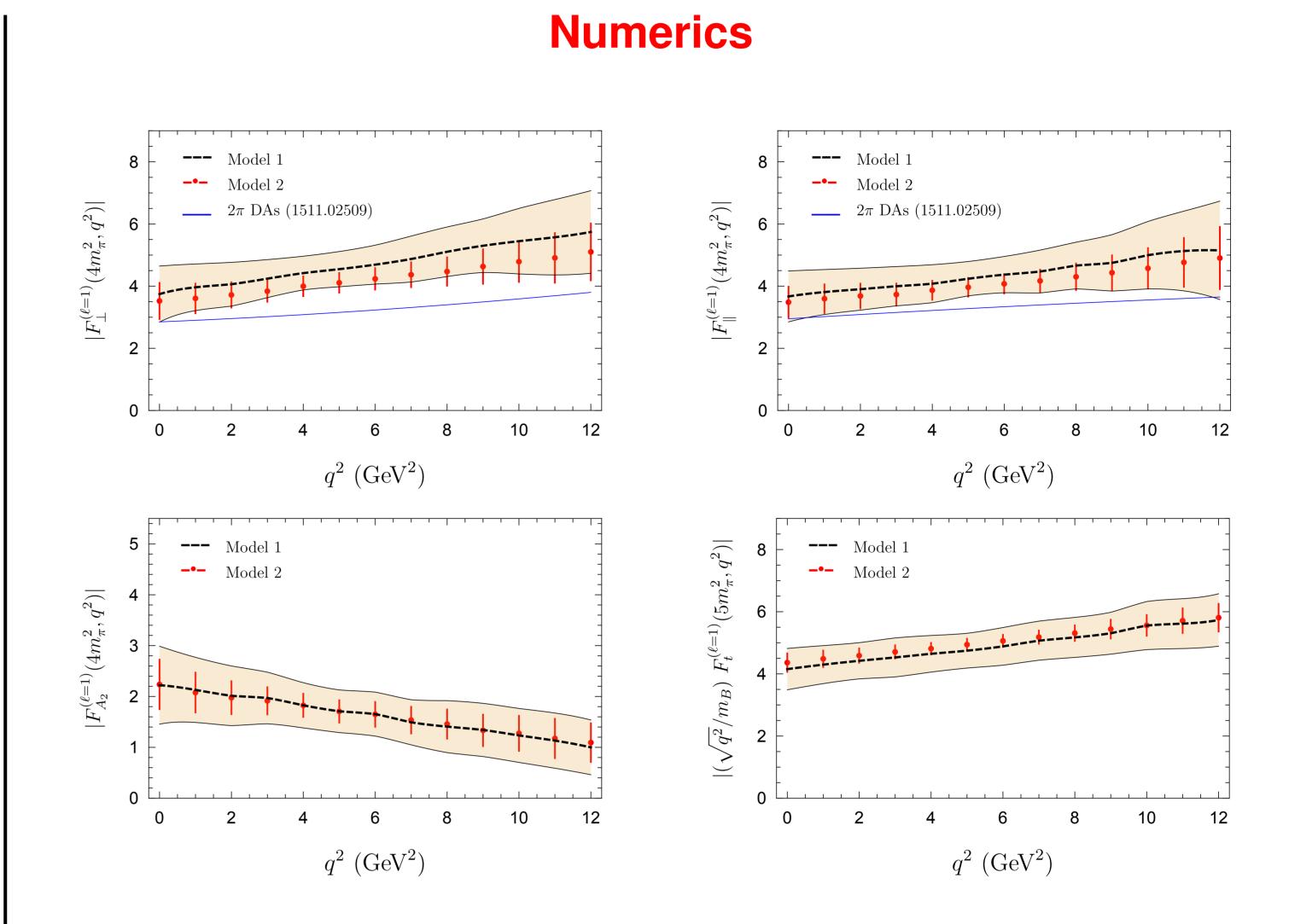
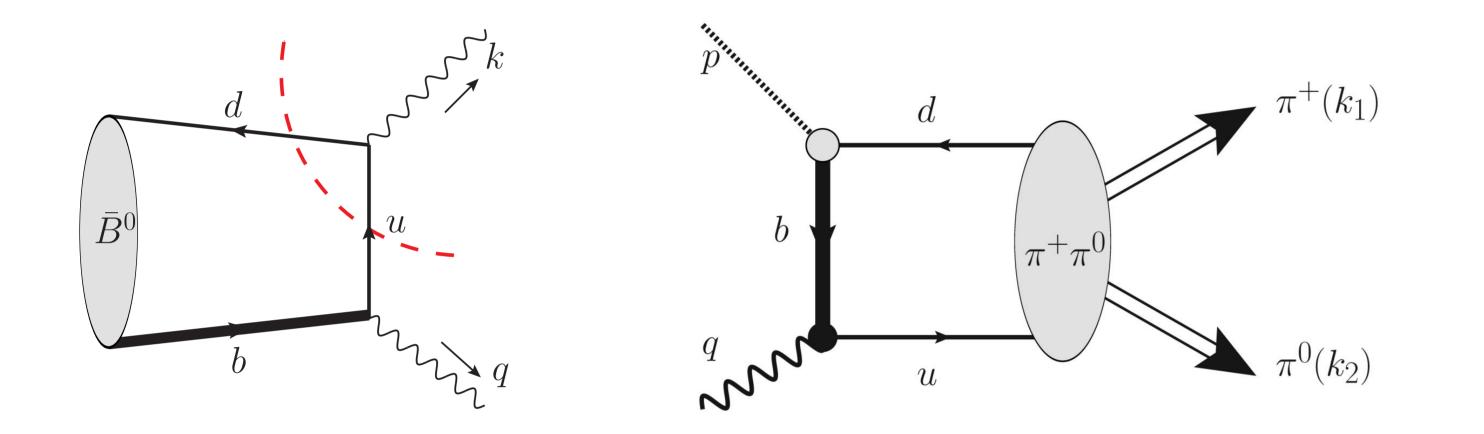


