

Single boson production and differential cross section measurements in ATLAS

Chiara Debenedetti

University of California, Santa Cruz - Santa Cruz Institute for Particle Physics on behalf of the ATLAS Collaboration

The Fifth Annual Large Hadron Collider Physics Conference Shanghai Jiao Tong University, 15-20 May 2017 Parallel session EWK I

Drell-Yan production:

- theoretically described at NNLO QCD and NLO
 EW
- → very high-statistics process at LHC → reach of high experimental precision
- measurement that can be used to extract all the relevant information on calculation inputs, to improve their precision
- largest **DY uncertainties** (on calculations from FEWZ and DYNNLO)
 - → ~1.1% from scale variations
 - ~2.5% from *PDFs* → the measurements can help particularly in constraining these
 - In this talk:
 - ➡ W,Z precision measurements @ 7 TeV
 - → tt/Z ratios @ different √s

Precision measurement and interpretation of inclusive W^+ , W^- and Z/γ^* production cross sections with the ATLAS detector

√s=7 TeV, 4.6 fb⁻¹

http://inspirehep.net/record/1502620

submitted to EPJC

Analysis overview

- → Looking at ~30M candidate W's, and ~3M candidate Z's (combining e and µ channels)
- Fiducial selection:
 - → W: p^ℓ_T>25 GeV, |η^ℓ|<2.5, p^v_T>25 GeV, m_T>40 GeV
 - Z: p_T^ℓ>20 GeV, one lepton with |η^ℓ|<2.5, and another one either in the same η^ℓ range (CC-category), or in the forward region: 2.5<|η^ℓ|<4.9 (CF)
- Background ~8% in the W case, and <1% (~3%) in Z CC (CF)</p>
 - mostly estimated from Monte Carlo, apart from QCD multijet, using data-driven techniques

m_{ee} [GeV]

C. Debenedetti - UCSC/SCIPP - EWK session LHCP2017 - 17.5.2017 - V inclusive and differential @ ATLAS

-3 -2 -1

0

2

3

1

20

0_5

2 1 3

У" 5/18

Measurement strategy **Measurement differential in:**

[dd]

1200

p 1000 W⁺

→ W analysis: $|\eta^{\ell}| \rightarrow 10$ bins, providing information on different initial states

dơ/dy_" [pb]

20

18

16

14

12

10

8

6

4

2

0_5

-3 -2 -1

0

2

→ Z analysis: in 3 m_{μ} slices [46-66], [66-116], [116-150] GeV → bins of $y_{\ell\ell}$: 0< $|y_{\ell\ell}|$ <2.4, extended to $1.6 < |y_{\ell \ell}| < 3.6$ for CF channel

800 500 400 600 300 400 200 200 100 0 0 2 dơ/dy_∥ [pb] [dd] ATLAS Simulation 2.2 **ATLAS** Simulation 220E ATLAS Simulation dd dd dơ/dy 200 2⊦ uū uū Powheg+Pythia 6, CT10 PDF Powheg+Pythia 6, CT10 PDF Powheg+Pythia 6, CT10 PDF SS ss 180E 1.8 Z/γ* 116 < m < 150 GeV $Z/\gamma^* 46 < m_{u} < 66 \text{ GeV}$ ⁻Z/γ* 66 < m < 116 GeV CC CC 160 1.6 bb bb 140 1.4 120 1.2 100 80 0.8 60 0.6 40 0.4

ATLAS Simulation

Powheg+Pythia 6, CT10 PDF

ūd

CS

ūs

cd

dd

uū

SS

CC

bb

ATLAS Simulation

700 - Powheg+Pythia 6, CT10 PDF

[op]

dơ/dη |

ud

CS

us

cd

800

0.2

0_5

-4

-3 -2 -1

0

600[≜]W

Detector-level uncertainties

- The main experimental uncertainties come from the reconstruction efficiencies of the leptons, the W signal modelling, and the data-driven QCD background estimate
- Very thorough and complex work to achieve *dramatic uncertainty reduction* (up to 60% for lepton and missing energy, halved lumi unc), compared to previous W,Z cross section measurement with 7 TeV data by ATLAS (<u>https://inspirehep.net/record/928289</u>)

