

Recent VBF and VBS measurements in ATLAS

Narei LORENZO MARTINEZ - CNRS-IN2P3 (Annecy)

May 19th, 2017 - LHCP 2017 Conference - Shanghai

Introduction

- After Higgs discovery 5 years ago, no deviation found in its properties
- Vector Boson Fusion and Scattering (VBF/VBS) important test of electroweak sector and EW Symmetry Breaking
 - Interaction with Higgs boson unitarizes the scattering amplitude -> is unitarization complete ?
 - * Complementary to Higgs boson property studies !
- Yet no sign of new physics with direct searches
 - VBF/VBS allows indirect search by studying anomalous triple and quartic gauge couplings (aTGC, aQGC)
- * VBF W and Z processes: interesting as candle for other VBF processes at LHC
- VBS : very low rate (O(fb)) and large background
 - Main background is the QCD-induced production of gauge bosons, scales as α_s^2 / α^2
 - VBS never observed until very recently ! (see CMS talk by Philipp Pigard)
- Leptons / photons generally used: clean channels, more limited backgrounds

Phenomenology

VBS/VBF: typical topology of final states

- Two hadronic jets in forward and backward regions with very high energy
- Hadronic activity suppressed between the two jets (rapidity gap) due to absence of colour flow between interacting partons

Topological selection help reducing QCD background

Summary of ATLAS VBF/VBS measurements

Summary of ATLAS **VBF/VBS** measurements

 $\pm 1\sigma$ Expected

 $\pm 2\sigma$ Expected

[0.08; 0.20]

[0.04; 0.28]

[0.08; 0.20]

[0.06; 0.28]

VBFW

- EW cross section: build several regions to correct the QCD shape (and reduce unc.)
- Main bkg: top, Z+jets, dibosons (from MC) and multi-jets (data-driven)

C=0.4 used to count the ℓ/j in the range

to derive

VBFW: EW fiducial cross section

- Constraint on QCD m_{jj} shape: linear fit of data/ pred. (MiNLO Powheg+Pythia8) in CR
 - slope consistent with zero, but fit helps reducing total syst. unc.
- Binned likelihood fit of m_{jj} dist. for μ_{EW} and μ_{QCD}
- Leading sys. unc.: stat. unc. in CR and jet energy scale (JES) unc.
- *** Observation** with >5σ !

Result of EW cross-section measurement:

\sqrt{s}	$\sigma_{ m meas}^{ m fid}$ [fb]	$\sigma_{\rm SM}^{\rm fid}$ [fb]	Acceptance \mathcal{A}	$\sigma_{ m meas}^{ m inc}$ [fb]
7 TeV 8 TeV	$144 \pm 23 \text{ (stat)} \pm 23 \text{ (exp)} \pm 13 \text{ (th)}$ $159 \pm 10 \text{ (stat)} \pm 17 \text{ (exp)} \pm 20 \text{ (th)}$	$\begin{array}{c} 144 \pm 11 \\ 198 \pm 12 \end{array}$	$\begin{array}{c} 0.053 \pm 0.004 \\ 0.058 \pm 0.003 \end{array}$	$2760 \pm 670 \\ 2890 \pm 510$

with $\mu_{QCD} = 1.16 \pm 0.04$ (stat) @ 7 TeV, and 1.09 ± 0.02 (stat) @ 8 TeV

- 8 TeV measurement: smallest relative uncertainty among other VBF measurements at high m_{ij}.
- Good agreement with Powheg+Pythia8 (1.3σ deviation for 8TeV)

VBFW: differential cross sections⁸ TeV data

- ✤ Combined QCD+EW in all regions ; EW only in regions with EW > 20%
- Bayesian iterative unfolding technique to correct for detector inefficiencies
- Sensitive to EW production
 Sensitive to anomalous coupling
 Iepton and jet centrality (Cℓ, Cµ), m_{jj}, ΔY_{jj}, number of jets in gap, p_{Tj1}, p_{Tjj}, Δφ_{jj}
 9 regions:
 4 regions defined in previous slide + inclusive + m_{jj}>1,1.5,2 TeV, SR + m_{jj}>1 TeV (40% EW)
- Leading systematics:

Number of jets in rapidity gap

In region m_{jj}>2 TeV, EW contribution becomes visible
 Comparison to 3 generators: Powheg-Pythia (NLO), Sherpa 1.4 (LO) and HEJ (all-order re-summation calculation, only for QCD-enhanced regions)
 Sherpa does not model well the shape of distribution

Fiducial region

VBFW: limits on aTGCs

- Probed in signal region + m_{ii} > 1 TeV ; pT_{i1} > 600 GeV
- Complementary to dibosons (s-channel exchange instead of t-channel)
- Sensitive to WWZ and WWγ couplings
- Effective lagrangian + form factors introduced to preserve unitarity

* λ_V intervals competitive with WW ones

	$\Lambda =$	4 TeV	$\Lambda = \infty$		
	Expected Observed		Expected	Observed	
Δg_1^Z	[-0.39, 0. 35]	[-0.32, 0.28]	[-0.16, 0.15]	[-0.13, 0.12]	
$\Delta \kappa_Z$	[-0.38, 0.51]	[-0.29, 0.42]	[-0.1 9, 0. 19]	[-0.15, 0.16]	
λ_V	[-0.16, 0.12]	[-0.13, 0.090]	[-0.064, 0.054]	[-0.053, 0.042]	
ĨK7	[-1.7, 1.8]	[-1.4, 1.4]	[-0.70, 0.70]	[-0.56, 0.56]	
$\tilde{\lambda}_V$	[-0.13, 0.15]	[-0.10, 0.12]	[-0. 058, 0.057]	[-0.047, 0.046]	

VBS $Z\gamma + 2j$

✤ Goals:

- Measurement of total $Z\gamma jj$ cross section, and probing VBS with Z->ee/µµ
- * Setting limits on aQGC with Z->ee/ $\mu\mu/\nu\nu$

Interests:

- Z->ee/μμ clean channels, relatively small background
- Using 3 decay channels, stringent limits on FT8 and FT9 EFT operators
- * **But challenging**: small cross section and very large QCD production

Data used: 8 TeV data, 20.2 fb-1

arXiv:1705.01966

VBS

EW non

VBS

* Centrality variable used to perform XS measurement in *l+l-* channel

Zγjj QCD:

- ✤ shape taken from Sherpa v1.4 MC
- normalisation extracted fitting simultaneously CR and SR for EW studies (QCD scaling factor = unconstrained nuisance parameter in fit)
- Main Zγjj reducible backgrounds:
 - ✤ Z+jets -> 2D sideband data-driven method -> ~23% of Zγjj events
 - ✤ ttbarγ ->MadGraph5_AMC@NLO v5.2, XS @ NLO
- Electron and muons channels combined

VBS $Z\gamma + 2j$: cross sections

Cross section measurements:

- * Extended binned likelihood fit over Zγ centrality variable with parameter of interest $\mu = \sigma_{data} / \sigma_{MC}$
- Measurement of total (in SR and CR) and EW-only (in SR) XS
- Measurements compared with VBFNLO v2.7.1 (4-10% unc.)

Significance for observing the EW signal: 2.0σ (1.8σ expected)

*

Upper limit on cross section: 2.2 fb

Source of	EWK [%] Total (EWK+QCD) [%]		
uncertainty		SR	CR
Statistical	40	9	4
Jet energy scale	36	9	4
Theory	10	5	4
All other	8	5	6
Total systematic	38	11	8

Dominated by jet energy scale unc.

