

Search for Mono-Higgs at LHC with the CMS detector

Poster 277: Jónatan Piedra Gómez for Nicolò Trevisani (IFCA – CSIC – UC) on behalf of the CMS collaboration

Searching Dark Matter at LHC

•Dark Matter particle nature is unknown and cannot be explained within Standard Model •At a hadron collider have to assume interaction between Standard Model and Dark

Matter candidate particles

- •Main candidate: Weakly Interacting Massive Particle
- •Final state with two Dark Matter particles and SM particle(s)
- Missing Transverse Momentum (\mathbf{p}_{τ}^{miss}) + X signatures
- In this case X is a Higgs boson

Mono-Higgs Physics Model

•The search exploits 2.3 fb^{-1} Data collected during 2015 by the CMS detector

•The benchmark model inspected and its parameters have been chosen following LHC

DM Working Group recommendations [http://cern.ch/go/8MQC]

- Z'-2HDM: A vector boson mediator Z' decays into a Higgs boson and a pseudoscalar A_o
- The A_o then decays into two dark matter particles
- •Two Higgs decay channels investigated [arXiv:1703.05236]
- h \rightarrow bb: higher branching ratio, lower m_h resolution
- h $\rightarrow \gamma \gamma$: lower branching ratio, higher m_h resolution

	Dealli C	aı
SM DM	M. Strasslar 2015	
	X = Jet, Z, W, photon, Higgs	

h → bb Analysis Strategy

Two categories to enhance the sensitivity of the analysis

Resolved (low Higgs boost)	Merged (high Higgs boost)
Two b-tagged AK4 jets with p_T > 30 GeV	One AK8 jet with p _T > 200 GeV with two b-tagged sub-jets
$E_T^{miss} > 170 \text{ GeV}$	$E_T^{miss} > 200 \text{ GeV}$
•Multi-jet rejection	
- $\Delta \phi$ (AK4 _{jet} , \vec{p}_T^{miss}) > 0.4	
- $\Delta \phi (\vec{p}_T^{miss}, \vec{p}_{T,trk}^{miss}) < 0.7$	

- •Semi-leptonic top and W + jet rejection
- Lepton (e, μ , τ) veto
- No additional b-jets
- No more than 1 additional AK4 jets

Main backgrounds ($Z \rightarrow \nu \nu$ + jets, Top, W + jets) normalized in **control regions**

$h \rightarrow \gamma \gamma$ Analysis Strategy

Ao

Reduce jets faking photons contribution

- Low $\frac{E_{HCAL}}{E_{FCAL}}$
- Isolation requirements applied

•Avoid $\mathbf{m}_{\gamma\gamma}$ spectrum distortion

- $-\frac{p_T^{\gamma_1}}{m_{\gamma_1}}$ > 0.5 and $\frac{p_T^{\gamma_2}}{m_{\gamma_1}}$ > 0.25 •Reject Mis-measured p_T^{miss} events
- $|\Delta \phi(\gamma \gamma, \vec{p}_T^{miss})| > 2.1$
- $|\Delta \phi$ (jet, \vec{p}_T^{miss})| > 0.5 for every jet with p_T > 50 GeV Reduce EW background
- Veto events with muons or more than 1 electron
- •Select events with a Higgs boson recoling against \vec{p}_T^{miss}
- $p_T^{miss} > 105 \text{ GeV}$
- $p_T^{\gamma\gamma}$ > 90 GeV

$h \rightarrow bb$ Signal Extraction

The signal is extracted with a simultaneous fit of the signal region and the control regions

•100 GeV < m_h < 150 GeV

•Fit is performed on a three-bin p_T^{miss} histogram

Systematic Uncertainties

•The main uncertainties affecting the $h \rightarrow bb$ fit

- Jet energy scale

$h \rightarrow \gamma \gamma$ Signal Extraction

The signal is extracted by counting the events in the Singal Region

•SM Higgs contamination is taken from simulations

•Non-resonant background contribution in SR is estimated from Data

- Transfer factor $\alpha = N_C / N_B = N_D / N_A$ is **extracted in low p**_T^{miss} region

- And then **applied in high** \mathbf{p}_T^{miss} region: $N_D = \alpha \cdot N_A$

Combination

•Result intepreted in terms of upper limits on the DM production cross section via

Z'-2HDM model since no excess wrt SM predictions observed

- b-tagging (6%)
- Z $\rightarrow \nu \nu$ + jets and W + jets simulated samples statistics
- •The background contamination estimation of the $\mathbf{h} \rightarrow \gamma \gamma$ signal region is mainly statistical dominated (70%)
- Transfer factor estimation (20%)
- Signal region side-bands population
- Another important source of uncertainty is the imperfect knowledge of the background $m_{\gamma\gamma}$ shape (20%)
- •In the **combination** of the two analyses all **signal** and p_T^{miss} -related uncertainties as well as the **luminosity** uncertainty are assumed to be fully correlated

•Mass scan: $m_{Z'}$ = (600 GeV – 2500 GeV), m_{A0} = (300 GeV – 800 GeV)

•Two Z'-A_o-h coupling constant $g_{Z'}$ values studied

$h \rightarrow bb$ and $h \rightarrow \gamma \gamma$ for m_{AO} = 300 GeV

Full Combination Results

LHCP2017: 5th Large Hadron Collider Physics Conference 2017, 15–20 May 2017, Shanghai (China)