	$\delta\sigma_{W\perp}$	$\delta\sigma_{W}$	$\delta\sigma_Z$		$\delta\sigma_{W+}$	$\delta\sigma_{W-}$	$\delta\sigma_Z$	$\delta\sigma_{\mathrm{forward}Z}$
	[%]	[%]	[%]		[%]	[%]	[%]	[%]
Trigger efficiency	0.08	0.07	0.05	Trigger efficiency	0.03	0.03	0.05	0.05
Beconstruction efficiency	0.19	0.17	0.30	Reconstruction efficiency	0.12	0.12	0.20	0.13
Isolation efficiency	0.10	0.09	0.15	Identification efficiency	0.09	0.09	0.16	0.12
Muon $n_{\rm T}$ resolution	0.10	0.05	< 0.10	Isolation efficiency	0.03	0.03		1.51
Muon $p_{\rm T}$ resolution	0.01	0.01 0.17	0.01	Charge misidentification	0.04	0.06	_	-
E^{miss} as ft torm apple	0.10	0.17	0.05	Electron $p_{\rm T}$ resolution	0.02	0.03	0.01	0.01
$E_{\rm T}$ solution scale	0.19	0.19	_	Electron $p_{\rm T}$ scale	0.22	0.18	0.08	0.12
$E_{\rm T}$ soft term resolution	0.10	0.09	_	Forward electron $p_{\rm T}$ scale + resolution	_	_	_	0.18
Jet energy scale	0.09	0.12	-	$E_{\rm T}^{\rm miss}$ soft term scale	0.14	0.13	_	_
Jet energy resolution	0.11	0.16	—	$E_{\rm T}^{\rm miss}$ soft term resolution	0.06	0.04	_	_
Signal modelling (matrix-element generator)	0.12	0.06	0.04	Jet energy scale	0.04	0.02	—	_
Signal modelling (parton shower and hadronization)	0.14	0.17	0.22	Jet energy resolution	0.11	0.15		_
PDF	0.09	0.12	0.07	Signal modelling (matrix-element generator)	0.57	0.64	0.03	1.12
Boson $p_{\rm T}$	0.18	0.14	0.04	Signal modelling (parton shower and hadronization)	0.24	0.25	0.18	1.25
Multijet background	0.33	0.27	0.07	r_Dr Boson n_T	0.10 0.22	0.12 0.19	0.09	0.00 0.04
Electroweak+top background	0.19	0.24	0.02	Multijet background	0.55	0.72	0.03	0.05
Background statistical uncertainty	0.03	0.04	0.01	Electroweak+top background	0.17	0.19	0.02	0.14
Unfolding statistical uncertainty	0.03	0.03	0.02	Background statistical uncertainty	0.02	0.03	< 0.01	0.04
Data statistical uncertainty	0.04	0.04	0.08	Unfolding statistical uncertainty	0.03	0.04	0.04	0.13
Total experimental uncertainty	0.61	0.59	0.43	Data statistical uncertainty	0.04	0.05	0.10	0.18
Luminosity	0.01	1.8	0.10	I otal experimental uncertainty	0.94	1.08	0.35	2.29
		1.0		Luminosity			1.8	

Lepton universality (\$ inclusive σ measurement)

The **combination** of fiducial cross sections allows to reach **high precision** in the measurement

Lepton universality from fiducial measurement in the e and μ channels

 Achieve very high precision, improving previous on-shell W results from LEP, due to cancellations of correlated uncertainties