Excellent agreement with VBFNLO Large statistical (~40%) and systematic (~50%) uncertainties

VBS $Z\gamma + 2j$: aQGC

- New physics could induce charged (WWZ γ) and neutral (ZZZ γ , * ZZγγ, Zγγγ; avoided in SM) aQGCs
 - contribution expected to increase with photon E_T •
- Neutrino and charged lepton channel used in aQGC region •
- **Parametrisation**: parity conserving EFT Lagrangian with higher • dim operators
- Form factor (FF) introduced to restore unitarity at very high • energy √s

aQGC $vv\gamma$ selection: - $E_{Tmiss} > 100 \text{ GeV}, 1\gamma \text{ } p_T > 150 \text{ GeV}$ - 2 jets with p_T >30 GeV, - lepton veto (reduce Wyjj bkg), angular cuts (remove γ +jet bkg) centrality < 0.3; p_T balance < 0.1; m_{ii}> 600 GeV (to reduce QCD) $-N_{exp} = 0.65 + / - 0.05$

	WWZγ	ZZZγ	ΖΖγγ	Ζγγγ
FM ₀₋₇	\checkmark	\checkmark	\checkmark	
FT ₀₋₇	\checkmark	\checkmark	\checkmark	\checkmark
FT8-9		\checkmark	\checkmark	\checkmark

Dim 8 operators

VBS $Z\gamma + 2j$: aQGC results

- Upper limit on cross section (log-likelihood fit, CLs technique) :
 - * **1.06fb** (0.99 exp.) ννγ and **1.03fb** (1.01fb exp.) *l+l-*γ
- * aQGC XS computed with VBFNLO, Madgraph used to study selection efficiency
- One dim. profile likelihood fit -> 95%CL intervals
- Best expected interval: ννγ, improved by 10-30% when including t-t-γ
- Uncertainties dominated by QCD renormalization and factorization scale (~8%)
- Intervals reduced compared to previous CMS publication

	Limits 95% CL	Measured [TeV ⁻⁴]	Expected [TeV ⁻⁴]
	f_{T9}/Λ^4	[-3.9, 3.9]	[-2.7, 2.8]
	f_{T8}/Λ^4	[-1.8, 1.8]	[-1.3, 1.3]
	f_{T0}/Λ^4	[-3.4, 2.9]	[-3.0, 2.3]
ATLAS $Z(\rightarrow \ell \bar{\ell} / \nu \bar{\nu}) \gamma$ -EWK	f_{M0}/Λ^4	[-76, 69]	[-66, 58]
(recall without EE to commany	f_{M1}/Λ^4	[-147, 150]	[-123, 126]
(result without FF to compute with CMS)	f_{M2}/Λ^4	[-27, 27]	[-23, 23]
	f_{M3}/Λ^4	[-52, 52]	[-43, 43]
	f_{T9}/Λ^4	[-4.0, 4.0]	[-6.0, 6.0]
	f_{T8}/Λ^4	[-1.8, 1.8]	[-2.7, 2.7]
CMS $Z(\rightarrow \ell \bar{\ell})\gamma$ -EWK	f_{T0}/Λ^4	[-3.8, 3.4]	[-5.1, 5.1]
	f_{M0}/Λ^4	[-71,75]	[-109, 111]
arXiv: 1702.03025	f_{M1}/Λ^4	[-190, 182]	[-281, 280]
_	f_{M2}/Λ^4	[-32, 31]	[-47,47]
	f_{M3}/Λ^4	[-58, 59]	[-87, 87]

Summary

* New important results on VBF/VBS topologies with 7 and 8 TeV data.

VBF W:

- * 8 TeV: most precise measurement on VBF topology to this date
- First observation with $>5\sigma$ of VBF W channel
- EWK fiducial XS already systematically dominated and has sensitivity to constraint MC modelling
- Many differential measurements provided, comparison with 3 generators. Lot of useful information to help improving MC modelling (HEPDATA)
- First constraints on CP-violating aTGCs parameters

✤ VBS Zg :

- Best limits on FT8 and FT9 operators in EFT parametrisation of aQGC
- Measurement of total and EWK Zγjj cross section in special fiducial regions
- Very small cross section, need more data for an observation
- * In VBF/VBS processes, JES is generally one of the limiting uncertainties !
- More results to come with 13 TeV data and larger data sample
 - Possibility to observe for the first time rare VBS processes and put more stringent limits on aTGCs and aQGCs
 - * Will allow to check the dependence of XS with \sqrt{s} for a given process
- Stay tuned !

