#### Electroweak precision measurements at ATLAS



## LHCP17@Shanghai

Olivier Arnaez (University of Toronto) On behalf of the ATLAS Collaboration

18/05/2017





#### Introduction

Flectrons

- Nice recent m<sub>w</sub> results!
  - see Maarten's talk yesterday
- Challenge on many experimental aspects to keep uncertainties under control
  - Years of work for experimentalists
  - Not the scope of this talk



| Elections                                              |                                     |                  |                                 |                  |                                 |                  |                         |                  |                         |                  |
|--------------------------------------------------------|-------------------------------------|------------------|---------------------------------|------------------|---------------------------------|------------------|-------------------------|------------------|-------------------------|------------------|
| $ \eta_{\ell} $ range                                  | $ \eta_{\ell} $ range               |                  | [0.0]                           | [0, 0.6]         | [0.6, 1.2]                      |                  | [1.82, 2.4]             |                  | Combined                |                  |
| Kinematic distribution                                 |                                     |                  | $p_{\mathrm{T}}^{\check{\ell}}$ | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^{\dot{\ell}}$   | $m_{\mathrm{T}}$ | $p_{	ext{T}}^{\ell}$    | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^{\ell}$ | $m_{\mathrm{T}}$ |
| $\delta m_W$ [MeV]                                     |                                     |                  |                                 |                  |                                 |                  |                         |                  |                         |                  |
| Energy scale                                           |                                     |                  | 10.4                            | 10.3             | 10.8                            | 10.1             | 16.1                    | 17.1             | 8.1                     | 8.0              |
| Energy resolution                                      |                                     |                  | 5.0                             | 6.0              | 7.3                             | 6.7              | 10.4                    | 15.5             | 3.5                     | 5.5              |
| Energy linearity                                       |                                     |                  | 2.2                             | 4.2              | 5.8                             | 8.9              | 8.6                     | 10.6             | 3.4                     | 5.5              |
| Energy tails                                           |                                     |                  | 2.3                             | 3.3              | 2.3                             | 3.3              | 2.3                     | 3.3              | 2.3                     | 3.3              |
| Reconstruction efficien                                | ncy                                 |                  | 10.5                            | 8.8              | 9.9                             | 7.8              | 14.5                    | 11.0             | 7.2                     | 6.0              |
| Identification efficiency                              | у                                   |                  | 10.4                            | 7.7              | 11.7                            | 8.8              | 16.7                    | 12.1             | 7.3                     | 5.6              |
| Trigger and isolation e                                | efficien                            | cies             | 0.2                             | 0.5              | 0.3                             | 0.5              | 2.0                     | 2.2              | 0.8                     | 0.9              |
| Charge mismeasureme                                    | ent                                 |                  | 0.2                             | 0.2              | 0.2                             | 0.2              | 1.5                     | 1.5              | 0.1                     | 0.1              |
| Total                                                  |                                     |                  | 19.0                            | 17.5             | 21.1                            | 19.4             | 30.7                    | 30.5             | 14.2                    | 14.3             |
| Muons                                                  |                                     |                  |                                 |                  |                                 |                  |                         |                  |                         |                  |
| $ \eta_{\ell} $ range                                  | [0.                                 | 0, 0.8]          | [0                              | .8, 1.4]         | [1.4, 2.0]                      |                  | [2.0, 2.4]              |                  | Combined                |                  |
| Kinematic distribution                                 | $p_{\mathrm{T}}^{\widetilde{\ell}}$ | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^{\check{\ell}}$ | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^{\check{\ell}}$ | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^{\ell}$ | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^{\ell}$ | $m_{\mathrm{T}}$ |
