

Recent Results from CMS on the Production of Multiboson States

Kenneth Long University of Wisconsin — Madison for the CMS Collaboration

Outline

- Introduction and Motivation
- Cross section measurements and unfolded distributions
 - Z(vv)gamma at 13 TeV
 - WZ at 8 and 13 TeV
 - ZZ at 13 TeV
- Anomalous Coupling Searches
 - WV at 8 and 13 TeV
 - Limits from 8 TeV WZ and 13 TeV ZZ
- Summary and Conclusions

Introduction and Motivation

- Multiboson measurements
 - Direct probe of EWK sector of the SM
 - Insight into self couplings of gauge bosons
- Important background to SM Higgs and many BSM models with new gauge bosons

- Area of intense theoretical advancement
 - Known large NLO QCD corrections from LO
 - NNLO cross sections now known (many differential)
 - Several outside NLO uncertainties
 - Substantial differential effects from NLO EWK

$Z(\rightarrow vv)\gamma$: Measurement Overview

- Why $Z\gamma \rightarrow vv\gamma$?
 - No direct Zγ coupling in the Standard Model
 - SM production only via initial state radiation
 - Important background for DM searches (monophoton) Selection
 - High p_T photon, high MET (>175, 170 GeV)
 - Tight γ ID and isolation requirements (avoid j/e fakes)
 - $\Delta \varphi$ (MET, γ) > 2, $\Delta \varphi$ (j, γ) > 0.5 \Longrightarrow reduce γ +jets
- Primary Backgrounds
 - Purely experimental \Rightarrow estimated from data
 - Beam halo, spurious ECAL signals, cosmic rays
 - Removed via fit to characteristic shape, timing
 - Misidentification / Acceptance
 - γ +jets, $Z(\rightarrow \ell \ell)\gamma$, $W \rightarrow \mu \nu/\tau \nu$, $W(\rightarrow \ell \nu)\gamma \Rightarrow$ estimated from MC
 - LO MC with NNLO QCD + NLO EWK corrections
 - $W \rightarrow ev$, QCD \Rightarrow from data
 - fake rates measured by inverting ID criteria, applied to data

CMS-PAS-SMP-16-004

$WZ \rightarrow 3\ell v$: Analysis Overview

Z and ZZ \rightarrow 4 ℓ : Overview

- tight/loose from Z+jets selection

Z and ZZ \rightarrow 4 ℓ : Inclusive results

Anomalous Coupling Searches

Kenneth Long

11

$WV \rightarrow \ell v q \overline{q}$: Overview

- Why WV $\rightarrow \ell v q q$?
 - Larger branching ratios to hadronic states
 - Ability to reconstruct system p_T for WW
- Only boosted V→ qq considered
 - Most sensitive to BSM physics
- Selection and Backgrounds at 13 (8) TeV
 - High p_T lepton + MET (W)
 - Assign neutrino $p_T(v)$ using m_W constraint
 - $p_T(W_{lep}) > 200 \text{ GeV}$
 - 1 p_T > 200 GeV ak8 (CA8) jet with V-like substructure
 - (N-subjettiness) $\tau_2/\tau_1 < 0.6 (0.55)$
 - $40 < m_{pruned} < 150 (140) \text{ GeV}$
 - Reject further b-tagged ak4(5) jets
 - Jet ~back to back with lepton, MET, and leptonic W (Reduce W+jets)

CMS-PAS-SMP-16-012

aC Limits from WZ and ZZ

1.2

35.9 fb⁻¹ (13 TeV

= 0.0038, $f^{z} = 0.003$ = 0.0038, $f^{z} = 0.003$ \rightarrow ZZ, Z γ aa \rightarrow ZZ. Z γ ZZ + 2 jets EWK 17 WW7

CMS Preliminarv

Events / 50 GeV

10

Limits also obtained in leptonic states with aC formulation for ZZ and WZ

Process	Generator for aC	Fit distribution
ZZ	Sherpa 2.1	m _{zz}
WZ	MCFM	рт(Z)

Multibosons and the Standard Model

- Multiboson physics an important probe of SM and BSM
- Results from CMS on Zγ, WZ, ZZ, and WV consistent with SM
 - Demonstrate energy dependence of SM production
 - Confirm state of the art theoretical predictions