Conclusions

	Observed ?	Measurements	
VBF Z @ 8 TeV <i>JHEP 04(2014)</i> 031	Yes, >5σ	Inclusive and EW fiducial XS, differential XS (Powheg, Sherpa 1.4.3), aTGCs	t of useful
VBS ssW @ 8 TeV PRL 113, 141803 (2014), arXiv:1611.02428	Νο, 4.5σ	EW fiducial XS, aQGCs	
VBS WZ @ 8 TeV PRD 93, 092004 (2016)	No, <2σ	Upper limit EW XS, aQGCs	ities!
VBF W arXiv:1703.04362	Yes, >5σ	Inclusive and EW fiducial XS, differential XS (Powheg, Sherpa 1.4.3), aTGCs	NEW . gent limits on
VBS Zγ arXiv:1705.01966	Νο, 2σ	Inclusive and EW XS, aQGCs	NEW !

Extra material

VBFW: MC samples

Process	MC generator	$\sigma \cdot \mathcal{B}$	6 [pb]
		7 TeV	8 TeV
$W(\rightarrow e\nu, \mu\nu) + 2$ jets			
2 EW vertices	POWHEG + PYTHIA8	4670	5340
4 EW vertices (no dibosons)	Powheg + Pythia8	2.7	3.4
$W(\to \tau \nu)$ inclusive			
2 EW vertices	Sherpa	10100	11900
$W(\rightarrow \tau \nu) + 2$ jets			
4 EW vertices (with dibosons)	Sherpa	8.4	
4 EW vertices (no dibosons)	Sherpa		4.2
Top quarks			
$tar{t}(ightarrow \ell u bar{q}qar{b},\ell u b\ell uar{b})$	MC@NLO + HERWIG	90.0	
	POWHEG + PYTHIA6		114
tW	ACERMC + PYTHIA6	15.3	
	MC@NLO + HERWIG		20.7
$tar{b}q ightarrow \ell u bar{b}q$	ACERMC + PYTHIA6	23.5	25.8
$t\bar{b} ightarrow \ell u b ar{b}$	ACERMC + PYTHIA6	1.0	
	MC@NLO + HERWIG		1.7
$Z(\to \ell \ell)$ inclusive, $m_{\ell \ell} > 40 \text{ GeV}$			
2 EW vertices	Sherpa	3140	3620
$Z(\rightarrow ee, \mu\mu) + 2$ jets, $m_{ee,\mu\mu} > 40$ GeV			
4 EW vertices (no dibosons)	Sherpa	0.7	0.9
Dibosons			
WW	HERWIG++	45.9	56.8
WZ	HERWIG++	18.4	22.5
ZZ	Herwig++	6.0	7.2