| $\delta m_W  [{ m MeV}]$                               |                                     |                  |                                 |                  |                                 |                  |                         |                  |                         |                  |
| Momentum scale                                         | 8.9                                 | 9.3              | 14.2                            | 15.6             | 27.4                            | 29.2             | 111.0                   | 115.4            | 8.4                     | 8.8              |
| Momentum resolution                                    | 1.8                                 | 2.0              | 1.9                             | 1.7              | 1.5                             | 2.2              | 3.4                     | 3.8              | 1.0                     | 1.2              |
| Sagitta bias                                           | 0.7                                 | 0.8              | 1.7                             | 1.7              | 3.1                             | 3.1              | 4.5                     | 4.3              | 0.6                     | 0.6              |
| Reconstruction and                                     |                                     |                  |                                 |                  |                                 |                  |                         |                  |                         |                  |
| isolation efficiencies                                 | 4.0                                 | 3.6              | 5.1                             | 3.7              | 4.7                             | 3.5              | 6.4                     | 5.5              | 2.7                     | 2.2              |
| Trigger efficiency                                     | 5.6                                 | 5.0              | 7.1                             | 5.0              | 11.8                            | 9.1              | 12.1                    | 9.9              | 4.1                     | 3.2              |
| Total                                                  | 11.4                                | 11.4             | 16.9                            | 17.0             | 30.4                            | 31.0             | 112.0                   | 116.1            | 9.8                     | 9.7              |
| Recoil                                                 |                                     |                  |                                 |                  |                                 |                  |                         |                  |                         |                  |
| W-boson charge                                         |                                     |                  |                                 | $W^+$            |                                 | $W^-$            |                         | Combined         |                         |                  |
| Kinematic distribution                                 |                                     |                  |                                 |                  | $p_{\mathrm{T}}^\ell$           | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^\ell$   | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^{\ell}$ | $m_{\mathrm{T}}$ |
| $\delta m_W  [{ m MeV}]$                               |                                     |                  |                                 |                  |                                 |                  |                         |                  |                         |                  |
| $\langle \mu \rangle$ scale factor                     |                                     |                  |                                 |                  | 0.2                             | 1.0              | 0.2                     | 1.0              | 0.2                     | 1.0              |
| $\Sigma E_{\rm T}$ correction                          |                                     |                  |                                 | 0.9              | 12.2                            | 1.1              | 10.2                    | 1.0              | 11.2                    |                  |
| Residual corrections (statistics)                      |                                     |                  |                                 | 2.0              | 2.7                             | 2.0              | 2.7                     | 2.0              | 2.7                     |                  |
| Residual corrections (interpolation)                   |                                     |                  |                                 | 1.4              | 3.1                             | 1.4              | 3.1                     | 1.4              | 3.1                     |                  |
| Residual corrections $(Z \to W \text{ extrapolation})$ |                                     |                  | 0.2                             | 5.8              | 0.2                             | 4.3              | $0.2^{-}$               | 5.1              |                         |                  |
| Total                                                  |                                     |                  |                                 | 2.6              | 14.2                            | 2.7              | 11.8                    | 2.6              | 13.0                    |                  |
|                                                        |                                     |                  |                                 |                  |                                 |                  |                         |                  |                         |                  |