- Place limits on BSM physics in generalized language of aC/EFT
- Analyses at 13 TeV have greater reach to deviations from SM
 Extension of analyses to full 2016 (+ 2017) dataset begins new era of precision measurements at the LHC

Backup

Kenneth Long

17

Overview of Inclusive Measurements

	ATL	AS	CMS			
	8 TeV	13 TeV	8 TeV	13 TeV		
Z->4I	PRL 112, 231806 (2014)			PLB 763 (2016) 280,		
ZZ->4I	PLB 753 (2016) 552-572, JHEPO1 099 (2017) Cross section, differential, aTGC	PRL 116, 101801 (2016) Cross section	PLB 740 (2015) 250, CMS-PAS-SMP-15-012 Cross section, differential and aTGC measurement	CMS-PAS-SMP-16-017, 0 Cross section, differential and aTGC		
ZZ->2 2v	JHEP01, 099 (2017) Cross section, differential, aTGC	-	EPJC 75 (2015) 511 Cross section and aTGC measurement	-		
Ζγ->ΙΙγ	PRD 93, 112002 (2016)		JHEP 04 (2015) 164 Cross section and aTGC measurement	-		
Ζγ->ννγ	measurement	-	PLB 760 (2016) 448 Cross section and aTGC measurement	CMS-PAS-SMP-16-004 Cross section		
WW->lvlv	JHEP 09 (2016) 029 (WW+0jet) Cross section, differential and aTGC measurement PLB 763 (2016) 114 (WW+1jet) Cross section measurement	arXiv:1702.04519 Cross section	EPJC 76 (2016) 401 (WW+0- or 1-jet) Cross section, differential and aTGC measurement	CMS-PAS-SMP-16-006 Cross section		
WZ->3lv	PRD 93, 092004 (2016) Cross section, differential, upper limit on EWK WZ, aTGC, aQGC measurement	PLB 762 (2016) 1 (3.2 fb-1) Cross section, differential (Njets) ATLAS-CONF-2016-043 (13.3 fb-1) Cross section, differential and aTGC!	CMS-SMP-14-014, EPJ C (2017) 77: 236 Cross section, differential and aTGC measurement	arXiv:1607.06943 (CMS-PAS-SMP-16-002) (2.3 fb-1) Cross section		
WV->lvjj	-	-	arXiv:1703.06095 aTGC measurement	CMS-PAS-SMP-16-012 aTGC measurement		

S. Duric, DIS 2017

- Cross sections
 - Total production rate

$$\sigma imes \mathcal{B} = rac{N_{\text{data}} - N_{\text{bg}}}{\mathcal{A} imes \epsilon imes \mathcal{L}}$$

Fiducial cross section

- A = Acceptance (theoretical) $\varepsilon = Efficiency (experimental)$
- f = 1 uminosity
- \mathcal{L} = Luminosity
- Minimize extrapolation \Rightarrow minimize theoretical uncertainty
- Most interesting comparison as theory tools become more flexible (differential + full decays)
- Unfolded distributions
 - "True" distributions from data \Rightarrow remove detector smearing
 - Unfolding matrix (R) to transfer between true (μ) and smeared (ν) distributions (after removing background β) from simulation

$$\vec{\nu} = \mathbf{R}\vec{\mu} + \vec{\beta}$$

- Directly using $\mu^{-1} \Longrightarrow$ large affect from statistical variations
- D'Agostini Method Regularize to obtain smooth spectrum

- Generalized language for new physics in multiboson interactions
 Anomalous couplings (triple and quartic)
 - Observed as deviations at high mass
 - Defined by modifying SM lagrangian or effective vertices

- Alternatively... expand in effective field theory (EFT)
 - $_{-}\,$ in terms of Wilson coefficients c_{i} and New Physics scale Λ

$$\mathcal{L}_{SM} \longrightarrow \mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{n=1}^{\infty} \sum_{i} \underbrace{\frac{c_i^{(n)}}{\Lambda^n}}_{i} \mathcal{O}_i^{(n+4)}$$

- Non-unitary as $\sqrt{\hat{s}} \longrightarrow \Lambda$ without form factor
 - Often presented without form factor for simplicity
 - Inclusion of form factor decreases limits