The 5th Annual Large Hadron Collider Physics coference (LHCP2017), Shanghai, Poster No : 218

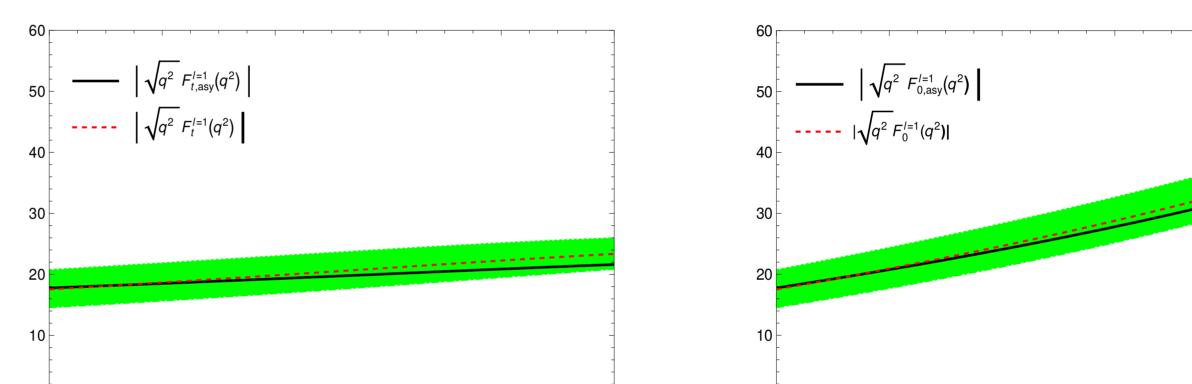

b UNIVERSITÄT BERN

$B \rightarrow \pi \pi$ form factors from light cone sum rules


S. Cheng (Siegen U), in collaboration with A. Khodjamirian (Siegen U) and J. Virto (Bern U)

QCD sum rules approach


The QCD sum rule approach is based on a twofold way of treating process-dependent correlation functions of quark-antiquark operators: (I) a correlation function is calculated in QCD operator product expansion, yielding a combined perturbative and power expansion, which contains universal input parameters encoding the nonperturbative quark-gluon interactions; (II) the same correlation function is related to the **hadronic matrix elements** via a dispersion relation. Mutually connected versions of QCD sum rules for different types of hadronic matrix elements include the **light-cone sum rules** (LCSRs) for hadronic form factors and **two-point sum rules** for the decay constants of hadrons. One employs two different types of correlation functions with, respectively, **distribution amplitudes** (DAs) of hadrons and QCD vacuum condensates as nonperturbative inputs.



$B \to \pi\pi$ form factors in LCSRs

Illustration: Leading order diagram for the correlation functions used to derive QCD LCSRs for the form factors in $B \rightarrow \pi \pi \ell \bar{\nu}$ with the B (left) and dipion (right) DAs. See [1, 2, 3] for details.

