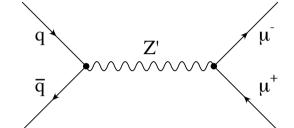

SEARCHING FOR NEW HIGH MASS PHENOMENA DECAYING TO MUON PAIRS USING PROTON-PROTON COLLISIONS AT $\sqrt{s} = 13$ TEV WITH THE ATLAS DETECTOR AT THE LHC

S. Rettie^{1,2}, on behalf of the ATLAS Collaboration

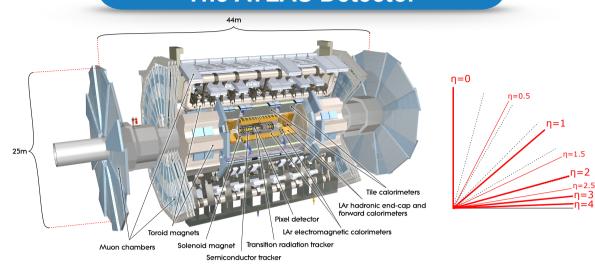
¹The University of British Columbia, ²TRIUMF

Contact Interactions (CI)

- Probes quark and lepton compositeness, with binding energy scale Λ
- $$\begin{split} \mathscr{L} &= \frac{g^2}{\Lambda^2} \left[\eta_{\mathrm{LL}} \left(\overline{q}_{\mathrm{L}} \gamma_{\mu} q_{\mathrm{L}} \right) \left(\overline{\ell}_{\mathrm{L}} \gamma^{\mu} \ell_{\mathrm{L}} \right) + \eta_{\mathrm{RR}} (\overline{q}_{\mathrm{R}} \gamma_{\mu} q_{\mathrm{R}}) \left(\overline{\ell}_{\mathrm{R}} \gamma^{\mu} \ell_{\mathrm{R}} \right) \right. \\ &+ \eta_{\mathrm{LR}} (\overline{q}_{\mathrm{L}} \gamma_{\mu} q_{\mathrm{L}}) \left(\overline{\ell}_{\mathrm{R}} \gamma^{\mu} \ell_{\mathrm{R}} \right) + \eta_{\mathrm{RL}} (\overline{q}_{\mathrm{R}} \gamma_{\mu} q_{\mathrm{R}}) \left(\overline{\ell}_{\mathrm{L}} \gamma^{\mu} \ell_{\mathrm{L}} \right) \right] \end{split}$$
- Observable as broad excess in dilepton invariant mass spectrum

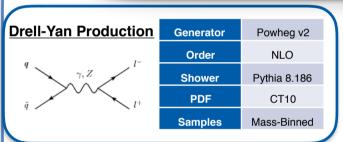

Motivation

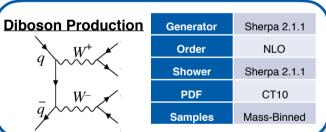
Z Prime (Z')

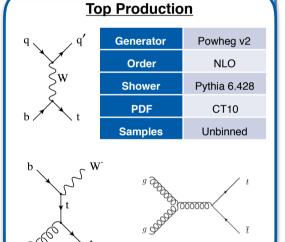

- Additional spin-1 neutral gauge boson
- Sequential SM (Benchmark): additional heavy boson with same couplings as SM Z
- Predicted by GUT models based on the E₆ gauge group

 $E_6 \to SO(10) \times U(1)_{\psi} \to SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$

- Two additional U(1) gauge fields
- $Z'(\theta_{E_6}) = Z'_{\psi} \cos \theta_{E_6} + Z'_{\chi} \sin \theta_{E_6}$
- Observable as narrow resonances in dimuon invariant mass spectrum

