Physics at the LHeC

B.Mellado

University of the Witwatersrand

On behalf of the LHeC Study Group

Many thanks to N.Armesto, S.Forte, M.Klein, U.Klein, M.Kumar, M.Kuze and H.Sun for slides

LHCP, Shanghai Jiao Tong University, 19/05/17

Outline

□The LHeC project **The LHeC Physics Program The proton PDF High precision for the LHC Top physics, etc...** □The LHeC, a Higgs facility **Sensitivity to coupling strength Sensitivity to HVV coupling structure Invisible decays Top Yukawa coupling Outlook and conclusions**

ISSN 0954-3899

Journal of Physics G Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group

<u>arXiv:1206.2913</u>

July 20 12

iopscience.org/jphysg

IOP Publishing

arXiv:1211.4831 and 5102

CERN Referees

Ring Ring Design Kurt Huebner (CERN) Alexander N. Skrinsky (INP Novosibirsk) Ferdinand Willeke (BNL) Linac Ring Design Reinhard Brinkmann (DESY) Andy Wolski (Cockcroft) Kaoru Yokova (KEK) **Energy Recovery** Georg Hoffstaetter (Cornell) Ilan Ben Zvi (BNL) Magnets Neil Marks (Cockcroft) Martin Wilson (CERN) Interaction Region Daniel Pitzl (DESY) Mike Sullivan (SLAC) **Detector Design** Philippe Bloch (CERN) Roland Horisberger (PSI) Installation and Infrastructure Sylvain Weisz (CERN) New Physics at Large Scales Cristinel Diaconu (IN2P3 Marseille) Gian Giudice (CERN) Michelangelo Mangano (CERN) **Precision QCD and Electroweak** Guido Altarelli (Roma) Vladimir Chekelian (MPI Munich) Alan Martin (Durham) **Physics at High Parton Densities** Alfred Mueller (Columbia) Raju Venugopalan (BNL) Michele Arneodo (INFN Torino)

Published 600 pages conceptual design report (CDR) written by 150 authors from 60 Institutes. Reviewed by ECFA, NuPECC (long range plan), Referees invited by CERN. Published June 2012.

John Osborne June 2014

Pt 2

1/3 Pts

Pt 8

Provessin Site

Pt

Meyr

LHeC Civil Engineering Different Options Fraction 1/3-1/4-1/5 Pt2 and Pt8 LOSBORNE/LFAISANDEL GS-SE-DOP

CDR: Physics, Accelerator, Detector M.Klein

JPhysG:39(2012)075001, arXiv:1206.2913 http://cern.ch/lhec

CDR: default design. 60 GeV. L=10³³cm⁻²s⁻¹, P< 100 MW → ERL, synchronous ep/pp 5

Powerful ERL for Experiments (ep.yp): PERLE at Orsay

PERLE at Orsay: New Collaboration: BINP, CERN, Daresbury/Liverpool, Jlab, Orsay

0

CDR publication imminent.

- 3 turns, 2 Linacs, 15mA, 802 MHz ERL facility
- -Demonstrator of LHeC
- -Technology (SCRF) Development Facility
- -Low E electron and photon beam physics
- -High intensity: 100 x ELI

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017 See https://indico.lal.in2p3.fr/event/3428/

Luminosity for LHeC, HE-LHeC and FCC

parameter [unit]	LHeC CDR	ep at HL-LHC	ep at HE-LHC	FCC-he
$E_p \; [\text{TeV}]$	7	7	12.5	50
E_e [GeV]	60	60	60	60
$\sqrt{s} [\text{TeV}]$	1.3	1.3	1.7	3.5
bunch spacing [ns]	25	25	25	25
protons per bunch $[10^{11}]$	1.7	2.2	2.5	1
$\gamma \epsilon_p \; [\mu \mathrm{m}]$	3.7	2	2.5	2.2
electrons per bunch $[10^9]$	1	2.3	3.0	3.0
electron current [mA]	6.4	15	20	20
IP beta function β_p^* [cm]	10	7	10	15
hourglass factor \mathbf{H}_{geom}	0.9	0.9	0.9	0.9
pinch factor H_{b-b}	1.3	1.3	1.3	1.3
proton filling H_{coll}	0.8	0.8	0.8	0.8
luminosity $[10^{33} cm^{-2} s^{-1}]$	1	8	12	15

Oliver Brüning¹, John Jowett¹, Max Klein^{1,2}, Dario Pellegrini¹, Daniel Schulte¹, Frank Zimmermann¹ ¹ CERN, ² University of Liverpool April 6th, 2017