➡ 1% precision on W, 0.5% precision on Z BR's

	$\sigma^{ m fid}_{W ightarrow \ell u} \; [m pb]$
$W^+ \to e^+ \nu$	$2939 \pm 1 (\text{stat}) \pm 28 (\text{syst}) \pm 53 (\text{lumi})$
$W^+ \to \mu^+ \nu$	$2948 \pm 1 (\text{stat}) \pm 21 (\text{syst}) \pm 53 (\text{lumi})$
$W^+ \to \ell^+ \nu$	$2947 \pm 1 ({ m stat}) \pm 15 ({ m syst}) \pm 53 ({ m lumi})$
$W^- \to e^- \bar{\nu}$	$1957 \pm 1 ({\rm stat}) \pm 21 ({\rm syst}) \pm 35 ({\rm lumi})$
$W^- o \mu^- \bar{\nu}$	$1964 \pm 1 ({\rm stat}) \pm 13 ({\rm syst}) \pm 35 ({\rm lumi})$
$W^- \to \ell^- \bar{\nu}$	$1964 \pm 1 ({ m stat}) \pm 11 ({ m syst}) \pm 35 ({ m lumi})$
$W \to e\nu$	$4896 \pm 2 (\text{stat}) \pm 49 (\text{syst}) \pm 88 (\text{lumi})$
$W ightarrow \mu \nu$	$4912 \pm 1 ({\rm stat}) \pm 32 ({\rm syst}) \pm 88 ({\rm lumi})$
$W \to \ell \nu$	$4911 \pm 1 ({ m stat}) \pm 26 ({ m syst}) \pm 88 ({ m lumi})$
	$\sigma_{Z/\gamma^* \to \ell\ell}^{\mathrm{fid}} [\mathrm{pb}]$
$Z/\gamma^* \to e^+e^-$	$502.7 \pm 0.5 (\text{stat}) \pm 2.0 (\text{syst}) \pm 9.0 (\text{lumi})$
$Z/\gamma^* \to \mu^+ \mu^-$	$501.4 \pm 0.4 (\mathrm{stat}) \pm 2.3 (\mathrm{syst}) \pm 9.0 (\mathrm{lumi})$
$Z/\gamma^* \to \ell\ell$	$502.2 \pm 0.3 (\mathrm{stat}) \pm 1.7 (\mathrm{syst}) \pm 9.0 (\mathrm{lumi})$

Comparing fiducial o to theory

Very *small uncertainty* achieved → study *compatibility with pdfs*, with discrimination power **Ratios** even more **powerful**, since uncertainty made smaller by large correlations

- → W⁺/W⁻well described
- → W/Z consistently overpredicted by different pdfs → could indicate that strangeness is enhanced
 - → compatible result in 13 TeV (Phys.Lett. B759 (2016) 601-621)

Comparing fiducial o to theory

Very *small uncertainty* achieved → study *compatibility with pdfs*, with discrimination power **Ratios** even more **powerful**, since uncertainty made smaller by large correlations

- → W⁺/W⁻well described
- → W/Z consistently overpredicted by different pdfs → could indicate that strangeness is enhanced
 - compatible result in 13 TeV (Phys.Lett. B759 (2016) 601-621)

Going differential

Digression on combination

- channels combined with a X² fit
- → very good compatibility between e and µ channels

- W differential cross section shapes well described by predictions, although some normalisation differences
- → Excellent description of W⁺-W⁻lepton charge asymmetry vs |η_ℓ|
- → Observed y_{ll} dependence differences between data and predictions for the Z, in the central rapidity measurements (underestimate of up to 5%)
- No sensitivity to pdfs in forward region

Constraining

Profile pdfs to test agreement with data from this measurement

best match: ATLAS-epWZ12 (χ^2 /ndf=113/159)

Data provide constraints on both central values and uncertainties, particularly shifting the strange fraction at higher values (enhancement visible in W/Z ratio)

10/18

QCD interpretation

Aimed at obtaining a new pdf set: ATLAS-epWZ16

combine with ep H1 and ZEUS data, new data add info on flavour composition of quark sea, and low-x valence quark distribution

Competitive
measurement of $|V_{cs}|$, by
floating it freely in the fit $D \rightarrow K I v$ $D \rightarrow K I v$ --- $D_s \rightarrow I v$ ---NNPDF1.2---ATLAS-epWZ16
inner uncertainty: exp only
outer uncertainty: total

0.8

ATLAS

0.85

0.9

C. Debenedetti - UCSC/SCIPP - EWK session LHCP2017 - 17.5.2017 - V inclusive and differential @ ATLAS

1.05

CS

IV

1

CKM fit

0.95

Measurements of top-quark pair to Z-boson cross-section ratios at Vs=13,8,7 TeV with the ATLAS detector