20

VBFW: selection, event yield

Region name	Requirements					
Preselection	Lepton $p_{\rm T} > 2$	5 GeV				
	Lepton $ \eta < 2$.	5				
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	V				
	$m_{\rm T} > 40 { m GeV}$					
	$p_{\rm T}^{J_1} > 80 {\rm GeV}$		-			
	$p_{\rm T}^{J_2} > 60 { m GeV}$			Process	$7 { m TeV}$	$8 { m TeV}$
	Jet $ y < 4.4$		-			F 000
	$M_{jj} > 500 \text{ GeV}$	V		W jj (E)	$(W) \qquad 920$	5600
	$\Delta y(j_1, j_2) > 2$			Wjj (QC	$CD) \qquad 3020$	19600
Eidenial and differential managements	$\Delta R(j,\ell) > 0.3$			Multijets	s 500	2350
Signal region	$\lambda r c e n = 1 \lambda r c e$	$e^n - 0$		$t\bar{t}$	430	1960
Forward lanton control ragion	$I_{\text{lepton}} = 1, I_{\text{je}}$	$t_{ts} = 0$		Single to	op 244	1470
Central-iet validation region	$N_{\text{lepton}} = 0, N_{\text{je}}$	$t_{ts} = 0$		Z_{jj} (QC	CD) 470	1140
Differential measurements only	lepton – 1, 1v je	$t_s \ge 1$		Dibosons	s 126	272
Inclusive regions	$M_{ii} > 0.5 \text{ TeV}$, 1 TeV, 1.5 TeV, or 2 TeV		Zjj (EW	V) 5	79
Forward-lepton/central-jet region	$N_{\rm lepton}^{\rm cen} = 0, N_{\rm lep}^{\rm cen}$	$\frac{e_n}{t_s} \ge 1$	-	Total SN	ý 1 5700	32500
High-mass signal region	$M_{jj} > 1$ TeV, N	$V_{\text{lenton}}^{\text{cen}} = 1, N_{\text{iets}}^{\text{cen}} = 0$	-	Data	6063	33710
Anomalous coupling measurements only			-	Data	0000	00110
High- q^2 region	$M_{jj} > 1$ TeV, <i>I</i>	$N_{\text{lepton}}^{\text{cen}} = 1, N_{\text{jets}}^{\text{cen}} = 0, p_{\text{T}}^{j_{\text{T}}} > 600 \text{ GeV}$				
		Region name	7 Te	V	8 TeV	-
			SM prediction	n Data	SM prediction	Data
		Fiducial and differential measurements				
		Signal region	570	0 6063	32500	33719
		Forward-lepton control region	500	0 5273	29400	30986
		Central-jet validation region	217	0 2187	12400	12677
		Differential measurement only				
		Inclusive region, $M_{ii} > 500 \text{ GeV}$			106000	107040
		Inclusive region, $M_{ii} > 1$ TeV			17400	16849
		Inclusive region, $M_{ii} > 1.5$ TeV			3900	3611
		Inclusive region, $M_{ii} > 2$ TeV			1040	890
		Forward-lepton/central-jet region			12000	12267
		High-mass signal region			6100	6052
		Anomalous coupling measurements only				

VBFW: results

Fiducial region	$\sigma_{Wii}^{\mathrm{fid}} \times \mathcal{B}_{W \to \ell \nu}$ [fb]				
		QCD+EW		${ m EW}$	
	Data	Powheg + Pythia8	Data	Powheg + Pythia8	
Inclusive $M_{jj} > 0.5$ TeV	1700 ± 110	1420 ± 150			
Inclusive $M_{jj} > 1.0$ TeV	263 ± 21	234 ± 26	64 ± 36	52 ± 1	
Inclusive $M_{jj} > 1.5$ TeV	56 ± 5	53 ± 5	20 ± 8	19 ± 0.5	
Inclusive $M_{jj} > 2.0$ TeV	13 ± 2	14 ± 1	5.6 ± 2.1	6.9 ± 0.2	
Forward-lepton	545 ± 39	455 ± 51			
Central-jet	292 ± 36	235 ± 28			
Forward-lepton/central-jet	313 ± 30	265 ± 32			
Signal $M_{jj} > 0.5$ TeV	546 ± 35	465 ± 39	159 ± 27	198 ± 12	
Signal $M_{jj} > 1.0$ TeV	96 ± 8	89 ± 7	43 ± 11	41 ± 1	

Production cross section σB [fb] **ATLAS** × 200 √s=8 TeV √s=8 TeV 100 EW W(→*l*_V)jj EW Z(→l⁺l⁻)jj √s=7 TeV √s=8 TeV EW W(→*l*ν)jj VBF $H \rightarrow \tau^+ \tau^-$ 40 √s=8 TeV 30 EW Z(→l⁺l⁻)jj **√**s=8 TeV s=8 TeV EW W($\rightarrow l\nu$)jj EW W($\rightarrow l\nu$)jj M_{ii}>1 TeV M_{ii}>1 TeV 20 √s=8 TeV VBF H→W⁺W⁻ ¢ 10 MADGRAPH+PYTHIA √s=8 TeV EW Z($\rightarrow l^+ l^-)$ jj **POWHEG+PYTHIA** 5 M_{ii}>1 TeV 4 ATLAS EW Wjj; this paper (CERN-EP-2017-008) • 3 ATLAS EW Zjj; JHEP 1404 (2014) 031 0 CMS EW Wjj; JHEP 1611 (2016) 147 √s=8 TeV Δ 2 VBF H→γγ CMS EW Zjj; Eur.Phys.J. C75 (2015) 66 LHC VBF Higgs; JHEP 1608 (2016) 045 ٥

LHC electroweak Xjj production measurements

22

VBFW: signal enhanced region

Interference taken as an uncertainty, that start to be nonnegligible in signal enhanced region, and in some specific phase space (small ΔYjj, high jet p_T, ...)