With B meson distribution amplitude [1]

- → Correlation function: $\bar{d}\gamma_{\mu}u$ interpolation current with the $b \to u$ weak current, $F_{\mu\nu}(k,q) = i \int d^4x e^{ik \cdot x} \langle 0| \mathrm{T}\{\bar{d}\gamma_{\mu}u(x), \bar{u}\gamma_{\nu}(1-\gamma_5)b(0)\}|\bar{B}^0\rangle$.
- \clubsuit QCD calculation: $q^2 \ll m_B^2, |k^2| \gg \Lambda_{\rm QCD}^2$

long distant matrix element is defined by B meson light cone DAs; short distant contribution is carried by internal free propagator.

- → Hadron dispersion relation: $\pi^{-}\pi^{0}$ interpolation, (unitarity relation) pion vector form factor $\langle \pi^{-}(k_{1})\pi^{0}(k_{2})|\bar{u}\gamma_{\mu}d|0\rangle = -\sqrt{2}(k_{1}-k_{2})_{\mu}F_{\pi}(k^{2}),$ \Rightarrow convolution of F_{π} and $F_{B\to\pi\pi}$ in invariant mass s, \Rightarrow impossible to solve analytically.
- → Quark-hadron duality and Borel transfer
- → Resonance model for $B \to \pi^- \pi^0$ form factor to fit the form factor. an independent and apposite channel to study $B \to \rho, \rho'$ from factors in LCSRs; how large of ρ contribution to $B \to \pi^- \pi^0$ form factor ?

With dipion distribution amplitude [2, 3]

→ Correlation function: pseudoscalar heavy-light current j_5^B and weak current $j_{b\to u}^{(m)}$ $\Pi^{(m)}(q, k_1, k_2) = i \int d^4x e^{iqx} \left\langle \pi^-(k_1)\pi^0(k_2) | \mathbf{T} \left\{ j_{b\to u}^{(m)}(x), j_5^B(0) \right\} | 0 \right\rangle.$

Figure.2: Timelike-helicity $B \rightarrow \pi^{-}\pi^{0}$ transition form factors $F_{t,0}$ obtained with diipon LCDAs.

Conclusion

- Modele-I in Fig.1: two resonances model, with using the $B \rightarrow \rho$ form factor obtained from ρ meson LCSRs;
- Modele-II in Fig.1: three resonances model, with their relative size being the same as in pion vector form factor parameterized to describe data;
- Fig.2: Timelike-helicity form factors $F_{t,0}$ are calculated separately to $F_{\perp,\parallel}$ with diipon DAs, lowest expansion (l = 1, n = 0) gives almost the whole contribution;
- P-wave contribution: Only P-wave contribution with B meson DAs \Leftarrow pion vector form factor; absolute dominate with diipon DAs (> 95%);
- ρ contribution: $80\% 90\% \Rightarrow$ the residual deficit can be regarded as the finite-width effect in B $\rightarrow \rho$ form factors, rethink the single pole assuming;
- k^2 -dependent evolution: all four form factors with B meson DAs, only timlike-helicity form factors $F_{t,0}(k^2)$ with diipon DAs.

- → Analytical solution in terms of isospin-vector dipion DAs
- → m = V A: limit knowledge of dipion DAs \Rightarrow only $F_{\perp,\parallel}(q^2, s)$ is available at $s = 4m_{\pi}^2$; kinematic singularity $\Rightarrow F_{t,0}(q^2, s)$ should be considered separately.
- \Rightarrow m = P: for timelike-helicity form factor $F_{t,0}$
 - $B_{01}^{\parallel}(s) \simeq F_{\pi}(s)$ with B factory data, go to a large prediction $s \in [4m_{\pi}^2, 1.5 \text{ GeV}^2]$.
- \rightarrow Resonance model to estimate the ρ contribution

Outlooks

- → Accuracy of OPE calculation: NLO correction & input parameters in B meson;
- → light cone DAs of isospin-scalar diipon state and $K\pi$ state;
- → $B \rightarrow \pi^0 \pi^0$ to study B decay form factor with scalar final states;
- → $B \to K\pi$ with SU(3) flavour violation final states $\Rightarrow B \to K^*$ form factors.

References

[1] S. Cheng, A. Khodjamirian and J. Virto, " $B \to \pi\pi$ Form Factors from Light-Cone Sum Rules with *B*-meson Distribution Amplitudes", arXiv:1701.01633 [hep-ph]. [2] C. Hambrock and A. Khodjamirian, "Form factors in $\bar{B}^0 \to \pi\pi\ell\bar{\nu}_\ell$ from QCD light-cone sum rules", Nucl. Phys. B **905**, 373 (2016), arXiv:1511.02509 [hep-ph]. [3] S. Cheng, A. Khodjamirian and J. Virto, Timelike-helicity " $B \to \pi\pi$ form factor from light-cone sum rules with dipion Distribution Amplitudes", arXiv:1706.xxxxx [hep-ph].