<u>JHEP 1702 (2017) 117</u>

Analysis overview

Ratios of Z fiducial and tt total cross sections at different sqrt s

$$\rightarrow R_{Z_i/Z_j}^{fid} = \sigma_{Z(iTeV)}^{fid} / \sigma_{Z(jTeV)}^{fid}, R_{t\bar{t}_i/t\bar{t}_j}^{tot} = \sigma_{t\bar{t}(iTeV)}^{tot} / \sigma_{t\bar{t}(jTeV)}^{tot}$$

$$\rightarrow R_{t\bar{t}/Z}^{tot/fid}(iTeV) = \sigma_{t\bar{t}(iTeV)}^{tot} / \sigma_{Z(iTeV)}^{fid}$$

$$\rightarrow R_{t\bar{t}/Z}^{tot/fid}(i/j) = [\sigma_{t\bar{t}(iTeV)}^{tot} / \sigma_{Z(iTeV)}^{fid}] / [\sigma_{t\bar{t}(jTeV)}^{tot} / \sigma_{Z(jTeV)}^{fid}]$$

$$stolen from M. Zinser DIS talk$$

- Take advantage of precision achieved with some detector level systematic uncertainty cancellation to extract information on α_S, m_t, PDFs
 - particularly sensitive to g/q ratio

Measurements and predictions

- Using previously measured cross sections, and measure for the paper σ^Z_{fid} @ 13 TeV with 3.2 fb⁻¹
 - → fiducial selection: p^ℓ_T>25 GeV, |η_ℓ|<2.5, 66<m_{ℓℓ}/GeV<116</p>
- → **Predictions** used:
 - → Z fiducial: DYNNLO(1.5) @ NNLO QCD, and FEWZ(3.1) @ NLO EW
 - → tt total: Top++(2.0) @ NNLO+NNLL
 - → uncertainties on the predicted ratios ranging between 0.2 and 2.5%

		$\sigma_Z^{ m fid}$		$\sigma_{tar{t}}^{ m tot}$			
$\sqrt{s} [\text{TeV}]$	13	8	7	13	8	7	
Central value [pb]	744	486	432	842	259	182	
Uncertainties [%]							
PDF	$^{+2.7}_{-3.4}$	$+2.5 \\ -3.1$	$+2.5 \\ -3.0$	$+2.6 \\ -2.7$	$+3.9 \\ -3.4$	$^{+4.4}_{-3.7}$	
$lpha_{ m S}$	$^{+0.9}_{-1.1}$	$^{+1.0}_{-0.8}$	$^{+1.0}_{-0.7}$	$+1.9 \\ -1.8$	$^{+2.1}_{-2.1}$	$^{+2.2}_{-2.1}$	
Scale	$^{+0.5}_{-0.8}$	$^{+0.5}_{-0.5}$	$^{+0.7}_{-0.3}$	$+2.4 \\ -3.6$	$^{+2.6}_{-3.5}$	$^{+2.6}_{-3.5}$	
Intrinsic Z	$^{+0.7}_{-0.7}$	$^{+0.7}_{-0.7}$	$^{+0.7}_{-0.7}$	N/A	N/A	N/A	
m_t	N/A	N/A	N/A	$+2.8 \\ -2.7$	$^{+3.0}_{-2.9}$	$+3.1 \\ -3.0$	
Total	$+3.0 \\ -3.7$	$+2.8 \\ -3.3$	$+2.9 \\ -3.2$	+5 -6	$^{+6}_{-6}$	$^{+6}_{-6}$	

Cross sections and correlation model

Cross section measurements dominated by systematic uncertainties (luminosity, beam energy, signal modelling)

		$\delta \sigma_Z^{\rm fid}$			$\delta \sigma_{t\overline{t}}^{ m tot}$		
Source / \sqrt{s} [TeV]	13	8	7	13	8°	7	
Luminosity	A	В	С	А	В	С	
Beam energy	A	А	А	A	А	A	
Muon (lepton) trigger	A	\mathbf{A}^*	А	А	В	В	
Muon reconstruction/ID	A	В	С	A	D	D	
Muon isolation	A	А	А	В	\mathbf{C}	D	
Muon momentum scale	A	А	А	А	А	Α	
Electron trigger	A	А	А	А			
Electron reconstruction/ID	A	В	С	A	D	D	
Electron isolation	A	А		В	\mathbf{C}	D	
Electron energy scale	A	А	А	A	А	A	
Jet energy scale				А	В	В	
b-tagging				A	В	В	
Background	A	А	А	В	В	В	
Signal modelling (incl. PDF)	A	А	А	B*	В	В	