 $m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$ 

# Introduction (2)

- Nice recent m<sub>w</sub> results!
  - see Maarten's talk yesterday
  - Sensitive sensitive to potential BSM physics
- Extremely complicated measurement



- More complicated with proton-proton (because of the larger participation of sea quarks) than previous analyses with p-p
   at Tevatron (see talk by Alexander)
  - Charge-asymmetric W production
  - Larger role of 2nd generation quarks (involved in ~25% of the production)
  - Ambiguity in the average helicity (W polarisation uncertainty)
  - For a longer discussion of PDF constraints, see Juan's talk
- Relies on a few dedicated ancillary studies...
  - Will focus here on the  $p_T(W)$
- ...and best/improved Monte Carlo programs
- Other interesting results on  $\sin^2\theta_W$

#### ATLAS mw measurement recap

- ATLAS uses both electrons and muons in the precision region ( $|\eta|$ <2.4) with the  $\sqrt{s}=7$  TeV data
- Split events in charge and pseudo-rapidity categories

| Decay channel                                | $W \to e \nu$                            | $W \to \mu \nu$                              |
|----------------------------------------------|------------------------------------------|----------------------------------------------|
| Kinematic distributions<br>Charge categories | $p_{\rm T}^{\ell}, m_{\rm T} \ W^+, W^-$ | $p_{\rm T}^{\ell}, m_{\rm T} \ W^+, W^-$     |
| $ \eta_{\ell} $ categories                   | [0, 0.6], [0.6, 1.2], [1.8, 2.4]         | [0, 0.8], [0.8, 1.4], [1.4, 2.0], [2.0, 2.4] |

Relies on template fit of p<sub>T</sub>(I) and transverse mass m<sub>T</sub> distributions



• Calls for precise template (and m<sub>w</sub>-dependence) predictions !

## Modelling uncertainties

 Impossible to find a generator dealing with all critical aspects at the same time

#### Electroweak corrections:

| Decay channel                 | W                     | $^{\prime} \rightarrow e \nu$ | $W \to \mu \nu$         |                  |  |
|-------------------------------|-----------------------|-------------------------------|-------------------------|------------------|--|
| Kinematic distribution        | $p_{\mathrm{T}}^\ell$ | $m_{\mathrm{T}}$              | $p_{\mathrm{T}}^{\ell}$ | $m_{\mathrm{T}}$ |  |
| $\delta m_W [{ m MeV}]$       |                       |                               |                         |                  |  |
| FSR (real)                    | < 0.1                 | < 0.1                         | < 0.1                   | < 0.1            |  |
| Pure weak and IFI corrections | 3.3                   | 2.5                           | 3.5                     | 2.5              |  |
| FSR (pair production)         | 3.6                   | 0.8                           | 4.4                     | 0.8              |  |
| Total                         | 4.9                   | 2.6                           | 5.6                     | 2.6              |  |



- Photos include QED FSR emission
- (Small) ISR and ISR/FSR interference effects can be evaluated with dedicated tools
- Gets complicated for multiple and mixed QED/QCD emissions
- Ways to compute size of these effects to be added as uncertainty
- See talk by Alessandro Vicini

| QCD corrections:                                            |                                                              | W-boson charge              |                          | <i>w</i> +       |                          | W^               |                          | Combined         |  |
|-------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|--------------------------|------------------|--------------------------|------------------|--------------------------|------------------|--|
|                                                             |                                                              | Kinematic distribution      | $p_{\mathrm{T}}^{\iota}$ | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^{\iota}$ | $m_{\mathrm{T}}$ | $p_{\mathrm{T}}^{\iota}$ | $m_{\mathrm{T}}$ |  |
| ٠                                                           | Large impact on p⊤(W)                                        | $\delta m_W  [{ m MeV}]$    |                          |                  |                          |                  |                          |                  |  |
|                                                             | distributions                                                | Fixed-order PDF uncertainty | 13.1                     | 14.9             | 12.0                     | 14.2             | 8.0                      | 8.7              |  |
| •                                                           | Polarisation                                                 | AZ tune                     | 3.0                      | 3.4              | 3.0                      | 3.4              | 3.0                      | 3.4              |  |
| <ul> <li>Rapidity</li> </ul>                                | Charm-quark mass                                             | 1.2                         | 1.5                      | 1.2              | 1.5                      | 1.2              | 1.5                      |                  |  |
|                                                             | Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation | 5.0                         | 6.9                      | 5.0              | 6.9                      | 5.0              | 6.9                      |                  |  |
| <ul> <li>Taking the best from<br/>NNLO pQCD + PS</li> </ul> | Parton shower PDF uncertainty                                | 3.6                         | 4.0                      | 2.6              | 2.4                      | 1.0              | 1.6                      |                  |  |
|                                                             | Angular coefficients                                         | 5.8                         | 5.3                      | 5.8              | 5.3                      | 5.8              | 5.3                      |                  |  |
|                                                             | Total                                                        | 15.9                        | 18.1                     | 14.8             | 17.2                     | 11.6             | 12.9                     |                  |  |