P. Kostka

The LHeC Detector

LHeC Physics Programme

CDR, arXiv:1211.4831 and 5102 http://cern.ch/lhec

QCD Discoveries	$\alpha_s < 0.12, q_{sea} \neq \overline{q}$, instanton, odderon, low x: (n0) saturation, $\overline{u} \neq \overline{d}$
Higgs	WW and ZZ production, $H \to b\overline{b}$, $H \to 4l$, CP eigenstate
Substructure	electromagnetic quark radius, e^* , ν^* , W ?, Z ?, top?, H ?
New and BSM Physics	leptoquarks, RPV SUSY, Higgs CP, contact interactions, GUT through α_s
Top Quark	top PDF, $xt = x\overline{t}$?, single top in DIS, anomalous top
Relations to LHC	SUSY, high x partons and high mass SUSY, Higgs, LQs, QCD, precision PDFs
Gluon Distribution	saturation, $x = 1, J/\psi, \Upsilon$, Pomeron, local spots?, F_L, F_2^c
Precision DIS	$\delta \alpha_s \simeq 0.1 \%, \delta M_c \simeq 3 \text{MeV}, v_{u,d}, a_{u,d} \text{ to } 2 - 3 \%, \sin^2 \Theta(\mu), F_L, F_2^b$
Parton Structure	Proton, Deuteron, Neutron, Ions, Photon
Quark Distributions	valence $10^{-4} \leq x \leq 1$, light sea, d/u , $s = \overline{s}$?, charm, beauty, top
QCD	N ³ LO, factorisation, resummation, emission, AdS/CFT, BFKL evolution
Deuteron	singlet evolution, light sea, hidden colour, neutron, diffraction-shadowing
Heavy Ions	initial QGP, nPDFs, hadronization inside media, black limit, saturation
Modified Partons	PDFs "independent" of fits, unintegrated, generalised, photonic, diffractive
HERA continuation	$F_L, xF_3, F_2^{\gamma Z}$, high x partons, α_s , nuclear structure,

Ultra high precision (detector, e-h redundancy)	- new insight
Maximum luminosity and much extended range	- rare, new effects
Deep relation to (HL-) LHC (precision+range)	- complementarity

Strong coupling 0.1%; Full unfolding of PDFs; Gluon: low x: saturation?, high x: HL LHC searches...

U. Klein

PDFS AT THE LHEC

S. Forte

- UNCERTAINTIES DOWN TO PERCENT LEVEL IN WIDE KINEMATIC REGION
- WITH DEUTERON BEAMS, FULL LIGHT FLAVOR DECOMPOSITION
- THANKS TO HIGH ENERGY, $NC+CC \Rightarrow PRECISION$ STRANGENESS DETERMINATION

(A. Cooper-Sarkar & Voica Radescu, 2015)

PDF uncertainty on Higgs production at LHC will become negligible due to measurements a the LHeC ₁₂

High Precision for the LHC

Can achieve 0.2% precision in pdf uncertainty, thus removing this uncertainty from the prediction of the Higgs cross-section.

Spacelike M_W to 10 MeV from ep \rightarrow Electroweak thy test at 0.01% !

Reduce pdf error 2.8 MeV \rightarrow Remove PDF uncertainty on M_w LHC

Top electric charge

M.Klein

Dominant

EDM and MDM

Anomalous t-q-y and t-g-Z

V_{tb}

Top spin

W-t-b

Top PDF

Top mass

Top-Higgs (1602.04670)

CP nature of ttH (1702.03426)

FCNC top Higgs CC interaction

Just started to fully see the huge potential of top physics in ep at high energies

LHeC, a Higgs facility

Higgs at LHeC

It is remarkable that VBF diagrams were calculated for lepton nucleon collisions before for pp!

Consider feasibility for the following LHeC point:

but dominantly $qq \rightarrow H$ e^{\pm} H W^{\pm} q'(q)q

lepton lines by quark lines

At LHC replace

LHeC, a Higgs Facility

→ for first time a realistic option of an 1 ab⁻¹ ep collider (stronger e-source, stronger focussing magnets) and excellent performance of LHC (higher brightness of proton beam); ERL: 960 superconducting cavities (20 MV/m) and 9 km tunnel [arXiv:1211.5102, arXiv:1305.2090; EPS2013 talk by D. Schulte]