Exploit uncertainty correlations in ratios, to reduce the effects

Same letter implies correlation between uncertainties in the same row

Ratio results

→ tt cross section ratios @ different √s show differences due to different g distributions as a function of x

tt/Z ratio at same com energy shows higher
 precision of measurements than theory, showing
 spread of results, due to different gluon densities
 and α_s

→ Large deviations in tt double ratio at 8 and 7 TeV, not fully described by PDF effects

All other predictions in good agreement with the data

16/18

studies

Best compatibility when profiling obtained with ATLAS-epWZ12 $(\chi^2=8.3/6)$, and HERAPDF2.0 $(\chi^2=10/6)$

Profile ATLAS-epWZ12

- constrain light-quark sea distribution function at x<0.02
- → constrain gluon distribution function at x~0.1

C. Debenedetti - UCSC/SCIPP - EWK session LHCP2017 - 17.5.2017 - V inclusive and differential @ ATLAS

Conclusions

- Very precise DY measurements were performed by ATLAS, providing not only a good test of the available higher order predictions, but also valuable information on the proton structure
 - enhanced strangeness is hinted by the data
 - → constraints of light and gluon fractions are found thanks to tt/Z ratios
 - $\rightarrow |V_{cs}|$ has been measured with a very competitive uncertainty
 - *differential* studies in W and Z rapidity have been compared to predictions
- → Results available for both in *HEP data* (W,Z and tt/Z)
 - ➡ if used, need to treat correlations properly, for information, feel free to contact the ATLAS SM conveners (atlas-phys-sm-conveners@cern.ch)
- Caveat: reaching this precision is a great challenge requiring a lot of work (and time) stay tuned for even more precise and more differential DY measurement in the future!!

Thank you for your attention!

Precision measurement and interpretation of inclusive W^+ , W^- and Z/γ^* production cross sections with the ATLAS detector

√s=7 TeV, 4.6 fb⁻¹

http://inspirehep.net/record/1502620

submitted to EPJC

Reco-level analysis

Cross sections: measurement vs theory

22/18

Combining with x²

C. Debenedetti - UCSC/SCIPP - EWK session LHCP2017 - 17.5.2017 - V inclusive and differential @ ATLAS

Differential rapidity distributions

profiling results

C. Debenedetti - UCSC/SCIPP - EWK session LHCP2017 - 17.5.2017 - V inclusive and differential @ ATLAS

FRIMFNT

Evaluating strange fraction

	$r_s = \frac{s+\bar{s}}{2\bar{d}}$	$R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}}$
Central value	1.19	1.13
Experimental data	± 0.07	± 0.05
Model $(m_b, Q_{\min}^2, Q_0^2 \& m_c)$	± 0.02	± 0.02
Parameterization	$^{+0.02}_{-0.10}$	$+0.01 \\ -0.06$
$lpha_{ m S}$	$^{+0.00}_{-0.01}$	± 0.01
Beam energy E_p	± 0.03	$+0.01 \\ -0.02$
EW corrections	± 0.01	± 0.00
QCD scales	$^{+0.08}_{-0.10}$	$+0.06 \\ -0.07$
FEWZ 3.1b2	+0.10	+0.08
Total uncertainty	$^{+0.15}_{-0.16}$	±0.11

ATLAS-epwz16 (i)

TLAS PERIMENT C. Debei

C. Debenedetti - UCSC/SCIPP - EWK session LHCP2017 - 17.5.2017 - V inclusive and differential @ ATLAS

ATLAS-eph/216 (ii)

TLAS C. D

C. Debenedetti - UCSC/SCIPP - EWK session LHCP2017 - 17.5.2017 - V inclusive and differential @ ATLAS

Measurements of top-quark pair to Z-boson cross-section ratios at Vs=13,8,7 TeV with the ATLAS detector