VBFW: more details

Source	Uncertainty in μ	
	$7 { m TeV}$	8 TeV
Statistical		
Signal region	0.094	0.028
Control region	0.127	0.044
Experimental		
Jet energy scale (η intercalibration)	0.124	0.053
Jet energy scale and resolution (other)	0.096	0.059
Luminosity	0.018	0.019
Lepton and $E_{\rm T}^{\rm miss}$ reconstruction	0.021	0.012
Multijet background	0.064	0.019
Theoretical		
MC statistics (signal region)	0.027	0.026
MC statistics (control region)	0.029	0.019
EW Wjj (scale and parton shower)	0.012	0.031
QCD Wjj (scale and parton shower)	0.043	0.018
Interference (EW and QCD Wjj)	0.037	0.032
Parton distribution functions	0.053	0.052
Other background cross sections	0.002	0.002
EW Wjj cross section	0.076	0.061
Total	0.26	0.14

VBFNLO

arXiv:1407.7857

Scale uncertainty significantly reduced at NLO.

 Size of NLO QCD correction are particularly large in region where VBS is enhanced

VBS Zy: more details (l+l- channel)

Objects	Particle- (Parton-) level selection
Leptons	$p_{\rm T}^{\ell} > 25 { m GeV} { m and} \eta^{\ell} < 2.5$
	Dressed leptons, OS charge
Photon (kinematics)	$E_{\rm T}^{\gamma} > 15 { m GeV}, \eta^{\gamma} < 2.37$
	$\Delta R(\ell,\gamma) > 0.4$
Photon (isolation)	$E_{\rm T}^{\rm iso} < 0.5 \cdot E_{\rm T}^{\gamma}$ (no isolation)
FSR cut	$m_{\ell\ell} + m_{\ell\ell\gamma} > 182 \mathrm{GeV}$
	$m_{\ell\ell} > 40 \mathrm{GeV}$
Particle jets (Outgoing partons)	At least two jets (outgoing partons)
(j = jets)	$E_{\rm T}^{j(p)} > 30 \text{ GeV}, \eta^{j(p)} < 4.5$
(p = outgoing quarks or gluons)	$\Delta R(\ell, j(p)) > 0.3$
	$\Delta R(\gamma, j(p)) > 0.4$
Control region (CR)	$150 < m_{jj(pp)} < 500 \text{ GeV}$
Search region (SR)	$m_{jj(pp)} > 500 { m ~GeV}$
aQGC region	$m_{jj(pp)} > 500 \mathrm{GeV}$
	$E_{\rm T}^{\gamma} > 250 {\rm ~GeV}$

	Inclusive region		Control region		Search region	
	$Z(\ell^+\ell^-)\gamma + \geq 2$ jets		$150 < m_{jj} < 500 \text{ GeV}$		$m_{jj} > 500 \text{ GeV}$	
	$e^+e^-\gamma jj$	$\mu^+\mu^-\gamma jj$	$e^+e^-\gamma jj$	$\mu^+\mu^-\gamma jj$	$e^+e^-\gamma jj$	$\mu^+\mu^-\gamma jj$
Data	781	949	362	421	58	72
Z+jets bkg.	134 ± 36	154 ± 42	57 ± 16	67 ± 18	8.5 ± 2.5	9.4 ± 2.7
Other bkg. $(t\bar{t}\gamma, WZ)$	88 ± 17	91 ± 18	47 ± 9	46 ± 9	5.8 ± 1.1	5.0 ± 1.0
$N_{\rm data} - N_{\rm bkg}$	559 ± 46	704 ± 53	258 ± 24	308 ± 27	44 ± 7	58 ± 8
$N_{Z\gamma \text{ QCD}}$ (SHERPA MC)	583 ± 41	671 ± 47	249 ± 24	290 ± 26	37 ± 5	41 ± 5
$N_{Z\gamma \text{ EWK}}$ (sherpa MC)	25.4 ± 1.5	27.3 ± 1.7	8.6 ± 0.6	9.3 ± 0.6	11.2 ± 0.8	11.6 ± 0.7
$N_{Z\gamma}$ (sherpa MC)	608 ± 42	698 ± 49	258 ± 25	299 ± 27	48 ± 6	53 ± 6