1 - 1 2 ToV	LHeC Hig	rgs	$CC(e^-p)$	NC (e^-p)	$CC(e^+p)$	Ultim
vs= 1.5 lev	Polarisati	on	-0.8	-0.8		e-bea
A need of	Luminosi	ty $[ab^{-1}]$	1	1	0.1	and L
→ need of	Cross Sec	tion [fb]	196	25	58	opera
different	Decay	BrFraction	$N_{CC}^{H} e^{-}p$	$N_{NC}^{H} e^{-}p$	$N_{CC}^{H} e^{+}p$	opera
models :	$H \to b\overline{b}$	0.577	▲ 113 100	13 900	3 350	→ De
cc: 'sm-full'	$H \to c \overline{c}$	0.029 🚽	5 700	700	170	do
	$H \to \tau^+ \tau$	- 0.063	12 350	1 600	370	HF
	$H \to \mu \mu$	0.00022	50	5		 m/
	$H \rightarrow 4l$	0.00013	30	3		Lines
	$H \rightarrow 2l 2 \nu$	v 0.0106	2080	250	60	Higgs
gg, vv: 'heft'	$H \rightarrow gg$	0.086	16 850	2 050	500	IS Ide
86) ffr field	$H \to WW$	V = 0.215	42 100	$5\ 150$	1 250	likely
	$H \rightarrow ZZ$	0.0264	$5\ 200$	600	150	times
	$H \to \gamma \gamma$	0.00228	450	60	15	detec
	$H \to Z \gamma$	0.00154	300	40	10	efficie
Lite Visin Lines						syudi

ate polarised m of 60 GeV HC-p beams, ars of tion

ecay to bb is minating FL decay odes : s decay to cc ctor 20 less v than Hbb the ratio of tion enciesed !

Uta Klein, Higgs to HFL

$H \rightarrow bb$ coupling, cut based analysis

Results obtained with Delphes output

[P=-0.8, BR=0.577]

U. Klein

First BDT results: Higgs \rightarrow bb

Conservative light jet rejection factor of 10 is used

U Klein and D Hampson.

BDT Results Higgs→ cc

NEW : Using R = 0.5 anti-kt jets and ATLAS IBL vertex resolution (5 μ m) → Hcc candidates increased by factor 3.5 w.r.t. anti-kt R=0.9 jets

BDT cut >0.2: Hcc Signal events : 474; S/√S+B=12.8 → κ(Hcc) = 4% for 1000 fb⁻¹

Clear potential to access the Higgs to charm decay channel at the LHeC.

BDT

Couplings: HL-LHC+LHeC

bb and cc so far only worked on

HL-LHC

HL-LHC + LHeC

к in %	HL LHC	LHeC HL	LHeC HE	FCC-eh
$H \rightarrow pp$	10	0.5	0.3	0.2
$H \rightarrow cc$	50?	4	2.8	1.8

Structure of HVV couplings

higgs + 2jets: VBF (LHC), higgs + jet + missing E_T (LHeC)

$$\Gamma_{\mu\nu}^{\rm SM} = -gM_V g_{\mu\nu}$$

$$\Gamma_{\mu\nu}^{\rm BSM}(p,q) = \frac{g}{M_V} [\lambda \left(p \cdot q g_{\mu\nu} - p_\nu q_\mu\right) + \lambda' \epsilon_{\mu\nu\rho\sigma} p^\rho q^\sigma]$$

Can consider azimuthal angle correlation between scattered neutrino and quark. Other observables can be used too.

ep process uniquely addresses the HWW vertex.

Model independent separation of HWW and HZZ coupling, unique capability of ep collisions, not available in pp and e^+e^- collisions

B.Biswal, R.Godbole, S.Kumar, B.M., S.Raychaudhuri, Phys.Rev.Lett. 109 (2012) 261801

Invisible Higgs

Y.-L. Tang et al., Phys. Rev. D 94, 011702 (2016)

e

jet

See Chen Zhang's poster on exotic decays

B.Coleppa, M.Kumar, S.Kumar, B.M., Phys. Lett. B770 (2017) 335

Top Yukawa coupling

 $\nu_e e^-$

Introduce phase dependent top Yukawa coupling

$$\mathcal{L} = -i\frac{m_t}{m_t}\bar{t}\left[\cos\zeta_t + i\gamma_5\sin\zeta_t\right]t\,h$$

Enhancement of the crosssection as a function of phase

Observe/Exclude non-zero phase to better than 4σ . Measure coupling with 17% accuracy with zero phase

Outlook and Conclusions

- □ The LHeC has a vast physics program, further boosting the physics potential of the LHC
 - **Unique capability to measure proton PDFs+\alpha_s, etc...**
 - **Critical to the LHC in the long term**
 - **Rich top physics, etc...**
- □ The LHeC is also a Higgs facility
 - **Higgs produced via EW process**
 - Good theoretical control of the cross-section
 - **No contamination from ggF and no pile-up**
 - **Strengths ep with respect to pp:**
 - $h \rightarrow bb(0.5\%)$, cc(4%), tautau couplings
 - Structure of hVV and top/bottom Yukawa couplings
 - **Combination of ep/pp boosts precision of LHC**