d\omega_2 \ n_1(\omega_1) \ n_2(\omega_2) \ \sigma_{\gamma\gamma\to X}(W_{\gamma\gamma})$$

pp collisions

- + harder spectrum ($\omega_{max} \sim \text{TeV}$)
- large pile-up
- harder to trigger on low pT objects
- + large datasets, O(40 fb⁻¹)
- -> Need proton spectrometers

PbPb collisions

- softer spectrum ($\omega_{\rm max}\,^{\sim}$ 100 GeV)
- + AA ($\gamma\gamma$) cross-sections \propto Z⁴
- + gluonic cross-sections $\propto \sim A^2$ (lower CEP background wrt pp)
- + lower pile-up (<1%)
- smaller data set

Inclusive energy spectrum in the very forward direction in proton-proton collisions at \sqrt{s} = 13 TeV

Analysis details:

Data correspond to an integrated luminosity of 0.35 fb-1

Pile-up µ=5%

Event selection: BX trigger & HF activity (2 side) & at least 1 Castor tower with E>5 GeV.

Beam halo muon for channel cross calibration.

HF spectrum used for absolute energy scale.

Unfolding technique from extract detector to particle level energy

Analysis representative for event with proton fractional E-loss ξ>10-6

Muon and neutrino not included in the computation.

Very forward inclusive jet cross sections in p+Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV

Source of uncertainty	Value
HF energy scale	10%
Extrapolation and model dependence	10%
CASTOR non-compensation	5%
Total	15%

Source uncertainty	p+Pb		Pb+p		p+Pb/Pb+p	
	600 GeV	2.5 TeV	600 GeV	2.5 TeV	600 GeV	2.5 TeV
Energy scale	$^{+2\%}_{-2\%}$	$^{+145\%}_{-71\%}$	$^{+6\%}_{-6\%}$	$^{+170\%}_{-82\%}$	$^{+5\%}_{-7\%}$	+57% -9%
Model dependence	$+14\% \\ -14\%$	+37% -37%	$^{+13\%}_{-13\%}$	$^{+46\%}_{-46\%}$	+24% -24%	-9% +48% -48%
Alignment	+3% -3%	$^{+24\%}_{-24\%}$	+3%	+49% -24%	+10%	+4%
Jet indentification	+1% -1%	$+\overline{22\%}$ -22%	-6% < 1% < 1% < 1%	<1% <1%	-6% +1% -1%	$rac{-6\%}{+21\%} \\ -21\%$
Total	$^{+15\%}_{-14\%}$	+153% -87%	+15% -16%	+177% -98%	+26% -26%	+77% -54%

Integrated lumi for p+Pb and Pb+p runs used in this analysis is 3.13 and 6.71 nb-1

diffractive protons: mainly in horizontal RP elastic protons: in vertical RP near x ~ 0 sensitivity only for large scattering angles

diffractive protons: mainly in vertical RP elastic protons: in narrow band at $x \approx 0$, sensitivity for small vertical scattering angles

	Transverse size of IP	Angular beam divergence	Min. reachable t
$\beta^* \sim 0.5{-}3.5~m$	$\sigma^* = \frac{\varepsilon_n \beta^*}{\varepsilon_n \beta^*} \sim 15-30 \mu\mathrm{m}$	$\sigma(\Theta_{x,y}^*) = \sqrt{\frac{\varepsilon_n}{\rho^* \omega}} \sim 10^{-5} \mu\text{rad}$	
$\beta^* = 90 \text{ m}$	$\int_{x,y}^{y} \sqrt{\gamma} \sim 300 \mu m$	$\int \left(\sum_{x,y} \right)^{-1} \sqrt{\beta^* \gamma} \sim 10^{-6} \mu \text{ rad}$	$ l_{\min} = \frac{\beta^*}{\beta^*} \sim 10^{-2} \text{ GeV}^2$

μ pileup) [cm⁻²s⁻¹ 0.004 2 40

0.7 40 0.4

0.7

1.5

1.15 1.15 0.5 0.5

MEDIUN

HIGH

10²⁷ 5-10²⁸

Acquired data and published results

	Proton equivalent energy in LAB (eV)	γ	n	π°	
SPS test beam		NIM A, 671, 129 (2012) JINST 12 P03023 (2017) (upgrade)	JINST 9 P03016 (2014)		
p+p 900 GeV	4.3x10 ¹⁴	Phys. Lett. B 715, 298 (2012)			
p+p 7 TeV	2.6x10 ¹⁶	Phys. Lett. B 703, 128 (2011)	Phys. Lett. B 750 (2015) 360-366	Phys. Rev. D 86, 092001 (2012) + Phys. Rev. D 94 032007 (2016)	
p+p 2.76 TeV	4.1x10 ¹⁵			Phys. Rev. C 89, 065209 (2014)	
p+Pb 5.02 TeV	1.4x10 ¹⁶			+ Phys. Rev. D 94 032007 (2016)	
p+p 13 TeV	9.0x10 ¹⁶	submitted to PLB	Analysis ongoing		
p+Pb 8.1 TeV	3.6x10 ¹⁶	Data taking completed in November 2016			