VBS Zy: more details (vv channel)

Objects	Particle- (Pa	Particle- (Parton-) level selection			
Neutrinos	$E_{\mathrm{T}}^{ u i}$	$E_{\rm T}^{ uar{ u}} > 100 \; { m GeV}$			
Photon (kinematics)	$E_{\mathrm{T}}^{\gamma} > 150$	$E_{\rm T}^{\gamma} > 150 { m GeV}, \eta^{\gamma} < 2.37$			
	ΔI	$\frac{R(\ell,\gamma) > 0.4}{2}$			
Photon (isolation)	$E_{\rm T}^{\rm is}$	$\frac{E_{\rm T}^{\rm iso} < 0.5 \cdot E_{\rm T}^{\rm i}}{1}$			
Generator-level jets (Outgoing	quarks) At least $\Sigma_{i(q)}^{i(q)}$	At least two jets (quarks) $\overline{T}_{i}^{i}(q)$			
$(pp \rightarrow Z\gamma qq)$	$E_{\rm T}^{\rm (q)} > 30$	$E_{\rm T}^{j(q)} > 30 \text{ GeV}, \eta^{j(q)} < 4.5$			
Event kinematic	$\frac{\Delta R(}{\Delta \phi(F^{\nu})}$	$\frac{\Delta R(\gamma, j(q)) > 0.4}{ \Delta \phi(F^{\nu\bar{\nu}}, \alpha i i (qq)) > 3\pi}$			
selection	$ \Delta \psi(L_{\rm T}) $	$ \Delta \phi(E_{\rm T}, \gamma j j (qq)) \ge \frac{\pi}{4}$ $ \Delta \phi(E_{\rm T}^{\nu \bar{\nu}}, \gamma) \ge \frac{\pi}{4}$			
	$ \Delta \phi $	$\frac{ \Delta\phi(L_{\rm T}^{\rm T}, j) > 2}{ \Delta\phi(E_{\rm T}^{\nu\bar{\nu}}, j(q)) > 1}$			
	$E_{\mathrm{T}}^{\dot{\gamma}}$	$E_{\rm T}^{\gamma} > 150 {\rm ~GeV}$			
	$ \Delta y $	$ \Delta y_{jj(qq)} > 2.5$			
	h	$\zeta_{\gamma} \downarrow 0.3$			
	$p_{\mathrm{T}}^{\mathrm{b}}$	$p_{\rm T}^{\rm parance} < 0.1$			
	$m_{jj(q)}$	$m_{jj(qq)} > 600 \text{ GeV}$			
	aQGC	region			
	$m_{ij} > 500 \text{ GeV}$	$m_{ii} > 600 \text{ GeV}$			
	$E_{\rm T}^{\tilde{\gamma}} > 250 { m ~GeV}$	$E_{\rm T}^{\gamma} > 150 {\rm ~GeV}$			
	$\ell^+\ell^-\gamma jj$	1 $ u ar{ u} \gamma j j$			
Data	2	4			
Z+jets background	0.28 ± 0.08	0.3 ± 0.2			
$W(\ell\nu)\gamma$ +jets background	-	1.1 ± 0.5			
γ +jets background	-	0.13 ± 0.08			
$W(e\nu)$ +jets background	-	0.09 ± 0.04			
$t\bar{t}\gamma, WZ$ background	0.02 ± 0.01	-			
$N_{\rm data} - N_{\rm bkg}$	1.7 ± 1.4	2.4 ± 2.0			
$N_{Z\gamma \text{ QCD}}$ (SHERPA MC)	1.2 ± 0.4	0.29 ± 0.07			
$N_{Z\gamma \text{ EWK}}$ (SHERPA MC)	0.41 ± 0.04	0.65 ± 0.05			
$N_{Z\gamma}$ (sherpa MC)	1.6 ± 0.4	0.9 ± 0.1			

