Dark matter search results from the PandaX-II experiment

Mengjiao XIAO University of Maryland, College Park On behalf of PandaX-II Collaboration

Soudan

Gran Sasso Frejus Boulby

> Homestake Sudbury

Modane CJPL

1. Introduction to PandaX-II experiment

- PandaX = Particle AND Astrophysical Xenon experiment.
- Located at China Jin-Ping Underground Laboratory with ~2400 m or 6800 m.w.e depth (deepest one in the world).

3. Detector calibration

- Nuclear recoil (NR) calibration with AmBe source.
 - 162.4-hour data, ~3400 low energy single scatter NR events
 - NR median curve in agreement with NEST prediction, detection ulletefficiency was derived through comparing data to MC

Fig.1. China Jin-Ping Underground Laboratory

- PandaX-II: 2nd phase of PandaX serial experiments
 - use the dual-phase xenon time projection chamber for WIMP dark matter direct detection.
 - a half-ton scale LXe sensitive target in the detector.
 - commissioning in 2015 and started data taking in 2016.

Fig.4. NR band (left) and NR detection efficiency (right)

- Electron recoil (ER) calibration with tritiated methane.
 - 18.0-hour data, ~2800 low energy ER events in fiducial volume.
 - 9 events below NR median, leakage fraction $(0.32\pm0.11)\%$

Fig.5. ER band (left) and projection (right)

4. Background for dark matter search

Low–energy ER background:

~2 mDRU on average, world lowest reported background level.

Item	Run 8 (mDRU)	Run 9 (mDRU)
85 Kr	11.7	1.19
127 Xe	0	0.42
222 Rn	0.06	0.13
220 Rn	0.02	0.01
Detector material ER	0.20	0.20
Total	12.0	1.95

Accidental background:

- random pair of isolated S1 and S2 events formed the accidental background (toy MC based on data)
- boosted decision tree (BDT) cut was developed to suppress them
- Neutron background: estimated with MC simulation.

5. Dark matter search results

- A total exposure of 3.3×10^4 kg · day.
- No dark matter candidate is found above background.

	\mathbf{ER}	Accidental	Neutron	Total	Total
				Expected	observed
Run 8	622.8	5.20	0.25	$628{\pm}106$	734
Below	2.0	0.33	0.09	2.4 ± 0.8	2
NR median	2.0	0.00	0.00	2.120.0	-
Run 9	377.9	14.0	0.91	393 ± 46	389
Below	1.2	0.84	0.35	2.4 ± 0.7	1
NR median	1.2	0.01	0.00	2.120.1	1

- - $E_{\rm drift}$, $E_{\rm extract}$: drift and extract field setting in TPC
 - PDE: photon detection eff.
 - EEE: electron extraction eff.
 - SEG: single electron gas gain
 - τ_{e} : average electron drift time

Setting	Live time (day)	$E_{\rm drift}$ (V/cm)	E_{extract} (kV/cm)	PDE (%)	EEE (%)	SEG PE/e	$ au_e \ (\mu s)$
l	7.76	397.3	4.56	11.76	46.04	24.4	348.2
2	6.82	394.3	4.86	11.76	54.43	26.9	393.1
3	1.17	391.9	5.01	11.76	59.78	26.7	409.0
1	63.85	399.3	4.56	11.76	46.04	24.4	679.6

- Reference:
- [1] PandaX-II Collaboration: "Dark Matter Search Results from the Commissioning Run of PandaX-II". Phys. Rev. D 93, 122009 (2016).
- [2] PandaX-II Collaboration: "Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment". Phys. Rev. Lett. 117, 121303 (2016).
- [3] PandaX-II Collaboration: "Spin-Dependent Weakly-Interacting-Massive-Particle–Nucleon Cross Section Limits from First Data of PandaX-II Experiment". Phys. Rev. Lett. 118, 071301 (2017)

- Set 90% C.L. cross section upper limits with CLs approach.
- Lowest exclusion: 2.5×10^{-46} cm² @ 40 GeV/c² (SI) and $4.1 \times 10^{-41} \text{ cm}^2 @ 40 \text{ GeV/c}^2 (\text{SD neutron})$