## Control of W observables

 Although difficult experimentally (calibrated in-situ from Z events), the recoil is very sensitive to the underlying p<sub>T</sub>(W) distribution



 In particular the region <0 disfavours strongly Powheg MiNLO and DYRES Pythia8 tuned to Z seems Ok





u<sup>|</sup> [GeV]

## Understanding of Z

- Another way to assess the quality of the modelling of the p<sub>T</sub>(W) distribution is to look at what works and what is to be improved for the Z
- Factorising the Drell-Yan production cross-section from the decay kinematics



 May be possible to do a similar A<sub>i</sub> measurement on W data ? (Eur.Phys.J. C77 (2017) no.2, 111)

## Extrapolating from the Z

- The accuracy of Z data can be propagated as an uncertainty on  $m_W$ 
  - Pythia8 AZ tune determined on p<sub>T</sub>(Z) data
  - Extrapolation to W considering relative variations of the W and Z  $p_T$  distributions
    - Would benefit from new  $p_T(Z)$  and W/Z  $p_T$  ratio measurements with more / low pile-up statistics
- Higher-order QCD expected to be mostly correlated between W and Z ?
- Heavy flavours for example introduce some decorrelation between Z and W



## $sin^2\theta_W$ and $A_{FB}$

q(g)

 $\bar{q}(g)$ 

- At tree level  $\sin^2 \theta_{\rm W} = 1 \frac{m_{\rm W}^2}{m_{\rm Z}^2}$ , intrinsically linked to m<sub>W</sub> !
- DY cross-section vs the scattering angle  $\frac{d\sigma}{d\cos\theta} = \frac{4\pi\alpha^2}{3\hat{s}} \left[\frac{3}{8}\mathcal{A}(1+\cos^2\theta) + \mathcal{B}\cos\theta\right]$ Z/ $\gamma^*$  & V-A interference —> linear term leading to forward-backward asymmetry
  - The V-A interference contribution depends on  $g_V^f = T_3^f 2Q_f \sin^2 \theta_W$
  - The  $Z/\gamma^*$  interference is proportional to (s-m<sub>Z</sub><sup>2</sup>)
- LHC beams are « symmetric » ambiguous direction of incoming quark
   dilution of A<sub>FB</sub> (largest for central rapidity, decreasing with ly<sub>Z</sub>l)

 $\xrightarrow{\theta_{CS}} \phi_{CS} \xrightarrow{\hat{Y}} \hat{X} \quad \cos \theta_{CS}^* \ge 0 \text{ F} \\ \xrightarrow{\theta_{CS}} \phi_{CS} \xrightarrow{\hat{Y}} \hat{X} \quad \cos \theta_{CS}^* \le 0 \text{ B} \quad \longrightarrow A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} \text{ changes sign at the Z pole}$ 

 Even more important measurement to make at LHC that Tevatron ones have some tension



## ATLAS Z AFB

#### JHEP 1509 (2015) 049

 ATLAS did such measurement in the 7 TeV dataset using both muons and electrons (including the forward region to be more sensitive)



 Still some large stat uncertainties (will decrease) but already comparable result !



 $P_5 = \sin^2 \theta \sin 2\phi$ 

 $P_6 = \sin 2\theta \sin \varphi$ 

 $A_7 P_7 = \sin \theta \sin \varphi$ 

- Value for A<sub>4</sub> driven by the  $Z/\gamma^*$  interference far from the Z pole A<sub>5</sub>
  - But pure Z component has some sensitivity on  $sin^2\theta_W$
- Although these are same events, the methodology is very different from the A<sub>FB</sub>



Can potentially reach some interesting precision using the power of the forward region and more statistics

#### Conclusions

- A looooot of very precise measurements have already been done by the ATLAS Collaboration to probe the Electroweak sector
- Some more needs to be done or redone with a larger dataset in order to serve the W mass measurement
- New techniques and methodologies are being developed to probe fundamentals quantities such as  $\sin^2\theta_W$ 
  - Collaboration between experimentalists and theorists is crucial on this ! In particular to help the making of better Monte Carlo programs