Anomalous Couplings (aTGC) Summary

- Limits (without form factors) comparable to LEP in many cases
 - LHC and LEP probing different energies
 - Form factors decrease
 LHC limits

Systematic Uncertainties: WZ

	Source of uncertainty	Source of uncertainty				Uncertainty in the cross section					
	Background with nonpror	npt μ			5.4%						
	Background with nonpror	npt e			3.9%						
	b tagging				2.1%						
2017) 77. 236	$E_{\rm T}^{\rm miss}$				2.0%						
EFJ C (2017) 77.230	Electron efficiency				1.9%						
	Muon efficiency				1.5%						
	Pileup				0.8%						
	ZZ cross section				0.4%						
	ttV cross section				negligib	le					
	$Z\gamma$ cross section				negligib	le					
	VVV cross section				negligib	le					
	Integrated luminosity				3.2%						
	PDF and scales				1.0%						
	Source	$\sqrt{s} = 7 \mathrm{TeV}$			$\sqrt{s} = 8 \mathrm{TeV}$						
		eee	$ee\mu$	$\mu\mu$ e	$\mu\mu\mu$	eee	eeµ	μμε	μμμ		
	Renorm. and fact. scales	1.3	1.3	1.3	1.3	3.0	3.0	3.0	3.0		
	PDFs	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4		
	Pileup	0.3	0.5	1.0	0.6	0.2	0.4	0.3	0.2		
	Lepton and trigger efficiency	2.9	2.7	2.0	1.4	3.4	2.5	2.5	3.2		
.B 766 (2017) 268	Muon momentum scale	-	0.6	0.4	1.1	-	0.5	0.8	1.3		
	Electron energy scale	1.9	0.8	1.2	-	1.4	0.8	0.8	-		
	$E_{ m T}^{ m miss}$	3.7	3.4	4.3	3.7	1.5	1.5	1.6	1.2		
	ZZ cross section	0.5	0.9	0.6	0.9	0.1	0.1	0.1	0.1		
	$Z\gamma$ cross section	0.0	0.0	0.1	0.0	0.2	0.0	0.2	0.0		
	tt and Z+jets	2.7	6.5	6.3	6.0	4.6	7.2	6.1	7.7		
	Other simulated backgrounds	0.2	0.2	0.9	0.2	1.0	1.1	1.1	1.0		
	Total systematic uncertainty	6.1	7.8	8.1	7.2	7.0	8.6	7.7	9.2		
Kenneth Long	Statistical uncertainty	13.5	13.9	13.1	11.0	7.7	7.2	6.4	5.2		
	Integrated luminosity uncertainty	2.2	2.2	2.2	2.2	2.6	2.6	2.6	2.6		

	Uncertainty	$Z\to 4\ell$	$ZZ ightarrow 4\ell$	
	Lepton efficiency	6–10%	2–6%	
	Trigger efficiency	2–4%	2%	
	MC statistics	1 –2%	0.5%	
CMS-PAS-SMP-16-017	Background	0.6–1.3%	0.5–1%	
	Pileup	1–2%	1%	
	PDF	1%	1%	
	QCD Scales	1%	1%	
	Integrated luminosity	2.6%	2.6%	
	Systematic source	Absolute	Normalized	
	Trigger	2.0 %	-	
	Muon ID, ISO and Tracking	0.9 - 1.0 %	<0.1 - 0.1 %	
	Electron ID, ISO and Tracking	2.8 - 3.5 %	0.1 - 0.7 %	
	Jet energy resolution	2.1 - 8.4 %	2.1 - 8.4 %	
	JES correction	4.6 - 17.6 %	4.6 - 17.6 %	
CMS-PAS-SMP-16-019	Reducible background	0.5 - 2.5 %	0.3 - 1.8 %	
	Irreducible background	<0.1 - 1.2 %	<0.1 - 1.1 %	
	Pileup	0.3 - 1.9 %	0.6 - 1.8 %	
	Luminosity	2.5 %	-	
	Monte Carlo choice	0.5 - 5.1 %	0.8 - 4.8 %	
	qq/gg cross section	<0.1 - 0.3 %	0.1 - 0.2 %	
	PDF	<0.1 - 0.2 %	<0.1 - 0.2 %	
Kannath Lang	α_S	<0.1 - 0.1 %	<0.1 - 0.1 %	

24