<u>JHEP 1702 (2017) 117</u>

Predictions

	$R_{Z_i/Z_j}^{\mathrm{fid}}$			$R_{t\bar{t}_i/t\bar{t}_j}^{ m tot}$			
i/j	13/7	13/8	8/7	13/7	13/8	8/7	
Central value	1.722	1.531	1.125	4.634	3.251	1.425	
Uncertainties [%]							
PDF	$^{+1.0}_{-0.9}$	$^{+0.8}_{-0.7}$	$^{+0.22}_{-0.21}$	$+1.9 \\ -2.3$	$^{+1.4}_{-1.8}$	$^{+0.5}_{-0.6}$	
$lpha_{ m S}$	$-0.1 \\ -0.4$	$-0.1 \\ -0.3$	$-0.1 \\ -0.1$	$\begin{vmatrix} -0.32 \\ +0.29 \end{vmatrix}$	$-0.25 \\ +0.22$	$-0.08 \\ +0.07$	
Scale	$^{+0.03}_{-0.60}$	$^{+0.02}_{-0.29}$	$^{+0.02}_{-0.31}$	$+0.19 \\ -0.26$	$^{+0.13}_{-0.19}$	$^{+0.05}_{-0.07}$	
m_t	N/A	N/A	N/A	$+0.29 \\ -0.29$	$^{+0.22}_{-0.22}$	$^{+0.07}_{-0.07}$	
Total	$^{+1.0}_{-1.2}$	$+0.8 \\ -0.8$	$+0.22 \\ -0.40$	$+1.9 \\ -2.4$	$^{+1.4}_{-1.8}$	$^{+0.5}_{-0.6}$	

	$R_{t\bar{t}}^{\mathrm{to}}$	$^{t/fid}_{/Z}(i T)$	eV)	$R_{t\bar{t}/Z}^{\rm tot/fid}(i/j)$			
i or i/j	13	8	7	13/7	13/8	8/7	
Central value	1.132	0.533	0.421	2.691	2.124	1.267	
Uncertainties [%]							
PDF	+6 -5	$+7 \\ -5$	$^{+7}_{-5}$	$ +1.5 \\ -2.0$	$+1.1 \\ -1.6$	$+0.4 \\ -0.5$	
$\alpha_{ m S}$	$+0.9 \\ -0.8$	$^{+1.1}_{-1.3}$	$^{+1.1}_{-1.5}$	$\begin{vmatrix} -0.22 \\ +0.70 \end{vmatrix}$	-0.22 + 0.50	-0.00 + 0.20	
Scale	$+2.6 \\ -3.6$	$+2.6 \\ -3.5$	$+2.7 \\ -3.6$	$+0.62 \\ -0.27$	$+0.32 \\ -0.20$	$+0.31 \\ -0.07$	
Intrinsic Z	$+0.7 \\ -0.7$	$^{+0.7}_{-0.7}$	$^{+0.7}_{-0.7}$	$+0.00 \\ -0.00$	$^{+0.00}_{-0.00}$	$^{+0.00}_{-0.00}$	
m_t	$^{+2.8}_{-2.7}$	$+3.0 \\ -2.9$	$+3.1 \\ -3.0$	$+0.29 \\ -0.29$	$+0.22 \\ -0.22$	$+0.07 \\ -0.07$	
Total	$\left \begin{array}{c} +7\\ -7\end{array}\right $	$+8 \\ -7$	$+8 \\ -7$	+1.8 -2.1	+1.3 -1.6	$+0.5 \\ -0.5$	

Ratios: $Z(E_i)/Z(E_j)$

Ratios: $tt(E_i)/tt(E_j)$

Double ratios: $[lt(E_i)/Z(E_i)]/[lt(E_j)/Z(E_j)]$

Correlation coefficients

	Z 13 TeV	<i>tī</i> 13 TeV	Z 8 TeV	<i>tī</i> 8 TeV	Z 7 TeV	<i>tī</i> 7 TeV
Z 13 TeV	1.00	0.61	0.10	0.16	0.10	0.15
<i>tī</i> 13 TeV	-	1.00	0.11	0.32	0.11	0.31
Z 8 TeV	-	-	1.00	0.68	0.10	0.14
<i>tī</i> 8 TeV	-	-	-	1.00	0.15	0.54
Z 7 TeV	_	-	-	-	1.00	0.62
<i>tī</i> 7 TeV	-	-	-	-	-	1.00
1	1					

ATLAS EXPERIMENT

C. Debenedetti - UCSC/SCIPP - EWK session LHCP2017 - 17.5.2017 - V inclusive and differential @ ATLAS