

Measurements of charm mixing and CP violation using $D^0 \rightarrow K^{\pm} \pi^{\mp}$ decays

Adam Davis, Center for High Energy Physics, Tsinghua University, Poster #282 On Behalf of the LHCb Collaboration

Overview

Mixing

• Mixing in neutral mesons: mass \neq flavor eigenstates

 $ho \; |D_{1,2}
angle =
ho |D^0
angle \pm q|\overline{D}^0
angle$, $|
ho|^2 + |q|^2 = 1$

•
$$x = \frac{m_2 - m_1}{\Gamma}, \ y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}, \ \Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$$

• for $D^0 \to K\pi$: $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \delta & \sin \delta \\ -\sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

CP Violation

This Measurement [1]

- Charm decay reconstruction Prompt Decays
- Impact Parameter (IP) \sim 0
- Search for mixing and CPV using decay chain

Large IP

Secondary Decays

 D^0

Inclusion of Detector Effects

Incorporate detector effects, backgrounds

$R^{\mathrm{obs}\pm} = R(t)^{\pm}(1-\Delta_{\mathrm{p}}^{\pm})\left(rac{\epsilon(K^{+}\pi^{-})}{\epsilon(K^{-}\pi^{+})} ight)^{\pm 1} + p_{\mathrm{other}}^{\pm}$
--

What we	\propto Fraction of Prompt	$K\pi$ Detection	Double MisID,
want	in DT Sample	Efficiency	other peaking

Expectations

Theoretical Expectations

- Mixing at 1 loop level in SM, GIM and CKM suppressed
- Long-range effects may dominate short-range interactions, difficult to calculate
- Short- and long-range calculations: $x, y \leq 0.5\%$ • CPV expected to be $\mathcal{O}(10^{-3})$ in SM [4, 5, 6, 7] Any enhancement could be New Physics

$D^0 ightarrow K^\pm \pi^\mp$

RS decays: dominated by Cabibbo favored decay ► WS decays: two routes

▶ Time dependent WS/RS ratio for $D^0(+)$ and $\overline{D}^0(-)$

 $R(t)^{\pm} = rac{WS(t)^{\pm}}{RS(t)^{\pm}} \simeq R_D^{\pm} + \sqrt{R_D^{\pm}y'^{\pm}\left(rac{t}{ au}
ight) + rac{x'^{\pm 2} + y'^{\pm 2}}{4}\left(rac{t}{ au}
ight)^2}$

- ▶ Doubly Tagged: μ^- and π^+_S tag the D^0 at production
- Extremely clean
- Complements prompt $D^{*+} \rightarrow D^0 \pi_s^+$ measurement [3] Goals: Fit Variations
- Measure $WS(t)^{\pm}/RS(t)^{\pm}$ using DT sample only
- Combined fit with prompt result
- No CPV: $R_D^+ = R_D^-$,
- $y^{\prime +} = y^{\prime -}$, $(x^{\prime +})^2 = (x^{\prime -})^2$ ▶ No Direct CPV: $R_D^+ = R_D^-$ ► All CPV allowed: all parameters free

Experimental Expectations

- From pseudo-experiments, statistics alone will reduce errors on R_D , y' by 17% and 15%
- Gain comes from low decay-time lever arm

Selection

- Kinematically constrain daughter K, π to same vertex, constrain μ, π_S and D^0 to come from same vertex
- Veto candidates which appear in both Prompt and DT samples
- Subtract random muon and muon mistag shape using $B
 ightarrow \mu^+ D^{*+} X$ (Unphysical "Same Sign" sample)

4000

6000

 $m(D^{*+}\mu)[MeV/c^{2}]$

5000

Yield Extraction

- Binned Maximum Likelihood Fit
- Signal: 3 Gaussian Core + 1 Johnson S_U [8]
- Background: Empirical shape
- Strategy: Fit full RS sample, fix signal shape, fit RS and WS in each of 5 decay time bins

Detection Asymmetries

 $A_{K\pi} = \frac{\epsilon(K^+\pi^-) - \epsilon(K^-\pi^+)}{\epsilon(K^+\pi^-) + \epsilon(K^-\pi^+)}$ $pprox A(K_{S}^{0}\pi)_{\mathsf{raw}} - A(K\pi\pi)_{\mathsf{raw}} - A(\overline{K}^{0}) + A_{\mathsf{Muon}}$ Trigger

[9, 10]

- $A(\overline{K}^0) = -(0.05 \pm 0.01)\%$ from [9]
- ► A_{Muon Trigger} directly from DT data
- To cancel D^{\pm} production asymmetry, must weight samples

- Scale to sideband in each decay time bin
- Gauge systematic uncertainty by setting scaling factor to 1

3000

These requirements set $\Delta_{p}^{\pm} = 0$

Peaking Backgrounds

Systematic Uncertainties

- Divide low and high D^0 sidebands into 6 regions each
- Fit $m(D^*)$ in each bin, extract the number of peaking events
- Project into signal region, extract number of peaking events. Total: 128 ± 31
- Integrated over decay time due to limited statistics
- Fraction of doubly misidentified D^0 to RS yield: $(7.4\pm1.8) imes10^{-5}\equiv p_{
 m other}$