VBS Zy: more details (results)

					>	0.05					
	95% CL intervals	Measured $[\text{TeV}^{-4}]$	Expected $[\text{TeV}^{-4}]$	$\Lambda_{\rm FF}$ [TeV]	Ge		ATLAS		- + - [Data	
	f_{T9}/Λ^4	$[-4.1, 4.2] \times 10^3$	$[-2.9, 3.0] \times 10^3$		Its /	0.04	√s=8 TeV	′, 20.2 fb⁻¹		<u>′(</u> ν⊽)γjj EV ζ(v⊽)vji Ω(
	f_{T8}/Λ^4	$[-1.9, 2.1] \times 10^3$	$[-1.2, 1.7] \times 10^3$		ver				- V	V(ev)+jet	s
	f_{T0}/Λ^4	$[-1.9, 1.6] \times 10^{1}$	$[-1.6, 1.3] \times 10^{1}$		Ш	0.03			Z	$(v\overline{v})$ +jets	; –
n = 0	f_{M0}/Λ^4	$[-1.6, 1.8] \times 10^2$	$[-1.4, 1.5] \times 10^2$			0.00			γ	+jets Nv+iets	
	f_{M1}/Λ^4	$[-3.5, 3.4] \times 10^2$	$[-3.0, 2.9] \times 10^2$			0.02			۔ ۲ 💯	ot. unc.	
	f_{M2}/Λ^4	$[-8.9, 8.9] \times 10^2$	$[-7.5, 7.5] \times 10^2$			0.01	under de la constante de la const		aQC	C Regic	on _
	f_{M3}/Λ^4	$[-1.7, 1.7] \times 10^3$	$[-1.4, 1.4] \times 10^3$			0.01				1	
	f_{T9}/Λ^4	$[-6.9, 6.9] \times 10^4$	$[-5.4, 5.3] \times 10^4$	0.7		100	200	200	400	500	600
	f_{T8}/Λ^4	$[-3.4, 3.3] \times 10^4$	$[-2.6, 2.5] \times 10^4$	0.7		100	200	300	400	500 ⊏ ^{miss} r	600 GoVI
n = 2	f_{T0}/Λ^4	$[-7.2, 6.1] \times 10^1$	$[-6.1, 5.0] \times 10^{1}$	1.7							Gevj
	f_{M0}/Λ^4	$[-1.0, 1.0] \times 10^3$	$[-8.8, 8.8] \times 10^2$	1.0							
	f_{M1}/Λ^4	$[-1.6, 1.7] \times 10^3$	$[-1.4, 1.4] \times 10^3$	1.2							
	f_{M2}/Λ^4	$[-1.1, 1.1] \times 10^4$	$[-9.2, 9.6] \times 10^3$	0.7							
	f_{M3}/Λ^4	$[-1.6, 1.6] \times 10^4$	$[-1.4, 1.3] \times 10^4$	0.8							

Channel	Phase-space	Process	Measured	Predicted
	region	type	cross-section [fb]	cross-section [fb]
$Z(\ell^+\ell^-)\gamma jj$	Search region	EWK	$1.1 \pm 0.5 \text{ (stat)} \pm 0.4 \text{ (syst)}$	0.94 ± 0.09
$Z(\ell^+\ell^-)\gamma jj$	Search region	EWK+QCD	$3.4 \pm 0.3 \text{ (stat)} \pm 0.4 \text{ (syst)}$	4.0 ± 0.4
$Z(\ell^+\ell^-)\gamma jj$	Control region	EWK+QCD	$21.9 \pm 0.9 \text{ (stat)} \pm 1.8 \text{ (syst)}$	22.9 ± 1.9