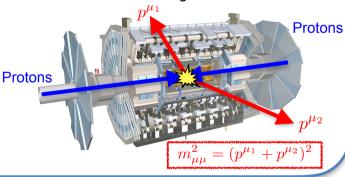

The ATLAS Detector



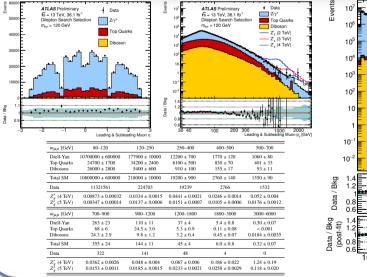

Event Selection

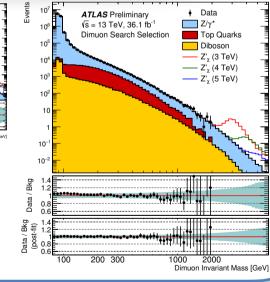
- Muon Spectrometer (MS):
 - Barrel region: |η| < 1.1
 - Endcap region: $1.1 < |\eta| < 2.7$.
 - Toroidal magnetic field allows for transverse momentum (p_T) measurements by measuring the curvature of the muon tracks
 - p_T resolution up to 10% for muons with p_T ~ 1TeV
- Inner Detector (ID):
 - Contained in a 2T magnetic field
 - Used for the tracking of charged particles
- ID track combined with MS track to form "combined" muon

Backgrounds

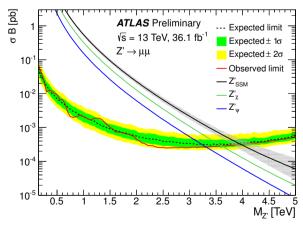

* Fake muon background is negligible

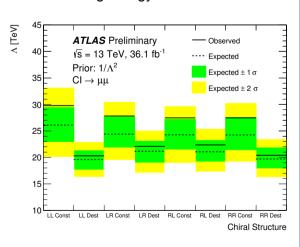
Event Level Criteria


- Good Run List (GRL)
- Single-muon trigger: 1 isolated μ with p_T > 26 GeV OR 1 μ with p_T > 50 GeV
- · At least 2 combined muons
- Require Opposite Charge
- Select highest p_T pair: m_{μμ} > 80 GeV
 Muon Selection
- Muon p_T > 30 GeV
- High-p_T Muon Working Point
- Bad Muon Veto
- Track quality requirements:
 - d₀ significance < 3
 - $|z_0 * \sin \theta| < 0.5 \text{ mm}$
- · Loose isolation on tracks

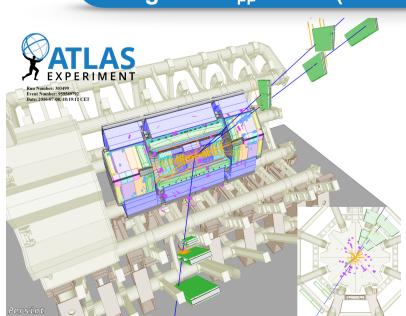

High-p_T Muon Working Point

- · Require combined muons
- Require 3 separate muon stations to have hits for a given muon (3 stations in the MS)
- Remove muon chambers with poor alignment; apply chamber vetoes based on η-φ track coordinates
- Require that the track curvature be well measured; ensure that the muon's ID and extrapolated MS momentum measurements agree to within 7σ


Data/MC Comparisons



Exclusion Limits


 No significant deviation from the Standard Model prediction was observed, so various theoretical models are constrained by setting limits on their parameters, e.g. the Z' boson masses or the contact interaction binding energy scale Λ

Model	Width [%]	θ_{E_6} [Rad]	Lower limits on $m_{Z'}$ [TeV]					
			ee		μμ		$\ell\ell$	
			Obs	Exp	Obs	Exp	Obs	Exp
$Z'_{\rm SSM}$	3.0	-	4.3	4.3	4.0	3.9	4.5	4.5
$Z_{\scriptscriptstyle X}^{\prime}$	1.2	$0.50 \ \pi$	3.9	3.9	3.6	3.6	4.1	4.0
$\hat{Z_{\rm S}'}$	1.2	0.63π	3.9	3.8	3.6	3.5	4.0	4.0
$Z_\chi' \ Z_S' \ Z_I'$	1.1	$0.71~\pi$	3.8	3.8	3.5	3.4	4.0	3.9
Z'_{η}	0.6	$0.21~\pi$	3.7	3.7	3.4	3.3	3.9	3.8
$Z_{ m N}^{\prime}$	0.6	$-0.08~\pi$	3.6	3.6	3.4	3.3	3.8	3.8
$Z_{\psi}^{?}$	0.5	0 π	3.6	3.6	3.3	3.2	3.8	3.7

Highest $m_{\mu\mu}$ Event (1.99 TeV)

Leading μ (ρτ, η, φ): (637 GeV, -0.43, -2.16)

Subleading μ (p_T, η, φ): (546 GeV, 1.81, 0.90)

Missing E_T: 109 GeV

Reference: ATLAS-CONF-2017-027