CPV Fit Strategy

Fit by minimizing

Source of systematic uncertainty	Uncertainty on parameter				
	No CPV				
	$R_D[10^{-3}]$	$y'[10^{-3}]$	$x'^{2}[10^{-4}]$		
$D^{*+}\mu^+$ scaling	0.01	0.04	0.04		
$A(K\pi)$ time dependence	0.01	0.07	0.04		
RS fit model time variation	0.00	0.01	0.03		
No prompt veto	0.01	0.16	0.09		
Total	0.01	0.18	0.11		

No direct CPV					
	$R_D[10^{-3}]$	$y'^+[10^{-3}]$	$(x'^+)^2 [10^{-4}]$	$y'^{-}[10^{-3}]$	$(x'^{-})^{2} [10^{-4}]$
$D^{*+}\mu^+$ scaling	0.01	0.04	0.04	0.03	0.04
$A(K\pi)$ time dependence	0.01	1.17	0.98	1.64	1.67
RS fit model time variation	0.00	0.02	0.03	0.01	0.03
No prompt veto	0.01	0.11	0.00	0.19	0.19
Total	0.01	1.17	0.98	1.66	1.68

All CPV allowed							
	$R_D^+[10^{-3}]$	$y'^+[10^{-3}]$	$(x'^+)^2 [10^{-4}]$	$R_D^{-}[10^{-3}]$	$y'^{-}[10^{-3}]$	$(x'^{-})^2 [10^{-4}]$	
$D^{*+}\mu^+$ scaling	0.01	0.03	0.04	0.01	0.04	0.04	
$A(K\pi)$ time dependence	0.06	0.25	0.03	0.07	0.28	0.03	
RS fit model time variation	0.00	0.01	0.01	0.00	0.04	0.05	
No prompt veto	0.01	0.09	0.01	0.01	0.21	0.19	
Simulated DT coverage	0.00	0.18	0.30	0.00	0.18	0.33	
Total	0.06	0.32	0.31	0.07	0.40	0.38	

$A(K\pi)$ time dependence

- Find variation in RS^{-}/RS^{+} ratio
- Consistent with flat line

at p = 0.06

Assess systematic uncertainty by adding decay-time variation to $A(K\pi)$

11%

16%

9%

16%

15%

7%

9%

10%

10%

13%

- $+\chi_{\epsilon}^{2}+\chi_{\text{peaking}}^{2}+\chi_{\text{other}}^{2}$
- ▶ r_i^{\pm} = measured WS[±]/RS[±], with error σ_i^{\pm} $ightarrow R(t_i)^{\pm} =
 m Expected$ value from $R^{obs\pm}$ averaged over bin • $(\chi_{\epsilon}^2 + \chi_{\text{peaking}}^2 + \chi_{\text{other}}^2)$ are gaussian constraints on $A(K\pi)$, $\Delta_p = 0$, and p_{other}

References

- [1] R. Aaij et al. Measurements of charm mixing and *CP* violation using $D^0 \rightarrow K^{\pm}\pi^{\mp}$ decays. *Phys. Rev. D*, 95:052004, Mar
- [2] Adam Davis. Search for Mixing and Charge Parity Violation in Neutral Charm Mesons through Semileptonic B Meson Decay. PhD thesis. 2016-07-21
- [3] R. Aaij et al. Measurement of $D^0 \overline{D}^0$ mixing parameters and search for *CP* violation using $D^0 \to K^+ \pi^-$ decays. *Phys. Rev.* Lett., 111:251801, 2013
- John F. Donoghue, Eugene Golowich, Barry R. Holstein, and Josip Trampetic. Dispersive Effects in D^0 anti- D^0 Mixing. *Phys.* Rev., D33:179, 1986
- [5] Adam F. Falk, Yuval Grossman, Zoltan Ligeti, and Alexey A. Petrov. SU(3) breaking and $D^0 \overline{D}^0$ mixing. *Phys. Rev. D*, 65:054034, Feb 2002
- [6] S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi. A Cicerone for the physics of charm. *Riv. Nuovo Cim.*, 26N7:1–200, 2003.
- Gustavo Burdman and Ian Shipsey. D^0 \overline{D}^0 mixing and rare charm decays. Ann. Rev. Nucl. Part. Sci., 53:431–499, 2003.
- N. L. Johnson. Systems of frequency curves generated by methods of translation. *Biometrika*, 36:149–176, 1949.
- [9] R. Aaij et al. Measurement of *CP* asymmetry in $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^-\pi^+$ decays. *JHEP*, 07:041, 2014.
- [10] R. Aaij et al. Measurement of the D^{\pm} production asymmetry in 7 TeV pp collisions. *Phys. Lett.*, B718:902–909, 2013.

Results

Consistent with No CPV