Thanks to information in the central region it is possible to distinguish between diffractive and non-diffractive events

ATLAS-LHCf common data taking

Exclusive WW:

Cuts and cross sections (fb)

Selection	Cross section (fb)			
CN 4	exclusive WW	exclusive WW	inclusive WW	exclusive $\tau\tau$
SM		(incorrectly reconstructed)		
generated $\sigma \times \mathcal{B}(WW \to e\mu \ \nu \bar{\nu})$	$0.86 {\pm} 0.01$	N/A	2537	$1.78 {\pm} 0.01$
≥ 2 leptons ($p_{\rm T}>20$ GeV, $\eta<2.4)$	$0.47 {\pm} 0.01$	N/A	1140 ± 3	$0.087 {\pm} 0.003$
opposite sign leptons, "tight" ID	$0.33 {\pm} 0.01$	N/A	776±2	$0.060 {\pm} 0.002$
dilepton pair $p_{\rm T} > 30~{\rm GeV}$	$0.25 {\pm} 0.01$	N/A	534±2	$0.018 {\pm} 0.001$
protons in both PPS arms (ToF and TRK)	0.055 (0.054)±0.002	0.044 (0.085)±0.003	11 (22)±0.3	0.004 ± 0.001
no overlapping hits in ToF + vertex matching	0.033 (0.030)±0.002	0.022 (0.043)±0.002	8 (16)±0.2	0.003 (0.002)±0.001
ToF difference, $\Delta t = (t_1 - t_2)$	0.033 (0.029)+0.002	0.011 (0.024)±0.001	0.9 (3.3)±0.1	0.003 (0.002)±0.001
$N_{\rm tracks} < 10$	0.028 (0.025)±0.002	0.009 (0.020)±0.001	0.03 (0.14)±0.01	$0.002 {\pm} 0.001$

aQGC	$a_0^W/\Lambda^2=5\cdot 10^{-6}{\rm GeV^{-2}}$	$a_C^W/\Lambda^2 = 5\times 10^{-6} {\rm GeV^{-2}}$
aQOC	$(a_C^W = 0)$	$(a_0^W = 0)$
generated $\sigma \times \mathcal{B}(WW \to e\mu \ \nu \bar{\nu})$	$3.10{\pm}0.14$	$1.53 {\pm} 0.07$
≥ 2 leptons ($p_{\rm T} > 20$ GeV, $\eta < 2.4)$	$2.33 {\pm} 0.08$	$1.00{\pm}0.04$
opposite sign leptons, "tight" ID	$1.82 {\pm} 0.08$	$0.78 {\pm} 0.03$
dilepton pair $p_{\rm T}>30~{\rm GeV}$	$1.69 {\pm} 0.07$	$0.68 {\pm} 0.03$
protons in both PPS arms (ToF and TRK)	0.52 (0.50)±0.04	0.18 (0.17)±0.02
no overlapping hits in ToF detectors	0.35 (0.32)±0.03	0.12 (0.11)±0.01
ToF difference, $\Delta t = (t_1 - t_2)$	$0.35(0.32) \pm 0.03$	0.12 (0.11)±0.01
$N_{ m tracks} < 10$	0.27 (0.24)±0.03	0.11 (0.10)±0.01

Auger determination of the "muon problem"

PRL117,192001 (2016)

FIG. 1. Top: The measured longitudinal profile of an illustrative air shower with its matching simulated showers, using QGSJet-II-04 for proton (red solid) and iron (blue dashed) primaries. Bottom: The observed and simulated ground signals for the same event (p: red squares, dashed-line, Fe: blue triangles, dot-dash line) in units of vertical equivalent muons; curves are the lateral distribution function (LDF) fit to the signal.

σ_{inel} by ATLAS at 13 TeV

PRL117,182002 (2016)

FIG. 3. The inelastic proton-proton cross section versus \sqrt{s} . Measurements from other hadron collider experiments [6,7,9,14,15] and the Pierre Auger experiment [16] are also shown. Some LHC data points have been slightly shifted in the horizontal position for display purposes. The data are compared to the PYTHIA8, EPOS LHC and QGSJET-II MC generator predictions. The uncertainty in the ATLAS ALFA measurement is smaller than the marker size.